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Retinal vein occlusion (RVO) is one of the most common retinal vascular diseases leading to vision loss if not diagnosed and
treated in time. RVO can be classified into two types: CRVO (blockage of the main retinal veins) and BRVO (blockage of one
of the smaller branch veins). Automated diagnosis of RVO can improve clinical workflow and optimize treatment strategies.
However, to the best of our knowledge, there are few reported methods for automated identification of different RVO types. In
this study, we propose a new hypermixed convolutional neural network (CNN) model, namely, the VGG-CAM network, that
can classify the two types of RVOs based on retinal fundus images and detect lesion areas using an unsupervised learning
method. The image data used in this study is collected and labeled by three senior ophthalmologists in Shanxi Eye Hospital,
China. The proposed network is validated to accurately classify RVO diseases and detect lesions. It can potentially assist in
further investigating the association between RVO and brain vascular diseases and evaluating the optimal treatments for RVO.

1. Introduction

Early changes in the retina are influenced by many factors,
such as unfavorable environmental factors, including aging,
a high-carbohydrate diet, and a sedentary lifestyle [1], and
systemic diseases, including hyperglycemia [2], hyperlipid-
emia [3], and hypertension [4]. Retinal blood vessels are
the only blood vessels available for noninvasive imaging in
the human body. The pathological changes in retinal blood
vessels occur much earlier than clinical symptomatic lesions.
Therefore, retinal images have been widely used to detect
early signs of systemic vascular diseases. In recent years, with
an increase in the elderly population and the acceleration of
the aging society in China, the fundus diseases of the elderly
occur more frequently. Impaired vision can significantly

impact an older person’s quality of life and ability to live
independently [5].

Retinal vessels are important structures of our eyes [6],
and their detection and analysis are of great significance
for the study of ocular diseases. Patients with retinal diseases
may exhibit serious complications that cause severe visual
impairment owing to a lack of awareness of retinal diseases
and limited medical resources [7]. Retinal vein occlusion
(RVO) [8] is one of the important eye diseases considered
a risk factor for cardiovascular mortality and stroke in aging
people [9]. Its typical symptoms include exudate [10], capil-
lary nonperfusion [11], collateral formation [12], microa-
neurysm [13], sclerosed veins [14], and telangiectatic
vessels [15]. Ischemic RVO is usually complicated by macu-
lar edema (ME) [16] and retinal and iris neovascularization

Hindawi
Disease Markers
Volume 2022, Article ID 1730501, 9 pages
https://doi.org/10.1155/2022/1730501

https://orcid.org/0000-0002-1510-5919
https://orcid.org/0000-0003-0056-4685
https://orcid.org/0000-0001-6810-9991
https://orcid.org/0000-0002-1991-4748
https://orcid.org/0000-0001-7657-6071
https://orcid.org/0000-0001-7140-0296
https://orcid.org/0000-0002-9991-9281
https://orcid.org/0000-0002-7629-0193
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1730501


[17], resulting in significant visual loss. RVO is classified into
central and branch RVO (CRVO and BRVO). CRVO
involves superficial or deep retinal hemorrhages (HEs) [18]
that are scattered around the vein near the lamina cribrosa
[19], and BRVO involves hemorrhages occurring within
the occluded venule from the retinal sector to the blood sup-
ply sector, which is caused by arterial compression onto
veins [20] (see Figure 1). RVO is the second most common
retinal vascular eye disease after diabetic retinopathy (DR)
[21]. If RVO is not treated in a timely manner, it can lead
to serious complications that cause severe visual impairment
[22, 23]. So far, the number of patients with RVO has
increased [24], but our understanding of its pathogenesis,
our ability to modify the final visual outcome, and the avail-
ability of treatments to effectively intervene in the progres-
sion of the disorder are all relatively limited [25].

Diagnosing ophthalmological diseases through deep
learning models [26] has been used broadly in recent years
[27]. A convolutional neural network (CNN) is one of the
most famous deep learning architectures designed in 1989
[28]. Krizhevsky et al. [29] trained a large CNN architec-
ture with eight layers and millions of parameters using a
large ImageNet data set containing 1 million training
images. In the field of ophthalmology, Litjens et al. [27]
used a CNN to automatically segment macular edema
based on OCT images. Google used a CNN network to
automate the classification of diabetic retinopathy [30]
and obtained the experimental results of 99% referral
accuracy by training more than 100,000 data sets. The
technology has been approved by the FDA as an official
medical product. CNN is good at extracting feature infor-
mation of different colors, spaces, and edges of images by
using convolution modules of different scales and integrat-
ing all features into higher-order abstract features of
images through continuous nonlinear transformation com-
binations. High-order abstract features and basic features
are used together in the final learning process. CNN is
almost a conventional method for medical image analysis,
including color fundus images (CFIs) [27]. It is better in
configuring spatial information by taking images as input.
The achievements of CNN in autodiagnosis on different
medical aspects can be found in [27], and it has been
proved to surpass humans in some cases. So far, a hierar-
chical CNN architecture capable of distinguishing between
normal CFIs and BRVO CFIs has been proposed by
Zhang et al. [31] and developed by Zhao et al. [32]. Over
the past several years, many modified and deeper CNN
architectures have been proposed, which are not only used
in the medical imaging domain but also widely applied in
other domains [33].

Our study proposed an advanced model that can classify
all normal, CRVO, and BRVO CFIs and detect the visible
hemorrhage areas. It will help ophthalmologists realize
computer-aided diagnosis in pathological analysis [34] to
alleviate their pressure and discover and treat RVO as early
as possible [35]. We will illustrate the methods employed
in our model in the next chapter, followed by experimental
results and final remarks in the third and fourth chapters,
respectively.

2. Materials and Methods

When dealing with medical images, the structural and con-
figuration information between adjacent pixels is a great
source for analysis. A CNN that combines convolutional
layers, pooling layers, and fully connected layers is more
capable of extracting this type of information from 2D or
3D images. Convolutional layers apply a convolution opera-
tion by processing images only in receptive fields and adapt-
ing the weights gradually during the learning process.
Pooling layers are usually followed by convolutional layers
to reduce the dimensions of their output. Fully connected
layers flatten data from previous layers to one dimension.
A simple CNN framework is shown in Figure 2.

In this study, we also use the same data sets to conduct
the control experiments on Resnet-34 [37], Inception-V3
[38], and MobileNet [39] models. Resnet [40] is the cham-
pion of the ImageNet large-scale visual recognition challenge
(ILSVRC) in 2015. Resnet-34 [37] model is mainly com-
posed of residual blocks, through which a deep network
can be built and residual learning can be carried out in the
feature extraction process. The Inception model is a deep
CNN architecture proposed by Szegedy et al. [41] in ILSVRC
2014. The asymmetric multiconvolution kernel structure of
the Inception-V3 [38] model performs the splitting opera-
tion on the larger convolution. Convolution kernels with dif-
ferent sizes are adopted so that receptive fields of different
sizes can exist. The calculation efficiency of model parame-
ters is improved, and the overfitting of the model is reduced.
The MobileNet [39] model was proposed by a Google team
[42] in 2017 and consists of a series of basic deep separable
convolution (DSC) units. The model has a high precision
and involves a small number of parameters and calculations.

2.1. Model Architecture. The study introduces a new CNN
framework to classify RVO types and detect lesions. It is
known as the VGG-CAM network, which utilizes a modified
VGG19 network, general average pooling (GAP), class acti-
vation mapping (CAM), and CAM attention.

VGG19 [43] is a CNN architecture introduced by
Simonyan and Zisserman. They used small receptive fields
(3 × 3 matrix) to detect features from different positions of
images and added the number of convolutional layers to
increase the reception area for these receptive fields. Our
VGG-CAM network reduces the number of fully connected
layers in the original VGG19 networks from three to one
and replaces them with a GAP layer. In the feature extrac-
tion stage, the auxiliary classifier and CAM attention layer
are introduced to further enhance the model’s activation
weight for the lesion area. An additional CAM layer is con-
nected with the GAP layer for lesion detection. SoftMax is
applied as an activation function for the final fully connected
layer, which predicts probabilities of different classes that the
CFI can be labeled. The 24-layer framework of the VGG-
CAM network is shown in Figure 3.

In the VGG-CAM network, the GAP layer preserves
more information from input images [44], which helps
detect lesion areas in the input image. Compared with aver-
age pooling, GAP only outputs one parameter from each
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Figure 1: (a) Normal retina images, (b) CRVO retina images, and (c) BRVO retina images.
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Figure 2: A simple CNN framework containing input, convolutional, pooling (subsampling), and fully connected layers (Heung-II, [36]).
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receptive field (see Figure 4). Compared with the former, it
uses less time to optimize the network. Lin et al. proved that
the reduction of parameters in GAP has no effect on the
accuracy of final networks [44].

The CAM layer’s computation is as follows:

CAM= 〠
C

i=0
ωi ∗ Fi, ð1Þ

where C represents the number of channels in the feature
map of the previous GAP layer. For each feature channel,
the CAM layer augments products of weights ωi from the
fully connected layer and feature maps Fi before the GAP
layer, as seen in Figure 5.

The CAM layer first uses Equation (1) to compute the
class activation image of the original CFIs. It then applies

bilinear interpolation to turn the class activation image into
the size of the original image, followed by a threshold seg-
mentation to detect the lesion location.

In the feature extraction stage, some useless information
often affects the final classification accuracy; further, the
extraction of key pathological features is the key to classifica-
tion. The attention mechanism can guide the model to inde-
pendently select the lesion area to be noticed. The feature
weights are generated by introducing the auxiliary classifier
and CAM attention layer after the sixth pooling layer. The
feature weight is introduced into the feature map of the
10th layer to improve the model’s attention and learning of
the lesion area and further improve the final classification
effect and the accuracy of lesion detection.

2.2. Image Preprocessing. Input images were mainly prepro-
cessed by contrast limited adaptive histogram equalization
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Figure 3: Framework of VGG-CAM model for RVO classification and lesion detection.
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Figure 4: Examples of average pooling and GAP.
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(CLAHE) to increase contrast in original images [45]. Flip-
ping, twisting, and zooming were used as well to increase
the variety in our image database, which improves the
model’s ability to recognize various RVO images. Figure 6
presents the differences between original and preprocessed
input images.

2.3. Model Initialization

2.3.1. Transfer Learning. Transfer learning [46] applies pre-
trained weights on a network from another problem as the
initial weights for the same network in a different problem.
In the problem of image processing, the shallow network
of a neural network is mainly responsible for the feature
extraction of shallow elements in an image, such as points,
edges, and other such elements. Universal pretrained
weights can reduce the network’s learning time on a differ-
ent problem [47]. The VGG-CAM model used pretrained
weights from ImageNet as initial weights, which was trained
by over a million images containing over 1,000 labeled
images (https://www.image-net.org/).

2.3.2. Stage-Wise Training. Stage-wise training [48] assigns
priority to features of images. It separates the entire learning
process into several sublearning processes, and the ability to
extract different levels of image features is achieved through
different learning processes. It allows information from the
images to be processed gradually in the model [49]. In the
earliest stage (the first eight layers in our model), the net-
work accessed only a subset of the image, especially its
coarse-scale features. Following stage II (8th to 13th layers)
and stage III (13th to 18th layers), finer information was
extracted from the image, and the feedback was used to
evolve the previous stages for a better prediction. Stage III
is the only prior for feature learning of the final stage (the
fully connected layer).

2.3.3. Environment. Operating system: Ubuntu 18.04 LTS;
language: Python 3.6.8, Keras; GPU: GTX1080ti; CPU: Intel
i7; Memory: Kingston DDR4 16G.

3. Results and Discussion

3.1. Evaluation Metrics. In this experiment, the ability to
identify unsupervised lesions was tested first, and then, the
classification performance of the VGG-CAM model was
tested in terms of sensitivity (Se), specificity (Sp), and
Kappa. The calculation formulas of each index are shown
below.

Se =
TP

FN + TP
, ð2Þ

Sp =
TN

FP + TN
, ð3Þ

Kappa =
P0 − Pe

1 − Pe
: ð4Þ

In Equations (2) and (3), TP indicates that the positive
class is predicted as the positive class number, TN indicates
that the negative class is predicted as the negative class num-
ber, FN indicates that the negative class is predicted as the
positive class number, and FP indicates that the negative
class is predicted as the positive class number.

In Equation (4), P0 represents the sum of the number of
samples correctly classified for each class divided by the total
number of samples, that is, the overall classification accu-
racy. Assume that the real number of samples of each class
is a1, a2,⋯, an, respectively, the predicted number of sam-
ples of each class is b1, b2,⋯, bn, respectively, and the total
number of samples is n; then, Pe is expressed as

Pe =
a1 × b1 + a2 × b2+⋯+an × bn

n × n
: ð5Þ

3.2. Lesion Detection. Figure 7 presents examples of a
detected lesion in BRVO and CRVO CFIs. For BRVO CFIs,
the VGG-CAM network is sufficiently capable of identifying
exudate, sclerosed veins, and hemorrhages. However, the
network only highlights parts of a hemorrhage when the
hemorrhage area is large. As for CRVO that has hemorrhage
spreading all over the retina, the VGG-CAM network only
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Figure 5: RVO lesion detection by CAM.
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indicates the central area of hemorrhage, namely, lamina
cribrosa.

3.3. RVO Classification. The performance of the VGG-CAM
network on the validation set is shown in Figure 8 and

Table 1. Model scores of the VGG-CAM network (see
Table 1) show that the model has a high sensitivity and spec-
ificity in classifying BRVO, CRVO, and normal CFIs. When
distinguishing between RVO and normal CFIs, the model
has only one misclassified image. When distinguishing
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between BRVO and CRVO CFIs, it mislabeled eight CRVO
images as BRVO. However, the sensitivity and specificity
of classifying the three labels are above 94%, and the speci-
ficity is above 96%. The results of BRVO and normal CFIs
are over 97% in the Kappa coefficient, but the results of
CRVO CFIs are only 88%.

From the experimental results in Table 2, it can be seen
that the sensitivity and specificity of the model after adding
CAM and CAM attention layers are significantly improved
when compared with the current classification models with
better effects. From the results with CAM attention and
without CAM attention, it can be seen that the CAM atten-
tion layer enables the model to more effectively extract lesion
areas to enhance the final classification effect.

The following ROC curve (see Figure 9) plots the false
positive rate (FPR) against the true position rate (TPR).

The closer the curve is to (0,1), the more sensitive and accu-
rate the model is. It shows that the area of all curves in the
VGG-CAM model reaches 0.99, where the area under the
curve of the normal label (1.00) indicates the model is capa-
ble of distinguishing between normal CFIs and RVO CFIs.
The curves of the BRVO and CRVO labels have an area of
0.99, which indicates a slight probability of mislabeling
between each other.

4. Conclusions

This study proposes a hybrid CNN, VGG-CAM, for RVO
classification and lesion detection. The CAM attention layer
was introduced to enhance the model’s attention to the
lesion area, and the network parameters learned from the
ultralarge data set were used for the initialization of this net-
work by migration learning. Stage training was used to
reduce the training time of the model and improve the
parameter optimization ability. Further, based on unsuper-
vised learning method, the global average pooling and class
activation methods were also used for lesion detection. The
experimental results showed that the proposed model can
accurately classify BRVO, CRVO, and normal fundus
images, detect the lesion areas, and give the prediction
results and clinical basis for the resulting judgment.

However, BRVO did not perform as well as CRVO and
normal CFIs in sensitivity. For CRVO, the current lesion
detection branches cannot achieve a high-precision predic-
tion. This proposed model was only used for the preliminary
study of fundus images in the field of view with a 55-degree
lens. We concluded that the samples lacked diversity under
the specific shooting field of the equipment. In future works,
we will improve the model performance with image data
from different medical devices and different fields of view
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Table 1: VGG-CAM network model scores on RVO classification.

Prediction Sensitivity Specificity Kappa Number of CFIs

BRVO 0.94 0.99 0.97 151

CRVO 0.99 0.96 0.88 93

Normal 0.98 0.99 0.98 53

Table 2: Comparison of the results of various methods on RVO
classification.

Model Sensitivity Specificity

Resnet-34 0.92 0.92

Inception-V3 0.90 0.91

MobileNet 0.89 0.90
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and further improve the lesion detection accuracy of the
model through a supervised learning method.
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