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Background and Objectives. The identification of reliable biomarkers is critical to the diagnosis and prevention of progression from
latent tuberculosis infection (LTBI) to active tuberculosis (ATB). This study was thus developed to identify key hub genes capable
of differentiating between LTBI and ATB through a weighted gene coexpression network analysis (WGCNA) approach. Methods.
Three Gene Expression Omnibus (GEO) microarray datasets (GSE19491, GSE98461, and GSE152532) were downloaded, with
GSE19491 and GSE98461 then being merged to form a training dataset. Hub genes capable of differentiating between ATB and
LTBI were then identified through differential expression analyses and a WGCNA analysis of this training dataset. Receiver
operating characteristic (ROC) curves were then used to gauge to the diagnostic accuracy of these hub genes in the test dataset
(GSE152532). Gene expression-based immune cell infiltration and the relationship between such infiltration and hub gene
expression were further assessed via a single-sample gene set enrichment analysis (ssGSEA). Results. In total, 485 differentially
expressed genes were analyzed, with the WGCNA approach yielding 8 coexpression models. Of these, the black module was
the most closely correlated with ATB. In total, five hub genes (FBXO6, ATF3, GBP1, GBP4, and GBP5) were identified as
potential biomarkers associated with LTBI progression to ATB based on a combination of differential expression and LASSO
analyses. The area under the ROC curve values for these five genes ranged from 0.8 to 0.9 in the test dataset, and ssGSEA
revealed the expression of these genes to be negatively correlated with lymphocyte activity but positively correlated with
myeloid and inflammatory cell activity. Conclusion. The five hub genes identified in this study may play a novel role in
tuberculosis-related immunopathology and offer value as novel biomarkers differentiating LTBI from ATB.

1. Introduction

Tuberculosis (TB) is a serious communicable disease caused by
Mycobacterium tuberculosis (Mtb), ranking among the top 10
causes of death in the world as the deadliest pathogen-
associated disease [1]. In 2019 alone, there were an estimated
10 million new TB diagnoses and 1.4 million deaths according
to the Global Tuberculosis Report 2020 [2].

An estimated 25% of Mtb-infected individuals harbor an
asymptomatic form of latent tuberculosis infection (LTBI),
but 5-15% of these patients will ultimately progress to active
TB (ATB) at some point in their lives [3, 4]. Clinical efforts
to differentiate between LTBI and ATB remain challenging

at an early stage, yet are critical to ensuring that these
patients receive appropriate treatment to prevent the further
spread of TB. Two of the most common strategies used to
detect an individual’s Mtb infection status are the cellular
immunity-based tuberculin skin test (TST) and interferon-
gamma release assay (IGRA) approaches, yet neither can
reliably differentiate between LTBI and ATB patients [5, 6].
As such, it is vital that reliable biomarkers capable of
distinguishing between individuals with latent and active
TB be defined and validated.

The advent of microarrays and other high-throughput
sequencing strategies has enabled the bioinformatics-based
screening for biomarkers associated with particular disease
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states [7, 8]. Recent transcriptomic analyses have revealed
distinct changes in circulating host leukocyte gene expres-
sion patterns as a function of the stage of Mtb infection
[9–11]. Owing to heterogeneity among donors, sampling
strategies, sequencing platforms, and analytical approaches,
however, it can be challenging to establish reliable, clinically
relevant data from individual analyses. As such, integrated
bioinformatics strategies have been used to gain more com-
prehensive insight into the molecular pathogenesis of Mtb
infection as a means of better defining biomarkers associated
with different stages of disease. A weighted gene coexpres-
sion network analysis (WGCNA) is a systems biology
approach that can be used to analyze patterns of gene con-
nection across different models, describing interactions
among genes and associated pathways rather than focusing
on the identification of individual gene targets through a
holistic assessment of gene set endogeneity and the relation-
ship between these genes and phenotypes of interest [12]. As
such, WGCNA methods can be readily leveraged to identify
synergistic gene sets which may contain candidate biomark-
ers or therapeutic targets related to a particular disease state.

The present study was developed with the goal of using a
WGCNA approach to identify key genes differentiating
LTBI from ATB, with a further focus on the association
between these genes and the infiltration of particular
immune cell subsets as determined through a single-
sample gene set enrichment analysis (ssGSEA).

2. Materials and Methods

2.1. Data Source. Data included in the present study were
mRNA expression data derived from patient blood samples
archived in the NCBI-GEO database (http://www.ncbi.nlm
.nih.gov/geo). Downloaded datasets were those meeting the
following criteria: (1) Patients were >15 years of age. (2)
Samples were collected prior to the initiation of antimyco-
bacterial treatment. (3) Patients were negative for severe
autoimmunity, diabetes, malignant tumors, human immu-
nodeficiency virus (HIV), immunosuppressive/immuno-
modulatory drug use, and coinfection with other pathogens
and were not pregnant. Based on these three criteria, three
datasets were selected for analysis (GSE19491, GSE98461,
and GSE152532). The GSE19491 microarray dataset con-
sisted of 69 and 89 whole-blood samples from LTBI and
ATB patients, respectively. The GSE98461 microarray
dataset consisted of 4 peripheral blood mononuclear cell
(PBMC) samples each from LTBI and ATB patients. The
GSE152532 microarray dataset consisted of 69 and 25 eligi-
ble whole-blood samples from LTBI and ATB patients,
respectively. Differentially expressed genes (DEGs) were
identified, and a WGCNA was performed by initially merg-
ing GSE19491 and GSE98461 into a training dataset, after
which GSE152532 was used as the test dataset to validate
identified hub genes. The training database included 93 male
cases and 73 female cases, with a median age of 32.0 years
(interquartile range [IQR]: 23.0-40.0 years). The test dataset
concluded 64 male cases and 30 female cases, with a median
age of 29.0 years (IQR: 19.0-34.3 years).

2.2. DEG Identification. The R (v 4.2.0) “GEOquery” and
“limma” packages were used for the normalization and probe
annotation of data in the training dataset, with DEGs being
identified using the following criteria: adjusted P < 0:05,
logFC > 1. Data were represented using a volcano plot, and
the top 50 DEGs were assembled in the form of a heat map.

2.3. Functional Enrichment Analyses. The R “clusterprofiler”
package was used to conduct GO and KEGG pathway
enrichment analyses, with those terms/pathways yielding
an adjusted P < 0:05 being considered significant. GO
enrichment analyses were conducted for biological process
(BP), molecular function (MF), and cellular component
(CC) terms.

2.4. WGCNA Construction. Expression profile data from
the training dataset were used to construct a WGCNA
using the R “WGCNA” package, after which the genes exhi-
biting the top 25% absolute deviation from the median were
selected for further study. Data integrity was analyzed using
the “goodSampleGenes” function, while the “pickSoftThres-
hold” function was used for optimal soft threshold (β) selec-
tion. Matrix data were then used to establish an adjacency
matrix, after which clustering was performed as a means of
identifying modules based on the degrees of topological
overlap. Module eigengene (ME) calculations were then
performed, and similar modules were merged based on ME
results, after which a hierarchical clustering dendrogram was
established. Gene significance (GS) and module significance
(MS) were calculated by combining modules and phenotypic
data to determine clinical and gene-related significance and
to assess correlations among models and modules. Module
membership (MM) for individual genes was also assessed for
each gene to assess module GS.

2.5. Hub Gene Screening and Validation. Candidate hub
genes were selected via identifying those genes exhibiting
the highest levels of intermodule connectivity. As biologi-
cally significant genes generally exhibit higher GS values,
candidate hub gene identification was performed with the
following criteria: jGSj > 0:20, jMMj > 0:80. Candidate hub
genes and DEGs were then compared with the R “glmnet”
package to identify overlap, with final hub genes being iden-
tified via a LASSO analysis.

Hub gene expression levels were compared between
LTBI and ATB patients with box plots. The diagnostic utility
of these hub genes when distinguishing between LTBI and
ATB patients was then assessed using receiver operating
characteristic (ROC) curves.

2.6. Immune Cell Infiltration and Hub Gene Correlation
Analyses. Relative immune cell infiltration in training dataset
samples was assessed with the ssGSEA algorithm, with differ-
ing levels of these cells being represented using violin plots.
Spearman correlation analyses were used to compare the
relationship between hub genes and infiltrating immune cells.
The “ggplot2” package was used for result visualization.
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3. Results

3.1. Identification and Functional Enrichment Analyses of DEGs
Associated with LTBI and ATB Patients. Initially, DEGs were

identified by comparing microarray data between the ATB and
LTBI patient cohorts in the training dataset. In total, 485 DEGs
(91 upregulated, 394 downregulated) in the training set were
identified when comparing LTBI and ATB patients (Figure 1).
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Figure 1: Gene expression profiling from the training set. (a) A heat map of the top 50 DEGs. Upregulated genes are shown in red, and
downregulated genes are shown in blue. (b) A volcano plot of DEGs. Upregulated genes are shown in red, and downregulated genes are
shown in green.
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Figure 2: Functional enrichment analyses of DEGs from the training set. (a) GO enrichment analysis. (b) KEGG enrichment analysis.
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Figure 3: Continued.

4 Disease Markers



Next, GO (Supplementary file 1) and KEGG (Supplemen-
tary file 2) analyses were conducted to explore the biological
roles of these DEGs and associated signaling pathways under-
lying their potential role in the progression of LTBI to ATB.
GO enrichment analyses revealed these DEGs to be enriched
for terms relating to cellular differentiation (e.g., mononuclear
cell differentiation and lymphocyte differentiation) and the
regulation of the immune response (e.g., activation of the
immune response, immune response-regulating cell surface
receptor signaling pathway, and regulation of immune effector
process) (Figure 2(a)). KEGG pathway analysis results were
similar (Figure 2(b)). Together, these analyses suggested that
immune and inflammation-associated processes are linked to
LTBI progression to ATB.

3.2. WGCNA and Hub Gene Screening Analyses. To establish
critical gene modules capable of differentiating between
LTBI and ATB patients, a WGCNA approach was used to
establish a coexpression network using the training dataset.
In total, 7 modules were ultimately identified when assessing
hub gene expression levels and diagnostic utility using a soft-
thresholding power of 15 (scale-free R2 = 0:84, slope = −1:24
) (Figures 3(a) and 3(b)) and cut height of 0.25 (Figure 3(c)).
Correlations between ME values and sample traits were used
to assess the potential relationships between these modules
and clinical characteristics, revealing the black module to
be the most closely linked to the progression of LTBI to
ATB (R = 0:47, P = 2e − 10) (Figures 3(c) and 3(d)). The
intersection of DEGs and this module revealed 5 overlapping
genes (Figure 3(e)), with a LASSO analysis subsequently
establishing these 5 genes as hub genes: FBXO6, ATF3,
GBP1, GBP4, and GBP5 (Figures 3(f) and 3(g)).

3.3. Analyses of Hub Gene Expression Levels and Diagnostic
Utility. The expression of the identified hub genes was
significantly increased in patients with ATB as compared
to LTBI patients in the training dataset (Figure 4(a)), with

similar findings also being observed in the test dataset
(Figure 4(c)). ROC curve analyses of the training dataset
revealed AUC values of 0.864 (95% CI: 0.801-0.919) for
FBXO6, 0.814 (95% CI: 0.744-0.813) for ATF3, 0.797 (95%
CI: 0.722-0.866) for GBP1, 0.870 (95% CI: 0.808-0.927) for
GBP4, and 0.854 (95% CI: 0.798-0.909) for GBP5
(Figure 4(b)). Consistently, the AUC values for these 5 hub
genes in the test dataset ranged from 0.800 to 0.900, indicating
that they offer good diagnostic accuracy as a means of distin-
guishing between ATB and LTBI patients (Figure 4(d)).

3.4. Correlations between Hub Gene Expression and Immune
Cell Infiltration. Differences in immune cell infiltration were
next compared between the ATB and LTBI patient cohorts
using the ssGSEA algorithm, revealing significantly higher
levels of myeloid and inflammatory cells (including mono-
cytes, dendritic cells, macrophages, and neutrophils) in
ATB patient samples, whereas lower lymphocyte levels
(including activated B cells, memory B cells, activated CD8
T cells, memory CD8 T cells, activated CD4 T cells, and
memory CD4 T cells) in LTBI patients (Figures 5(a) and
5(b)). Expression levels of these 5 hub genes were negatively
correlated with lymphocyte levels and positively correlated
with myeloid cell levels (Figure 5(c)).

4. Discussion

Transcriptomic analyses offer a robust approach to identify-
ing and comprehensively evaluating biomarkers that can
distinguish between patients suffering from LTBI or ATB.
While several prior studies have demonstrated differences
in host response-related gene expression profiles and the
associated structure of these gene sets as a function of the
stage of Mtb infection, most of these reports were based on
individual cohort studies lacking corresponding functional
analyses or clinical validation. In an effort to address this
issue, the present study was conducted by using a systematic
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approach to analyze a combination of data from several
datasets, ultimately leading to the identification of five cen-
tral hub genes associated with the progression of LTBI to
ATB. Relative to other bioinformatics techniques, WGCNA
strategies exhibit robust advantages as they focus on analyses
of the association between coexpression modules and
clinical parameters of interest, providing more complete
and reliable results that are more likely to be biologically
meaningful [12].

Here, functional enrichment analyses revealed the DEGs
identified when comparing the LTBI and ATB patient
samples were primarily related to inflammation- and
immunity-related pathways. Additional immune cell infil-
tration analyses suggested that in ATB patient samples, the
levels of myeloid and inflammatory cells including DCs,

monocytes, and neutrophils were enhanced relative to sam-
ples from LTBI patients, whereas T and B cell levels were
reduced. Berry et al. [13] previously reported reductions in
T cell- and B cell-specific gene signatures in a transcriptomic
analysis of ATB patient samples, with flow cytometry analy-
ses further supporting a decrease in both effector and central
memory T cells in these patients consistent with the
observed change in T cell-related gene expression. This is
consistent with a growing body of evidence suggesting that
the odds of developing ATB after infection are related to
the monocyte/lymphocyte ratio [14, 15]. Joosten et al. [16]
conducted an integrated analysis of eight independent TB
microarray datasets and thereby revealed a significant asso-
ciation between TREM1 signaling pathway activity and mye-
loid cell activity in the context of ATB. Functionally, TREM1
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Figure 4: Validation of hub genes. (a) Validation of the expression levels of the hub genes performed using boxplots in the training set. (b)
Validation of the diagnostic value of the indicated hub genes performed via ROC analyses in the training set. (c) Validation of the expression
levels of the hub genes performed using boxplots in the test set. (d) Validation of the diagnostic value of the indicated hub genes performed
via ROC analyses in the test set.
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expression promoted enhanced inflammatory responses
driven by neutrophils and monocytes. Adaptive cellular
immunity is the primary mechanism that controls chronic
Mtb infections, contributing to the persistence of LTBI
[17]. A diverse range of T cell subsets responding to many
different Mtb-derived antigens is critical to the containment
of these bacteria within macrophage-based granulomas. Spe-
cifically, CD4+ T cells secrete cytokine that can support
macrophage-mediated Mtb control in addition to providing
help that supports B cell-mediated antibody production and
CD8+ T cell proliferation [18, 19]. In humans diagnosed
with LTBI, Mtb-responsive MHC-I restricted CD8+ T cells
have been detected in both the bronchoalveolar lavage fluid
and blood [20]. Computer-based modeling efforts have
highlighted that critical roles for multifunctional CD8+ T
cells are barriers to the dissemination ofMtb. B cells are also
important contributors to anti-TB immune responses, func-

tioning within germinal centers to produce antibodies capa-
ble of modulating innate and adaptive immunity, enhancing
the presentation of antigens to T cells, and producing cyto-
kines that can support ongoing T cell responses [21, 22].
Both T cells and antibodies derived therefrom can influence
granuloma formation and thus shape the progression of an
Mtb infection. Accordingly, the inhibition of lymphocyte
responses is generally linked with poorly controlled Mtb
infection status and LTBI progression to ATB. In patients
affected by ATB, host responses to the disseminated bacteria
and associated tissue damage result in extensive inflammatory
responses contributing to the proliferation of inflammatory
cell populations including DCs, macrophages, monocytes,
and neutrophils [23].

FBXO6 is a member of the F-box family of proteins,
which serve as key components of the SKP1-Cullin1-F-box
(SCF) E3 ligase that controls the proliferation, cell cycle
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Figure 5: Analysis of the immune landscape associated with disease severity. Heat map (a) and violin plot (b) showing the distribution of
immune cells in the ATB and LTBI groups. (c) The relationship between hub genes and immune cell infiltration.
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progression, and survival of cells [24]. Du et al. [25] recently
reported the ability of FBXO to upregulate type I IFN
expression through a noncanonical mechanism independent
of SCF E3 ligase activity whereby it can promote IRF3 ubiq-
uitination and consequent degradation. While type I IFN
signaling is critical in the context of many viral infections,
it has been suggested to be deleterious in the regulation of
Mtb and other bacterial infections [26, 27]. Chronic periph-
eral IFN response activation has also been shown to precede
the onset of ATB [27]. While further work will be critical to
fully establish the functional importance of IFN responses in
the context of TB progression, both human cell- and mouse
model-based data support the detrimental effect of type I
IFN signaling on the induction of an effective immune
response directed against TB. Transcriptomic analyses of
blood samples from ATB patients have revealed IFN-
inducible genes to form a major component of this
disease-related gene signature, serving to promote inflam-
mation and myeloid function while suppressing genes asso-
ciated with T and B cell function [13, 28]. Guanylate-binding
proteins (GBPs) are IFN-inducible GTPases that play key
roles in shaping antibacterial immune responses and predict
the progression of multiple different infectious diseases [29].
Within macrophages, intracellular Mtb can promote NF-κB
pathway activation, in turn leading to GBP induction and
the inhibition of caspase-3 activation, thus preventing mac-
rophages from undergoing apoptotic death such that Mtb
can thrive and replicate within these host cells [30]. Multiple
reports have shown Mtb infection to be linked to the upreg-
ulation of a range of GBPs including GBP1-7, with elevated
levels of these genes being linked to the risk of disease pro-
gression [31, 32].

ATF3 (activating transcription factor 3) is an ATF/cAMP
response element-binding transcription factor that can report-
edly modulate the upregulation of proinflammatory cytokines
through binding to the NF-κB p65 subunit [33]. Significant
ATF3 upregulation occurs in the context of Mtb infection
through an early growth response 1- (EGR1-) dependent
mechanism, while ATF3 knockdown increases bacterial titers
within infected macrophages [34]. Functionally, ATF3 can
activate the expression of inflammation-related genes includ-
ing IL-6, IL-12, and TNF-α [34, 35]. In addition, ATF3 is a
type I IFN-inducible gene, constituting a key component of
an IFN negative feedback loop as a result of increasing levels
of IFN-I in ATB [36].

There are certain limitations to this study. For one, while
efforts were made to identify all relevant publically available
datasets, the sample size for these analyses was relatively
limited, potentially limiting the accuracy of these findings.
Second, it is important to note that the hub genes identified
in this study were only correlated with immune cells, and the
available data are insufficient to support a causative relation-
ship. Similarly, these hub genes were correlated with Mtb
infection status, highlighting a need for further research to
validate these findings. Third, while several DEGs were iden-
tified when comparing ATB and LTBI samples, these genes
may not be specifically related to Mtb infection. For
example, the overexpression of GBP1 significantly inhibits
Kaposi’s sarcoma-associated herpesvirus infection [37] and

Chlamydia trachomatis [38]. Lastly, microarrays are associ-
ated with certain drawbacks (e.g., not a whole genome anal-
ysis, high levels of background signal, not qualitative and
quantitative, and an inability to detect alternative splicing).
Additional in vitro and in vivo analyses exploring the func-
tion of these hub genes will be vital to establish the mecha-
nisms underlying the pathogenesis of Mtb infection.

In summary, the five hub genes identified in this study
may be associated with the immunopathogenesis of Mtb
infections and offer potential utility as biomarkers that can
be used to differentiate between ATB and LTBI patients.
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