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Purpose. Gegen Qinlian Decoction (GGQL) has been employed to treat type 2 diabetes mellitus (T2DM) in the clinical practice of
traditional Chinese medicine. However, the underlying mechanism of GGQL in the treatment of T2DM remains unknown. This
study was aimed at exploring the pharmacological mechanisms of GGQL against T2DM via network pharmacology analysis
combined with experimental validation. Methods. The effective components of GGQL were screened, and the target was
predicted by using traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP). The
candidate targets of GGQL were predicted by network pharmacological analysis, and crucial targets were chosen by the
protein-protein interaction (PPI) network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
functional enrichment analyses were performed to predict the core targets and pathways of GGQL against T2DM. Then,
T2DM mice were induced by a high-fat diet combined with streptozotocin. The model and GGQL groups were given normal
saline and GGQL aqueous solution (10 and 20 g/kg/d) intragastric administration, respectively, for 8 weeks. The mice in the
GGQLT groups were administered with GGQLT at 10 and 20 g/kg/d, respectively. The pathological changes in liver tissues
were observed by hematoxylin-eosin staining. The protein expression of TNF-α and NF-κB was verified by western blotting.
Results. A total of 204 common targets of GGQL for the treatment of T2DM were obtained from 140 active ingredients and
212 potential targets of T2DM. GO and KEGG enrichment analysis involved 119 signaling pathways, mainly in inflammatory
TNF signaling pathways. Animal experiments showed that GGQL significantly reduced the serum levels of body mass, fasting
blood glucose, fasting insulin, HOMA-IR, TNF-α, and IL-17. The liver pathological section showed that GGQL could improve
the vacuolar degeneration and lipid deposition in the liver of T2DM mice. Mechanistically, GGQL downregulated the mRNA
expression of TNF-α and NF-κB. Conclusions. This study demonstrated that GGQL may exert antidiabetic effects against
T2DM by suppressing TNF-α signaling pathway activation, thus providing a basis for its potential use in clinical practice and
further study in treating T2DM.

1. Introduction

More than 90% of people with diabetes are type 2 diabetes
mellitus (T2DM), whose pathological characteristics are
mainly progressive beta-cell failure or insulin resistance
(IR) [1, 2]. According to the International Diabetes Federa-
tion (IDF) Global Diabetes Map, the number of T2DM

patients worldwide reached 463 million in 2021 [3]. It is esti-
mated that by 2045, there are more than 700 million diabetes
patients in the world, which would bring up a large eco-
nomic burden on society [3]. The goals of diabetes manage-
ment are to maintain their quality of life by keeping their
blood sugar levels as close to normal as possible and within
a target range and prevent or delay the development of
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various diabetic complications [4]. Over the past decades, a
large number of glucose-lowering medications have been
approved for clinical use in the control of T2DM, but most
drugs have certain adverse reactions, such as hypoglycemia,
gastrointestinal symptoms, oedema, osteoporosis, lactic aci-
dosis, and urinary tract infection [5–7]. In addition, the
management of complications of T2DM is still a major chal-
lenge in clinical practice and a substantial global healthcare
burden [8]. Therefore, it is of necessity to explore the safe
and effective anti-T2DM drugs for the clinical application.

Since ancient times, various medicinal plants were the
first choice to treat diabetes as they are concerned with min-
imum side effects [9]. In recent years, large-scale clinical tri-
als have confirmed that traditional Chinese medicine (TCM)
has made progress in controlling blood glucose levels. An
increasing number of studies have shown that Chinese for-
mulae can be used in the prevention and treatment of diabe-
tes through the “Bacteria-Mucosal Immunity-Inflammation-
Diabetes” axis [10]. Gegen Qinlian Decoction (GGQL),
which consists of Radix puerariae, Radix scutellariae, Rhi-
zoma coptidis, and Radix glycyrrhizae, is a famous Chinese
medicine prescription. GGQL was first recorded in a famous
ancient medicine treatise Shanghan Lun, compiled by
Zhong-Jing Zhang in the Han Dynasty of Chinese history
(202 BC-220 AD). In previous researches, it has been found
that GGQL exerts a range of pharmacological activities,
including anti-inflammation, antidiabetic, antioxidant, and
immunoregulative effects [11–14]. Our research team has
confirmed that GGQL could decrease the fasting blood glu-
cose (FBG) in mice with diabetes and improve the oral glu-
cose tolerance and insulin tolerance in rats with T2DM [15].
These results indicate that GGQL has definite antidiabetic
effects. However, the underlying pharmacological mecha-
nisms of action of GGQL and its components in the treat-
ment of T2DM remain unclear. More preclinical evidence
is needed.

With the rapid progress of bioinformatics, systems biol-
ogy, and polypharmacology, network pharmacology has
been proven to be a novel strategy to elucidate the active
compounds and potential mechanisms of TCM formulas.
Therefore, this study was aimed at using network pharma-
cology to identify potential targets of GGQL as mediators
of T2DM, thus providing useful clues for further experimen-
tal research. Mice fed a high-fat diet (HFD) combined with
streptozotocin were used as a T2DM model to further
explore the actions and mechanisms of GGQL against
T2DM. This study provides a scientific basis for understand-
ing the effectiveness of multicomponents, multitargets, and
compound formulas as well as a new strategy for investigat-
ing therapeutic drugs for the treatment of T2DM.

2. Materials and Methods

2.1. Collection and Screening of Bioactive Compounds in
GGQL. The active ingredients in GGQL were screened from
the traditional Chinese medicine systems pharmacology
database and analysis platform (TCMSP) (https://old
.tcmsp-e.com/tcmsp.php) by using “Ge Gen”, “Huang
Qin”, “Huang Lian”, and “Gan Cao” as keywords to identify

targets related to GGQL. Oral bioavailability ðOBÞ ≥ 30%
and drug likeness (DL) ≥0.18 were employed to identify
the potential active compounds in GGQL. With the help of
the UniProt database (https://www.uniprot.org/), the effec-
tive compound composition information was converted into
the corresponding target gene.

2.2. T2DM Disease Target Collection and Venn Diagram
Construction. Using “T2DM” and “type 2 diabetes mellitus”
as keywords, details on the human genes associated with
T2DM were screened from GeneCards (http://www
.genecards.org/), OMIM (https://omim.org/), PharmGkb
(http://www.pharmgkb.org/), TTD (http://db.idrblab.net/
ttd/), and DrugBank (http://www.drugbank.com/) data-
bases. Repetitive targets were deleted, and all target genes
were transformed into human genes by the UniProt data-
base. The harvested GGQL-related targets and T2DM-
related targets were subjected to a Venn diagram to deter-
mine the intersected targets.

2.3. Construction of GGQL Component-T2DM-Target
Interaction Network and Protein-Protein Interaction (PPI)
Network. The GGQL-compound-target-T2DM network
was constructed by Cytoscape 3.8.2. As previous researches
show, intersection targets were imported into the STRING
11.0 database (https://string-db.org/). Species were posi-
tioned as “Human,” and the confidence threshold was set
as >0.90. The selected proteins were introduced into Cytos-
cape 3.8.2 software to construct PPI networks, and the node
connectivity was analyzed to screen out the core targets.

2.4. Gene Ontology (GO) Functional Annotation and Kyoto
Encyclopedia of Genes and Genomes (KEGG) Pathway
Analysis. R software, a free software environment for statis-
tical computing and graphics, was used to perform GO and
KEGG functional enrichment analyses for the key targets.
The threshold value was P < 0:05. GO analysis analyzed
the functional level of potential target genes from three
aspects: biological process (BP), cell composition (CC), and
molecular function (MF). KEGG analysis showed that
GGQL interfered with the biological pathway of T2DM.
The top 10 items of GO analysis and the top 20 items of
KEGG analysis identified from R software were mapped as
bubble plots.

2.5. Animal. 40 C57BL/6J mice, male, SPF grade, 12 weeks
old, were purchased from Shanghai Shrek Experimental Ani-
mal Co., Ltd., license number: SCXK (Shanghai) 2017-0005,
feeding condition, relative humidity 50%, Mel 70%. The feed-
ing and experimental process of the animals involved in the
experiment followed the relevant guidelines for the manage-
ment and protection of experimental animals in the Hospital
of Integrated Traditional Chinese andWestern Medicine affil-
iated to Nanjing University of Traditional Chinese Medicine
(reference number: AEWC-20190814-81).

2.6. Drugs, Reagents, and Instruments. All pieces of tradi-
tional Chinese medicine in GGQL were purchased from
the Hospital of Integrated Traditional Chinese and Western
Medicine affiliated to Nanjing University of Traditional
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Chinese Medicine. The quality ratio of Gegen (batch num-
ber: 20170301), Huangqin (batch number: 1610009), Huan-
glian (batch number: 1703015), and Gancao (batch number:
170109) was prepared according to the ratio of 8 : 3 : 3 : 2.
The preparation of GGQL was made according to the
method described in the literature [16]. Pioglitazone hydro-
chloride tablets (batch number H20110048, Jiangsu Deyuan
Pharmaceutical Co., Ltd.). The tumor necrosis factor-α
(TNF-α) and interleukin-17 (IL-17) ELISA kits were pur-
chased from Jiangsu Biyuntian Biotechnology Co., Ltd.; the
TNF-α, nuclear factor kappa-B (NF-κB), and β actin anti-
bodies were purchased from the American Abcam company;
and the second anti-rabbit was purchased from the Ameri-
can CST company. The biospectrum-gel imaging system
was from Bio-Rad company, USA; tissue slicer from Leica
company, Germany; and optical microscope from Olympus
company, Japan.

2.7. Modeling and Drug Delivery. After 1 week of adaptive
feeding, 40 C57BL/6J mice were randomly divided into a
normal fat diet group (NFD group, n = 8) and HFD group
(n = 32). The HFD group was fed with high-fat diet (pur-
chased from Nantong Tolofei Feed Technology Co., Ltd.,
batch number 2017416, with a formula of 60% high-fat
model feed). After 4 weeks of feeding, 1% streptozotocin
solution 45mgkg-1 was injected intraperitoneally (lasting 3
days). 72 hours after injection, random blood glucose ≥
16:7mmol/L was detected in the tail vein, and T2DM
modeling was successful. HFD group mice were equally
divided into 4 groups: HFD group (received saline 10ml/
kg/d), pioglitazone group (PIO group, received pioglitazone

30mg/kg/d), low-dose GGQL group (GGQLL group,
received GGQL 10mg/kg/d), and high-dose GGQL group
(GGQLH group, received GGQL 20mg/kg/d). The NFD
group was also administrated with saline (10ml/kg/day).
All these doses were given via oral gavage daily for 8 weeks.
The weight of mice was weighed every week to adjust the
dose of intragastric administration.

2.8. Biochemical Analysis and Histopathological
Examination. At the end of the experiment, abdominal aor-
tic blood samples were taken after the last dose. The serum
sample was used to measure the levels of FBG. Kits were
purchased from Nanjing Jiancheng Bioengineering Institute
(Nanjing, China). The plasma insulin (FINS), TNF-α, and
IL-17 were measured by ELISA Assay Kit (ALPCO, USA).
Homeostasis model assessment of insulin resistance index
(HOMA-IR) was calculated using the previously described
formula: HOMA‐IR = FINS × FBG/22:5. 10% formalin-
fixed liver tissues were embedded in paraffin, cut into 4μm
thick sections, and then stained with hematoxylin and eosin
(H&E) for histopathological examination. Sections were
examined, and digital pictures were captured using an
Olympus digital camera (BX20, Beijing, China) using NIS
Element SF 4.00.06 software (Beijing, China) and photo-
graphed at 200× magnification for analysis.

2.9. Western Blotting. Western blotting analysis of proteins
was carried out as previously reported [15]. The liver tissue
of 100mg was homogenized, and the total protein was
extracted according to the instructions of the whole protein
extraction kit. The concentration of total protein was

Table 1: Active components of GGQL (top 20 of OB).

Mol ID Active components OB (%) DL

MOL002907 Corchoroside A_qt 104.95 0.78

MOL002934 Neobaicalein 104.34 0.44

MOL002311 Glycyrol 90.78 0.67

MOL008647 Moupinamide 86.71 0.26

MOL004990 7,2′,4′-Trihydroxy-5-methoxy-3-arylcoumarin 83.71 0.27

MOL004904 Licopyranocoumarin 80.36 0.65

MOL004891 Shinpterocarpin 80.3 0.73

MOL005017 Phaseol 78.77 0.58

MOL004841 Licochalcone B 76.76 0.19

MOL002932 Panicolin 76.26 0.29

MOL004810 Glyasperin F 75.84 0.54

MOL001484 Inermine 75.18 0.54

MOL000500 Vestitol 74.66 0.21

MOL012246 5,7,4′-Trihydroxy-8-methoxyflavanone 74.24 0.26

MOL005007 Glyasperins M 72.67 0.59

MOL004941 (2R)-7-Hydroxy-2-(4-hydroxyphenyl) chroman-4-one 71.12 0.18

MOL004959 1-Methoxyphaseollidin 69.98 0.64

MOL000392 Formononetin 69.67 0.21

MOL002927 Skullcapflavone II 69.51 0.44

MOL002911 2,6,2′,4′-Tetrahydroxy-6′-methoxychaleone 69.04 0.22
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Figure 1: Potential GGQL targets treat T2DM and network analysis. (a) Venn diagram summarizing the intersection targets of the GGQL
and T2DM. (b) Network of targets shared between GGQL and T2DM. The ring represented the composition, and the rectangle represented
target genes.
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determined by BCA kit, and the same amount of protein was
electrophoretic by 10%SDS-PAGE. After being transferred
to polyvinylidene fluoride (PVDF) membrane, 5% skim milk
was used to seal the protein at room temperature for 2 hours.
Protein gel electrophoresis was carried out according to the
western blot method, and a gel imaging analysis system
was used to detect protein bands.

2.10. Statistical Analysis. All data were expressed as mean
± SEM. Results were tested for normal distribution, then
were analyzed using ANOVA followed by Bonferroni post
hoc test using GraphPad Prism 5.01 (GraphPad Software
Inc., San Diego, CA, USA). P values < 0.05 were considered
as statistically significant.

3. Results

3.1. GGQL Active Compound Network Analysis. GGQL
obtained a total of 146 chemical components after searching
the TCMSP database, with 4 compounds from Gegen, 36
compounds from Huangqin, 14 compounds from Huan-
glian, and 92 compounds from Gancao. There are 140 com-
ponents after deleting the duplicate value, and the top 20
items of active components are shown in Table 1. Correcting
based on the UniProt database, we obtained 212 targets in
total.

3.2. Potential GGQL Targets Treat T2DM and Network
Analysis. To elucidate the mechanism and pharmacodynam-
ics of GGQL, 10821 target genes of T2DM were obtained
from GeneCards, OMIM, PharmGkb, TTD, and DrugBank
databases. Further analysis with Venn diagrams identified
204 targets associated with both T2DM and GGQL that
are displayed in Figure 1(a). Then, to elucidate the relation-
ship between active ingredients and potential targets as well
as T2DM, an ingredient-target-disease network was con-
structed by Cytoscape 3.8.2 software, consisting of 349 nodes
and 1989 edges (Figure 1(b)). The top 10 key active ingredi-
ents of GGQL in the treatment of T2DM are enumerated in
Table 2.

3.3. PPI Network Construction and Key Targets. To elucidate
the potential mechanism by which GGQL protects against
T2DM, PPI relationships of the 204 target genes were
obtained using the STRING tool, and the results are dis-
played in Figure 2(a). Then, we used the Cytoscape software
to calculate the topological parameters, and 18 core targets
were obtained. The top 10 key targets in the core position
were JUN, AKT1, STAT3, MAPK3, FOS, MAPK1, MYC,
MAPK14, ERS1, and TP53, as shown in Figure 2(b).

3.4. Pathway and GO Term Enrichment Analysis. The drug-
disease common targets were processed by R language for
GO function and KEGG pathway enrichment analysis. The
GO enrichment bubble chart was formed by selecting the
top 10 significant biological process (BP), cellular compo-
nents (CC), and molecular function (MF), as shown in
Figure 3.

To explore the signal pathway mechanism of GGQL in
the treatment of T2DM, we performed KEGG enrichment
analysis. As shown in Figure 4, it shows the first 20 signal
pathways, which involve the TNF signaling pathway, IL-17
signaling pathway, and so on. The key KEGG pathway and
the location of T2DM and overlapping genes of enriched
pathways are listed in Figure 5.

3.5. GGQL Ameliorated IR in HFD Mice. Figure 6(a) shows
that within HFD-fed mice, treatment with GGQLL or
GGQLH could alter body weight compared with HFD mice,
but these were not statistically significant. The HFD-fed
group mice led to a marked elevation in the levels of fasting
glucose, fasting insulin, and HOMA-IR in the serum region
compared with those of the control group, as shown in
Figures 6(b)–6(d).

3.6. Effects of GGQL on Hepatic Tissue. The HE staining of
the liver tissue of mice in each group is shown in Figure 7.
The results showed that, compared with the NFD group,
lipid deposition, vacuolar degeneration, and watery degener-
ation were observed in the liver of the HFD group.

3.7. Effects of GGQL on the TNF Signaling Pathway in T2DM
Mice. The network pharmacology results demonstrated that

Table 2: The top 10 key active ingredients of GGQL in the treatment of T2DM.

Molecular ID Ingredient Degree Source OB (%) DL

MOL000098 Quercetin 135
Gancao

46.43 0.28
Huanglian

MOL000422 Kaempferol 54 Gancao 41.88 0.24

MOL000173 Wogonin 40 Huangqin 30.68 0.23

MOL003896 7-Methoxy-2-methyl isoflavone 35 Gancao 42.56 0.20

MOL004328 Naringenin 34 Gancao 59.29 0.21

MOL002714 Baicalein 31 Huangqin 33.52 0.21

MOL000392 Formononetin 30
Gancao

69.67 0.21
Gegen

MOL000497 Licochalcone A 30 Gancao 40.79 0.29

MOL000354 Isorhamnetin 29 Gancao 49.60 0.31

MOL002565 Medicarpin 26 Gancao 49.22 0.34

5Disease Markers



IL2RB MAPK3
CALM3

SCN5A

PPP3CA

RAF1
MAPK1

CAV1
NOS3

KDRVEGFA

ELK1 HSF1

AHSA1

EGF

IL6

ERBB2

EGFR

HSP90AB1 ESR2

ESR1
CCND1

SOD1

HIF1A
NCOA2

AR
STAT3

CASP8AHR

ERBB3

TNF
STAT1 IRF1

IFNG
NFKBIA

RELA

IGFBP3

IGF2

IKBKB

NFE2L2 FOSL2

ADRA1B

CHUK

PRKCA

CXCL10
CHRM1

CXCL11

ADRB2

JUN

FOS

NCOA1

NQO1

TP53

E2F1

PPARA

NR1I2

APOB
LDLR

PLAU

PPARD

GSTP1

RUNX2

RXRB

E2F2
RB1

RXRA

MYC

PPARG

MAPK8

BIRC5

MTTP

SERPINE1
PLAT

RASA1

HSPA5 HSPB1
CDKN1A

CCNB1

PTGS1

MPO

F3

F7

BAD

CDK1

BAX

CDK4

CAT

AKT1

BCL2L1

CDK2

BCL2 GSK3B

TOP1
CCNA2

(a)

CCND1

MAPK14

FOS

RELA

MYC

TNF

MAPK3

STAT3

MAPK8

JUN

RB1

TP53

EGFR

CDKN1A

AKT1

MAPK1
ESR1

IL6

(b)

Figure 2: PPI network construction and key targets. (a) PPI network of potential targets of GGQL for the treatment of T2DM. (b) Obtaining
18 core proteins of GGQL for T2DM.
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the potential targets of GGQL against T2DM were signifi-
cantly enriched in the TNF pathways. Compared with the
NFD group, the expression of TNF-α and NF-κB in the
HFD group increased, while the expression of TNF-α and
NF-κB in the GGQLL, GGQLH, and PIO groups decreased
significantly compared with that in the HFD group (all P
< 0 01) (Figure 8).

4. Discussion

The incidence of T2DM has been rising in recent years due
to the aging of the population and changes in lifestyle [17,
18]. Currently, oral antidiabetic drugs are mainly focused
on a single compound and reported to have adverse effects
[19]. TCM has a rich history and has shown good results
in the treatment of T2DM. Hence, TCM may be a prospec-
tive option for T2DM intervention. Due to TCM’s effective-
ness depending on multitarget and multicomponent, it is
difficult to explore its mechanism of action. This study draws
lessons from the research ideas of network pharmacology,
through the analysis of various networks to identify multi-

components and multitargets involved in the treatment of
T2DM by GGQL.

According to the network pharmacology analysis, we
obtained 140 active compounds from GGQL that acted on
212 targets of T2DM. The active compounds were mainly
flavonoids. According to the degree value, the top three
active ingredients were quercetin, kaempferol, and wogonin.
Quercetin is a natural polyhydroxyflavone, which can reduce
the level of oxidative stress, inhibit apoptosis of INS-1 cell,
and promote insulin secretion [20]. A large cross-sectional
study in China showed that quercetin intake was negatively
correlated with the prevalence of T2DM [21]. Kaempferol
can increase the activities of AKT and hexokinase, decrease
the activity of glucose-6 phosphatase in the liver, and play
a hypoglycemic effect by inhibiting gluconeogenesis in the
liver [22]. Wogonin can promote glucose uptake and glycol-
ysis through the insulin receptor-1/PI3K/alkaline phospha-
tase pathway, inhibit gluconeogenesis in hepatocytes, and
improve insulin resistance [23]. Therefore, all of these find-
ings showed that multiple components of GGQL had a pos-
itive effect on T2DM.
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Figure 3: Top 10 GO terms of hub genes.
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18 key genes were screened by constructing PPI network
and performing network topology structure with Cytoscape
software, including JUN, AKT1, and STAT3. JUN is an
important signal molecule connecting inflammation and
insulin resistance. Studies have confirmed that high
glucose-induced apoptosis can be inhibited by inhibiting

the JUN signal pathway [24, 25]. Increasing the expression
of AKT1 in islet cells can reduce islet cell apoptosis and
increase secretory function [26, 27]. STAT3, a signal trans-
ducer and activator of transcription 3, is highly expressed
in T2DM patients. Animal studies have found that inhibit-
ing the expression of STAT3 in obese rats can prevent the
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development of lipid-induced insulin resistance and reduce
the incidence of diabetes [28, 29].

In addition, the GO enrichment analysis showed that the
pharmacological effects of GGQL on T2DM were related to
TNF signaling. The target points in the KEGG enrichment
analysis were also enriched in the TNF-α signaling pathway.
In recent years, with the in-depth study of the pathogenesis

of T2DM, many scholars believe that T2DM may be an
immune inflammatory disease, in which TNF-α is involved
in the regulation of inflammatory response and glucose
and lipid metabolism [30, 31]. Skuratovskaia et al. found
that TNF-α can inhibit the phosphorylation of insulin recep-
tor substrate-1, which leads to insulin resistance in liver and
adipocytes, and increases the progression of T2DM [32]. In
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addition, a previous study has shown that TNF-α can not
only induce the occurrence of diabetes but also cause dam-
age to vascular endothelial function, initiate the process of
atherosclerosis, and increase the risk of various complica-
tions of diabetes [33]. All the above studies have shown that
the TNF-α signaling pathway plays an important role in
T2DM. Animal experiments showed that GGQL can effec-
tively reduce the levels of insulin, HOMA-IR, TNF-α, and
IL-17 and improve the state of hyperglycemia. We also
found that the protein expression levels of TNF-α and NF-
κB in the liver tissues of HFD mice were significantly
increased, While GGQL could restore them. Many other
scholars’ studies are consistent with our findings. Xu et al.
found that GGQL suppressed activation of NF-κB and
TNF-α to inhibit T2DM development [14]. Li et al. revealed
that GGQL could reduce the TLR4 expression and NF-κB
activation along with several inflammatory cytokines such
as TNFα and IL-6 [34].

However, there are still several limitations in our study
to be solved in the future work. One was the study only per-
formed in vivo experiments, which lacked corresponding
cellular experiments to validate the function and mechanism
of GGQL on T2DM. In the future, we will conduct cellular
experiments to better prove the results. Second, we only
explored one pathway that we think is more likely to work.
As we did not verify other possible pathways, we cannot ver-
ify whether GGQL can participate in other pathways to
make a synergistic antidiabetic effect. Third, although the
TNF-α signaling pathway was verified to be involved in
mechanism of action, the potential upstream or downstream
relationships between TNF-α still need to be further
explored.

5. Conclusions

In the present study, we combined network pharmacology
prediction and in vivo experiments to research the active
ingredients, potential targets, and potential mechanism of
GGQL against T2DM. The results suggest that GGQL ame-
liorates blood sugar by improving IR and inhibiting inflam-

mation. These effects appear to be related to GGQL affecting
the TNF-α signaling pathways. This work supplies a founda-
tion for the treatment of endocrine disorder-related complex
diseases with TCM and lays a certain theoretical foundation
for further exploration to expand the application of GGQL.
Detailed pharmacological mechanisms by which GGQL
ameliorates T2DM will be investigated in our future study.
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