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Objectives. Schizophrenia (SCZ) is associated with disrupted functional brain connectivity, and antipsychotic medications are
the primary and most commonly used treatment for schizophrenia. However, not all patients respond to antipsychotic
medications. Methods. The study is aimed at investigating whether the graph-theory-based degree centrality (DC), derived
from resting-state functional MRI (rs-fMRI), can predict the treatment outcomes. rs-fMRI data from 38 SCZ patients were
collected and compared with findings from 38 age- and gender-matched healthy controls (HCs). The patients were treated
with antipsychotic medications for 16 weeks before undergoing a second rs-fMRI scan. DC data were processed using
DPABI and SPM12 software. Results. SCZ patients at baseline showed increased DC in the frontal and temporal gyrus,
anterior cingulate cortex, and precuneus and reduced DC in bilateral subcortical gray matter structures. However, those
abnormalities showed a clear renormalization after antipsychotic medication treatments. Support vector machine analysis
using leave-one-out cross-validation achieved a correct classification rate of 84.2% (sensitivity 78.9%, specificity 89.5%, and
area under the receiver operating characteristic curve (AUC) 0.925) for differentiating effective subjects from ineffective
subjects. Brain areas that contributed most to the classification model were mainly located within the bilateral putamen,
left inferior frontal gyrus, left middle occipital cortex, bilateral middle frontal gyrus, left cerebellum, left medial frontal
gyrus, left inferior temporal gyrus, and left angular. Furthermore, the DC change within the bilateral putamen is negatively
correlated with the symptom improvements after treatment. Conclusions. Our study confirmed that graph-theory-based
measures, combined with machine-learning algorithms, can provide crucial insights into pathophysiological mechanisms
and the effectiveness of antipsychotic medications.

1. Introduction

Schizophrenia (SCZ) is viewed as a disease that involves the
dysconnectivity of multiple neuronal circuits [1]. Evidence
from resting-state functional magnetic resonance imaging
(rs-fMRI) studies has revealed impairments in the interac-
tion within and between large-scale brain networks for

SCZ patients [2]. In the context of graph theory [3], dis-
rupted topological organization of the whole-brain network
such as reduced functional segregation and enhanced func-
tional integration has been extensively reported in schizo-
phrenia studies, both for functional network and white
matter network [4, 5]. Furthermore, reduced degree central-
ity (DC) of hub regions (brain regions that are connected to
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a remarkably large number of other regions) is also observed
in SCZ [6].

Antipsychotic medications are the primary and most
commonly used treatment for schizophrenia. Unfortunately,
not all patients respond to antipsychotic medications [7].
Overall estimates suggest that more than 30% of patients
have treatment-resistant schizophrenia (TRS) [8]. TRS
patients have persistent positive, negative, and cognitive
symptoms that lead to poorer outcomes. Previous studies
have found functional connectivity impairments within
default mode network (DMN) in TRS patients, subcortical
networks, and frontal lobes compared with treatment-
responsive patients [9]. However, those results are based
on average estimates of differences at the group level, and
the translational applicability of such data to clinical practice
should be based on inferences at the individual rather than
group level.

With the recent advancements in the field of machine
learning, measurements derived from rs-fMRI combined
with artificial intelligence algorithms have led to the
improvements in the diagnosis, classification, and treatment
outcome prediction for a range of diseases, in particular, for
schizophrenia [10]. Our pervious study has indicated that
functional connectivity can be a sensitive marker to differen-
tiate SCZ from healthy controls (HCs) [11]; baseline sponta-
neous regional activities were also found to be predictive of
early response to treatment for SCZ [12]. Because SCZ is
associated with widespread changes in functional networks,
graph-based measurements of network organization, such
as degree centrality, might have potential in predicting treat-
ment effects.

The purpose of this study was firstly to determine the
dynamic changes of DC measures before and after antipsy-
chotic medication treatment in a group of first-episode
SCZ patients. Secondly, we adopt supervised machine
learning-based algorithms to investigate whether the base-
line DC measures can predict the treatment outcomes. We
hypothesized that abnormal DC might reorganize with anti-
psychotic medication treatment in first-episode SCZ patients
and the baseline DC in hub regions of DMN, striatum net-
work, and cerebellum network can accurately classify treat-
ment outcomes.

2. Methods

2.1. Subjects. Thirty-eight SCZ patients were recruited from
the department of Psychiatry, Xijing Hospital affiliated to
Air Force Medical University. Clinical diagnosis was accord-
ing to the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-5). The Positive and Negative
Syndrome Scale (PANSS) was assessed by two senior clinical
psychiatrists. Subjects were excluded if they have other
psychiatric and neurological diseases or any structural
abnormalities detected by routine MRI examination. At 16
weeks after first fMRI recording, we performed follow-up
assessments of all patients and gathered information about
antipsychotic medications and prognosis. In addition, 38
age- and gender-matched healthy controls were recruited
by advertisement. This study was approved by the clinical

trial ethics committee of Xijing Hospital at the Air Force
Medical University. Written informed consent was obtained
from each subject prior to the study.

2.2. Image Acquisition. The imaging data were collected
using a GE 3.0 Tesla Discovery MR scanner with eight–
channel phased array head coil (EXCITE, General Electric,
Milwaukee, Wisconsin). Subjects were asked to keep their
eyes open and to stay awake during the entire session. Using
the gradient-echo planar imaging sequence, the resting-state
functional images were obtained with the following parame-
ters: echo time = 30ms, repetition time = 2000ms, field of
view = 240mm × 240mm, datamatrix = 64 × 64, slices = 33,
and total 210 volumes. High-resolution T1-weighted image
was also acquired using a volumetric three-dimensional
spoiled gradient recall sequence with the following parame-
ters: repetition time = 8:2ms, echo time = 3:2ms, field of
view = 256 × 256mm2, matrix = 128 × 128, slice thickness =
1mm, and 196 slices. The same parameters were used for
scans of follow-up assessment of SCZ patients and for
healthy controls.

2.3. fMRI Data Preprocessing. The Data Processing & Anal-
ysis for Brain imaging (DPABI, http://rfmri.org/dpabi) was
used to preprocess the fMRI data. The first 10 images were
removed for magnetization equilibrium; the remaining 200
images were subjected to slice time correction and motion
realignment during which the mean frame-wise displace-
ment (FD) was calculated. Data with head motion that
exceeded 2mm and 2° were excluded. Friston-24 model
(the 24 parameters include 6 head motion parameters, 6
head motion parameters one time point before, and the 12
corresponding squared items) was used to regress out the
effects of nuisance signals and head motions, as suggested
by a previous study; global signal averaged over the whole
brain was also regressed [13]. Then, the diffeomorphic ana-
tomical registration through the exponentiated Lie algebra
(DARTEL) tool was used for normalization (voxel size, 3 ×
3 × 3mm3), the normalized data was finally band-pass fil-
tered (0.01–0.08Hz).

2.4. Degree Centrality. A correlation matrix was firstly
obtained by computing Pearson correlation coefficients
between time courses of each pair of voxels. A threshold of
r > 0:25 was used to obtain the undirected adjacency matrix
in order to remove the weak correlations that might be
induced by noise [14]. Then, for each voxel, the degree cen-
trality was calculated as the sum the connections between
this voxel with other voxels. DC can be computed as in the
following equation:

DC ið Þ = 〠
N

j=1
aij, ð1Þ

where N is the number of voxels and aij represents the con-
nection or edge from node i to node j, which is 0 if no edge
exists and 1 for an edge with a weight greater than 0.25. For
further statistical analysis, the weighted DC was converted
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into a z-score map. Finally, the DC map was smoothed with
6mm FWHM Gaussian kernel.

2.5. Statistical Analysis. Group differences between SCZ
patients and HCs in demographic characteristics were com-
pared using the chi-square test and Student’s t-test with
SPSS (IBM SPSS Statistics for Windows, version 19.0, IBM
Corp.). For detection of between-group differences in DC,
general linear model (GLM) with two-sample t-tests (HCs
vs. SCZ at baseline; HCs vs. SCZ patients at follow-up) or
paired t-test (baseline vs. follow-up) was used to identify
regional DC changes. The threshold for significance was
P < 0:05, corrected with the FDR criterion. Age, gender,
education, and the mean FD calculated during preprocessing
step were accounted by including this term as a covariate.
The differences between baseline and follow-up were binar-
ized as a mask for the further machine learning analysis.

2.6. Support Vector Machine Analysis. As described in our
previous study, SCZ patients were classified as responders
or nonresponders according to whether they achieved a
reduction in PANSS over 50% [5, 15]. SVM was applied
by using the Pattern Recognition for Neuroimaging Tool-
box (PRoNTo) (http://www.mlnl.cs.ucl.ac.uk/pronto) to
investigate whether the baseline DC can classify antipsy-
chotic medication treatment effects [16]. The SVM soft
margin parameter C was fixed to its default value 1. Gener-
ally, the SVM method includes four steps: (1) feature extrac-
tion and feature selection, (2) discriminative region selection,
(3) using the training data to train the classifier model, and
(4) evaluating the SVM model. In the current study, feature
selection consisted of identifying brain regions that differ
between the two groups. The above procedure was automat-
ically processed in PRoNTo’s “Prepare feature set” programs.

Leave-one-out cross-validation (LOOCV) was used to
evaluate the performance of the classifier. In this study, it
involved the exclusion of a single subject from each group
and training the classifier using the remaining subjects. The
above procedures were automatically processed in PRoNTo’s
“Specify model” programs. Permutation test (1000 times)
was used to evaluate the performance of the SVM model;
the corresponding accuracy, sensitivity, specificity, and
AUC (the area under the receiver operating characteristic
curve) were obtained. Then, the weight map was built at
voxel level; thus, the region contributions can be ranked
and presented for illustration. Finally, the DC changes (base-
line vs. follow-up) within these discriminative regions were
extracted and Pearson correlation was used to examine the
associations between the changes in DC and clinical scores
using SPSS. Correction for multiple correlations was accom-
plished with the FDR criterion.

3. Results

3.1. Demographic Characteristics. During the follow-up, all
patients received second-generation antipsychotic drugs,
including paliperidone (10 patients), risperidone (15
patients), olanzapine (9 patients), amisulpride (3 patients),
and aripiprazole (1 patient). According to the previous

study, drug dose across patients was calculated as olanzapine
equivalence. No significant differences were found between
patients and HCs on age and gender; detailed demographic
characteristics are shown in Table 1.

3.2. DC Differences across Groups. Compared with healthy
controls, significant DC differences were found in SCZ
patients at baseline. As shown in Figure 1(a), SCZ patients
showed reduced DC in the bilateral cerebellum, putamen,
hippocampus, thalamus, and caudate, which are mainly sub-
cortical gray matter structures; SCZ patients showed
increased DC in the bilateral inferior frontal gyrus, medial
frontal gyrus, superior frontal gyrus, middle temporal gyrus,
anterior cingulate cortex, and precuneus. After antipsychotic
medication treatment, as shown in Figures 1(b), a restora-
tion of DC within these regions was found. No significant
differences were found between SCZ patients at follow-up
and healthy controls.

3.3. SVM Classification Model. We obtained an accuracy of
84.2% with a sensitivity of 78.9% and specificity of 89.5%
for classification of the two groups. As shown in
Figure 2(a) and Table 2, the brain regions that contributed
most to the classification are listed below; the top 10 regions
are the right putamen (discriminative weight 4.51%), left
inferior frontal gyrus (discriminative weight 4.21%), left
putamen (discriminative weight 4.19%), left middle occipital
cortex (discriminative weight 4.13%), left middle frontal
gyrus (discriminative weight 3.92%), left cerebellum (dis-
criminative weight 3.81%), left medial frontal gyrus (discrim-
inative weight 3.78%), right middle frontal gyrus
(discriminative weight 3.74%), left inferior temporal gyrus
(discriminative weight 3.41%), and left angular (discrimina-
tive weight 3.41%). As shown in Figure 3(a), the area under
the curve for the classification model was 0.925. Finally, to
demonstrate the reliability of our results, we also conducted
a validation test in a separate sample (10 subjects collected
by Siemens MRI). Classification results for the independent
validation cohorts were also high (accuracies 0.80), further
emphasizing the feasibility of using models trained exclu-
sively on data collected using a different MRI scanner.

3.4. Correlation Results. The changes of DC values after anti-
psychotic medication treatment (baseline-follow-up) were
extracted to correlate with the PANSS changes in SCZ patients.
Significant negative correlation was found between changes of
positive scores and DC value changes in the left putamen
(r = −0:51, P < 0:001) and right putamen (r = −0:52, P <
0:001). The correlation results are shown in Figure 3(b).

4. Discussion

This study explores the abnormalities of DC and antipsy-
chotic medication effect on SCZ patients using resting-state
fMRI. Compared with healthy controls, significant DC
changes were found for SCZ patients at baseline, but those
abnormalities were renormalized after antipsychotic medica-
tion administration. Using a multivariate pattern classifica-
tion method, the present study demonstrates that degree
centrality derived from fMRI data collected at baseline can
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be used to classify subjects on the basis of whether they were
effective or ineffective to the antipsychotic medications.
With excellent accuracy, the brain regions that showed the
most discriminatory power were mainly located within the
striatum network, default mode network, and frontal-
parietal network. Furthermore, we found a significant nega-
tive correlation between the changes of PANSS and DC in
the bilateral putamen after treatment. These findings suggest

that graph-theory-based measures, such as DC, combined
with machine-learning algorithms, can help to predict the
effectiveness of antipsychotic medications.

The application of graph theory in neuroimaging allows
us to view the human brain as a network at the system level;
previous studies have found that patients with first-episode
schizophrenia have obvious abnormal network connections
[17, 18]. According to a recent study by Jiang et.al, although

Table 1: Demographic characteristics and clinical measures of schizophrenia patients and healthy controls.

SZ (n = 38) HCs (n = 38) t/χ2 P value

Demographic characteristics

Age (y) 16-59 (24:1 ± 8:6) 17-58 (24:5 ± 8:3) -0.2 0.82

Gender (male/female) 21/17 21/17 0 1b

Education (y) 4-19 (12:2 ± 3:1) 7-20 (14:1 ± 3:0) -2.7 0.01∗

Clinical measurements

Family history (y/n) 5/33 — — —

Duration (y) 0.02-8 (1:29 ± 1:93) — — —

Treatment before (d) 0-13 (4:62 ± 3:95) — — —

Interscan interval (m) 1-12 (4:6 ± 1:9) — — —

Olanzapine (mg/d) 3.7-27.3 (15:71 ± 4:91)
PANSS baseline

Positive score 7-31 (22:7 ± 4:7) — — —

Negative score 7-34 (21:3 ± 6:4) — — —

General score 30-64 (44:5 ± 8:4) — — —

Total score 63-124 (88:9 ± 13:1) — — —

PANSS follow-up

Positive score 7-21 (9:7 ± 3:7) — — —

Negative score 7-28 (14:9 ± 5:2) — — —

General score 11-42 (25:3 ± 5:8) — — —

Total score 30-110 (53:6 ± 14:1) — — —

Data were presented as mean ± SD. Abbreviation: SD: standard deviation; PANSS: positive and negative syndrome scale; ∗P: T-test with P < 0:05.
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Figure 1: Axial views of significant differences of DC. (a) Regions of increased (warm) and reduced (cool) DC in healthy controls compared
with SCZ patients at baseline using two-sample t test. (b) Regions of increased (warm) and reduced (cool) DC in children with SCZ patients
from baseline to follow-up using paired t test.

4 Disease Markers



the cortical thickness was further reduced after antipsychotic
medication administration, stronger interregional covari-
ance was found in SCZ patients who showed treatment
response. This indicated that the increased network integra-
tion induced by second-generation antipsychotic drugs
might compensate the disrupted brain structure, which
highlights a potential network-level regulatory mechanism
of antipsychotics on symptom abnormalities [5]. As a very
important indicator of network characteristics, degree cen-
trality should also have obvious abnormalities. Consistent
with our hypothesis, we found that under strict FDR test
standards, there is a significant difference in the degree cen-
trality between SCZ patients and healthy controls.

Those abnormalities involve almost the entire gray mat-
ter area, indicating that there are obvious global and local
connection abnormalities in patients with schizophrenia.
Compared with task-based functional magnetic resonance
imaging studies, resting-state magnetic resonance reduces
the deviation caused by the task [19]. This is an important
advantage for patients with schizophrenia, as they often have
impaired perception and cognitive functions. In addition,
functional magnetic resonance data analysis can select
regions of interest from a predefined map, which allows
the method to be cross-validated between independent pop-
ulations of subjects. The sensitivity and specificity obtained
in this study are equivalent to the classification effect
obtained based on structural image magnetic resonance.

We found that the top regions in the classification con-
tribution include the bilateral putamen, which is an impor-
tant part of the striatum [20]. Molecular imaging studies
have found that patients with schizophrenia who respond
to drugs have a greater ability to synthesize dopamine in
the striatum than patients who do not respond to drugs
[21]. Using fMRI [20], White et al. found that the frontal
lobe striatum network showed extensive connection damage.

More importantly, Sarpal et al. found that the functional
connection of the striatum can even predict the response
of patients with schizophrenia to drugs [22], which is also
consistent with our findings in this study. The abnormality
of the striatal network has been extensively confirmed in
autopsy reports, structural studies, and functional studies.
The frontal-striatal network involves a wide range of func-
tions, including behavioral motivation to cognitive control
functions. Dopamine signaling in the striatum also affects
the advanced cognitive functions of the prefrontal lobe.
Because the negative symptoms of schizophrenia include
disorders of cognition, motivation, and social incompatibil-
ity, the disordered frontal-striatal connection may be the
main cause of negative symptoms. In addition, the frontal-
striatal network is also responsible for adaptive behavior,
reward learning, and social functions. Disordered function
of the striatum, especially the connection between the stria-
tum and the frontal area, may be the main pathway that
affects the social perception, decision-making, and emo-
tional performance of patients with schizophrenia.

The top contributing regions also include the left medial
frontal lobe, the left inferior temporal gyrus, and the left
angular gyrus, which are important areas of the default
mode network [23], as well as the left middle frontal gyrus,
right middle frontal gyrus, and left occipital middle which
are important areas of the frontal-parietal network [24].
The findings in these areas confirm the “triple-network
hypothesis” in schizophrenia. This theory has recently been
proposed to explain various mental disorders [25]; that is,
impaired interactions between these networks may be
related to specific psychopathological processes. The default
mode network is responsible for self-supervision and is in a
negative activation state when performing cognitive tasks;
the frontal-parietal network is mainly composed of bilateral
dorsolateral prefrontal lobe and the posterior parietal lobe,

Weight map R
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Figure 2: Brain regions of interest that contributed mostly to the accurate classification.
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and it is responsible for attention and working memory
functions. The impairment of self-monitoring function often
found in patients with schizophrenia may be related to the
decline in the internal communication of the default mode
network. The disordered activities of the default mode net-
work may also be related to the weakening of the frontal-
parietal network.

Our research has the following limitations. First of all, in
the baseline state, the patient population received antipsy-
chotic treatment. Although the patients were only exposed
to antipsychotics within 2 weeks, the potential impact of
the drug’s contribution to the results cannot be ignored;
another limitation is that all patients received second-
generation antipsychotic drugs, but each patient’s sensitivity
to the drug is heterogeneous, and such heterogeneity will
also have an impact on the current research results; finally,
our study only recruited 38 cases of SZ patients and 38
healthy controls, the sample size of the validation cohorts
was also too small, the statistical power may be limited,

and further study should increase the sample size to guaran-
tee the statistical power.

5. Conclusion

We showed a normalization of the degree centrality in
patients with SCZ after antipsychotic medication treatments.
With the help of magnetic resonance imaging and machine
learning algorithms, the characteristics of brain networks
in schizophrenia can be used as sensitive biomarkers for
treatment prediction of SZ.

Data Availability

The patient data used to support the findings of this study
are restricted by the Institutional Review Board of the Xijing
Hospital in order to protect patient privacy.
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Figure 3: (a) ROC curve of the classifier. (b) Correlation between the clinical symptom improvements and the change of DC values in the
bilateral putamen in SCZ patients.

Table 2: The top ten brain regions that contributed mostly to the accurate classification.

Brain regions Cluster size
Peak coordinates (MNI)

Discriminative weight (%)
X Y Z

Right putamen 354 12 0 6 4.51

Left inferior frontal gyrus 68 -48 27 18 4.21

Left putamen 190 -21 -6 -9 4.19

Left middle occipital gyrus 79 -24 -99 -6 4.13

Left middle frontal gyrus 114 -21 6 54 3.92

Left cerebellum 179 -51 -57 -48 3.81

Left medial frontal gyrus 91 -6 63 6 3.78

Right middle frontal gyrus 61 33 9 54 3.74

Left inferior temporal gyrus 54 -63 -21 -21 3.41

Left angular 73 -39 -51 33 3.41

6 Disease Markers



Conflicts of Interest

There are no conflicts of interest.

Authors’ Contributions

Wenming Liu, Peng Fang, and Fan Guo contributed equally
to this work.

Acknowledgments

This study was supported by the Key R&D Program Projects
of Shaanxi, China (Nos. 2021SF-287 and 2022JM-575); Boost
Program of Xijing Hospital (XJZT19ML56); National Natural
Science Foundation of China under Grant No. 81974215;
China Postdoctoral Science Foundation (2019M653963); and
Military Medical Science and Technology Youth Training
Program (20QNPY049).

References

[1] W. Pettersson-Yeo, P. Allen, S. Benetti, P. McGuire, and
A. Mechelli, “Dysconnectivity in schizophrenia: where are we
now?,” Neuroscience and Biobehavioral Reviews, vol. 35,
no. 5, pp. 1110–1124, 2011.

[2] M.-E. Lynall, D. S. Bassett, R. Kerwin et al., “Functional
connectivity and brain networks in schizophrenia,” The
Journal of Neuroscience, vol. 30, no. 28, pp. 9477–9487,
2010.

[3] K. Song, J. Li, Y. Zhu, F. Ren, L. Cao, and Z. G. Huang, “Altered
small-world functional network topology in patients with
optic neuritis: a resting-state fMRI study,” Disease Markers,
vol. 2021, Article ID 9948751, 9 pages, 2021.

[4] Y. Liu, M. Liang, Y. Zhou et al., “Disrupted small-world net-
works in schizophrenia,” Brain, vol. 131, no. 4, pp. 945–961,
2008.

[5] Y. Jiang, D. Yao, J. Zhou et al., “Characteristics of disrupted
topological organization in white matter functional connec-
tome in schizophrenia,” Psychological Medicine, vol. 52,
no. 7, pp. 1333–1343, 2022.

[6] H. Cheng, S. Newman, J. Goñi et al., “Nodal centrality of func-
tional network in the differentiation of schizophrenia,” Schizo-
phrenia Research, vol. 168, no. 1-2, pp. 345–352, 2015.

[7] N. K. Chan, J. Kim, P. Shah et al., “Resting-state functional con-
nectivity in treatment response and resistance in schizophrenia:
a systematic review,” Schizophrenia Research, vol. 211, pp. 10–
20, 2019.

[8] E. P. Ganella, C. F. Bartholomeusz, C. Seguin et al., “Functional
brain networks in treatment-resistant schizophrenia,” Schizo-
phrenia Research, vol. 184, pp. 73–81, 2017.

[9] L. Palaniyappan, T. R. Marques, H. Taylor et al., “Globally effi-
cient brain organization and treatment response in psychosis:
a connectomic study of gyrification,” Schizophrenia Bulletin,
vol. 42, no. 6, pp. 1446–1456, 2016.

[10] E. Veronese, U. Castellani, D. Peruzzo, M. Bellani, and
P. Brambilla, “Machine learning approaches: from theory to
application in schizophrenia,” Computational and Mathemat-
ical Methods in Medicine, vol. 2013, Article ID 867924, 12
pages, 2013.

[11] W. Liu, X. Zhang, Y. Qiao et al., “Functional connectivity com-
bined with a machine learning algorithm can classify high-risk

first-degree relatives of patients with schizophrenia and iden-
tify correlates of cognitive impairments,” Frontiers in Neuro-
science, vol. 14, 2020.

[12] L. B. Cui, Y. F. Fu, L. Liu et al., “Baseline structural and functional
magnetic resonance imaging predicts early treatment response in
schizophrenia with radiomics strategy,” The European Journal of
Neuroscience, vol. 53, no. 6, pp. 1961–1975, 2021.

[13] X.-J. Dai, B.-X. Liu, S. Ai et al., “Altered inter-hemispheric
communication of default-mode and visual networks underlie
etiology of primary insomnia,” Brain Imaging and Behavior,
vol. 14, no. 5, pp. 1430–1444, 2020.

[14] H. Takeuchi, Y. Taki, R. Nouchi et al., “Degree centrality and
fractional amplitude of low-frequency oscillations associated
with Stroop interference,” NeuroImage, vol. 119, pp. 197–209,
2015.

[15] F. Guo, Y. Q. Zhu, C. Li et al., “Gray matter volume
changes following antipsychotic therapy in first-episode
schizophrenia patients: a longitudinal voxel-based mor-
phometric study,” Journal of Psychiatric Research, vol. 116,
pp. 126–132, 2019.

[16] J. Schrouff, M. J. Rosa, J. M. Rondina et al., “PRoNTo: pattern
recognition for neuroimaging toolbox,” Neuroinformatics,
vol. 11, no. 3, pp. 319–337, 2013.

[17] J. A. Hadley, N. V. Kraguljac, D. M. White, L. Ver Hoef,
J. Tabora, and A. C. Lahti, “Change in brain network topology
as a function of treatment response in schizophrenia: a longi-
tudinal resting-state fMRI study using graph theory,” NPJ
Schizophrenia, vol. 2, no. 1, pp. 1–7, 2016.

[18] M. P. van den Heuvel, R. C. Mandl, C. J. Stam, R. S. Kahn, and
H. E. H. Pol, “Aberrant frontal and temporal complex network
structure in schizophrenia: a graph theoretical analysis,” The
Journal of Neuroscience, vol. 30, no. 47, pp. 15915–15926, 2010.

[19] J. Kim, V. D. Calhoun, E. Shim, and J.-H. Lee, “Deep neural
network with weight sparsity control and pre-training extracts
hierarchical features and enhances classification performance:
evidence from whole-brain resting-state functional connectiv-
ity patterns of schizophrenia,” NeuroImage, vol. 124, no. Part
A, pp. 127–146, 2016.

[20] T. P. White, R. Wigton, D.W. Joyce, T. Collier, A. Fornito, and
S. S. Shergill, “Dysfunctional striatal systems in treatment-
resistant schizophrenia,” Neuropsychopharmacology, vol. 41,
no. 5, pp. 1274–1285, 2016.

[21] L. D. Vanes, E. Mouchlianitis, T. Collier, B. B. Averbeck, and
S. S. Shergill, “Differential neural reward mechanisms in treat-
ment responsive and treatment resistant schizophrenia,” Psy-
chological Medicine, vol. 48, no. 14, pp. 2418–2427, 2018.

[22] D. K. Sarpal, M. Argyelan, D. G. Robinson et al., “Baseline
striatal functional connectivity as a predictor of response
to antipsychotic drug treatment,” The American Journal of
Psychiatry, vol. 173, no. 1, pp. 69–77, 2016.

[23] F. Sambataro, G. Blasi, L. Fazio et al., “Treatment with olanza-
pine is associated with modulation of the default mode network
in patients with schizophrenia,” Neuropsychopharmacology,
vol. 35, no. 4, pp. 904–912, 2010.

[24] Y. Zhu, Y. Xi, N. Fei et al., “Dynamics of cerebral responses
to sustained attention performance during one night of sleep
deprivation,” Journal of Sleep Research, vol. 27, no. 2,
pp. 184–196, 2018.

[25] V. Menon, “Large-scale brain networks and psychopathology:
a unifying triple network model,” Trends in Cognitive Sciences,
vol. 15, no. 10, pp. 483–506, 2011.

7Disease Markers


	Graph-Theory-Based Degree Centrality Combined with Machine Learning Algorithms Can Predict Response to Treatment with Antipsychotic Medications in Patients with First-Episode Schizophrenia
	1. Introduction
	2. Methods
	2.1. Subjects
	2.2. Image Acquisition
	2.3. fMRI Data Preprocessing
	2.4. Degree Centrality
	2.5. Statistical Analysis
	2.6. Support Vector Machine Analysis

	3. Results
	3.1. Demographic Characteristics
	3.2. DC Differences across Groups
	3.3. SVM Classification Model
	3.4. Correlation Results

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments



