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Background. Although transcriptomic data have been widely applied to explore various diseases, few studies have investigated the
association between transcriptomic perturbations and disease development in a wide variety of diseases. Methods. Based on a
previously developed algorithm for quantifying intratumor heterogeneity at the transcriptomic level, we defined the variation
of transcriptomic perturbations (VTP) of a disease relative to the health status. Based on publicly available transcriptome
datasets, we compared VTP values between the disease and health status and analyzed correlations between VTP values and
disease progression or severity in various diseases, including neurological disorders, infectious diseases, cardiovascular diseases,
respiratory diseases, liver diseases, kidney diseases, digestive diseases, and endocrine diseases. We also identified the genes and
pathways whose expression perturbations correlated positively with VTP across diverse diseases. Results. VTP values were
upregulated in various diseases relative to their normal controls. VTP values were significantly greater in define than in
possible or probable Alzheimer’s disease. VTP values were significantly larger in intensive care unit (ICU) COVID-19 patients
than in non-ICU patients, and in COVID-19 patients requiring mechanical ventilatory support (MVS) than in those not
requiring MVS. VTP correlated positively with viral loads in acquired immune deficiency syndrome (AIDS) patients.
Moreover, the AIDS patients treated with abacavir or zidovudine had lower VTP values than those without such therapies. In
pulmonary tuberculosis (TB) patients, VTP values followed the pattern: active TB> latent TB> normal controls. VTP values
were greater in clinically apparent than in presymptomatic malaria. VTP correlated negatively with the cardiac index of left
ventricular ejection fraction (LVEF). In chronic obstructive pulmonary disease (COPD), VTP showed a negative correlation
with forced expiratory volume in the first second (FEV1). VTP values increased with H. pylori infection and were upregulated
in atrophic gastritis caused by H. pylori infection. The genes and pathways whose expression perturbations correlated
positively with VTP scores across diseases were mainly involved in the regulation of immune, metabolic, and cellular activities.
Conclusions. VTP is upregulated in the disease versus health status, and its upregulation is associated with disease progression
and severity in various diseases. Thus, VTP has potential clinical implications for disease diagnosis and prognosis.

1. Introduction

With the recent development of next-generation sequencing
(NGS) technologies, a substantial number of multiomics data
associated with various diseases have been produced, includ-
ing cancer, neurological disorders, cardiovascular disease,
respiratory disease, digestive system disease, metabolic dis-

ease, endocrine disease, kidney and urinary system disorders,
and infectious disease. In a previous study [1], we developed
an algorithm, termed DEPTH, to quantify the variation of
transcriptomic perturbations (VTP) in cancer, namely intra-
tumor heterogeneity. We found that VTP value was signifi-
cantly higher in cancer than in normal controls. Moreover,
VTP values increased with cancer advancement, and its
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increase were associated with worse clinical outcomes in can-
cer patients [1]. In this study, we generalized this algorithm to
awide variety of diseases and explored the associationbetween
VTP and prognosis-associated clinical features. The disease
types we analyzed included neurological disorders, infectious

diseases, cardiovascular diseases, respiratory diseases, liver
diseases, kidney diseases, digestive diseases, and endocrine
diseases. We compared VTP values between the disease state
and normal controls and analyzed correlations between VTP
and disease progression or severity.

2. Methods

2.1. Algorithm. The algorithm is described as follows: given a
transcriptome dataset, which involves g genes and m disease
samples and n normal control samples; the variation of tran-

scriptomic perturbations (VTP) of a disease sample DS is
defined as

where exðGi, DSÞ indicates the expression value of gene
Gi in DS, and exðGi, NSjÞ indicates the expression value of
Gi in the normal sample NS j.

2.2. Datasets. We downloaded transcriptome datasets for
various diseases from the NCBI Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/) and analyzed
these datasets with the algorithm. The datasets were associ-
ated with various types of diseases, including neurological
disorders (Alzheimer’s disease (AD) and schizophrenia
(SCZ)), infectious diseases (COVID-19, acquired immune
deficiency syndrome (AIDS), hepatitis B virus (HBV) infec-
tion, tuberculosis (TB), and malaria), cardiovascular diseases
(acute myocardial infarction, dilated cardiomyopathy, idio-
pathic or ischemic cardiomyopathy, and heart failure), respi-
ratory diseases (chronic obstructive pulmonary disease),
liver diseases (chronic hepatitis B and liver cirrhosis), kidney
diseases (nephrotic syndrome, uremia, focal segmental glo-
merulosclerosis and glomerular disease), digestive diseases
(inflammatory bowel disease and helicobacter pylori infec-
tion), and endocrine diseases (diabetes). A description of
these datasets is shown in Table 1.

2.3. Data Preprocessing. For RNA-Seq gene expression
values, we normalized them by the TPM method. For micro-
array gene expression values, we used the normalization
methods recommended by related platforms. A description
of the normalization methods for the datasets analyzed was
provided in Supplementary Table S1. All normalized
expression values were transformed by log 2ðx + 1Þ before
subsequent analyses.

2.4. Statistical Analysis and Visualization. We employed the
Mann–Whitney U test (one-tailed) to compare VTP values
between two classes of samples, and the Kruskal-Wallis test
to compare VTP values among more than two classes of
samples. We utilized the Spearman method to assess the cor-
relation between VTP values and other variables and
reported the correlation coefficients (ρ) and P values. To
correct for P values in multiple tests, we utilized the Benja-
mini and Hochberg method to calculate the false discovery
rate (FDR) [2]. All statistical analyses were performed in
the R programming environment (version 4.1.2). The R
packages “ggplot2”, “ggpubr”, and “ggstatsplot” were used
for data visualization.

2.5. Identifying Genes and Pathways whose Expression
Perturbations Have Significant Positive Correlations with
VTP across Diverse Diseases. In each dataset, we identified
the genes satisfying that jΔðGi, DS, NSjÞj significantly and
positively correlated with VTP values in all disease samples
using a threshold of the Spearman correlation test FDR <
0:1. For each disease with n datasets analyzed, we identified
the genes which satisfied the prior condition at least n − 1
datasets. These genes were defined as the genes having sig-
nificant positive correlations of expression perturbations
with VTP in specific diseases. Among them, the genes iden-
tified in common in at least 5 specific diseases were defined
as the genes whose expression perturbations had significant
positive correlations with VTP across diseases. By inputting
the genes associated with VTP across diseases into the GSEA
web tool [3], we obtained the KEGG pathways [4] having
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Table 1: Summary of the datasets analyzed.

Disease Dataset Platform
Sample size

Patients Controls

Alzheimer’s disease

GSE63063
GPL6947 145 104

GPL10558 139 134

GSE84422

GPL96

737 214

328 (definite AD)

180 (probable AD)

229 (possible AD)

GPL97

737 214

328 (definite AD)

180 (probable AD)

229 (possible AD)

GPL570

74 28

34 (definite AD)

23 (probable AD)

17 (possible AD)

GSE118553 GPL10558 167 100

GSE140831 GPL15988 599 530

GSE158233 GPL20828 20 10

Danio rerio dataset

Schizophrenia

GSE38484 GPL6947 106 96

GSE53987 GPL570 48 55

GSE87610 GPL13667 65 72

GSE93577 GPL13667 70 71

GSE93987 GPL13158 102 106

Corona virus Disease 2019

GSE152075 GPL18573 430 54

GSE157103 GPL24676

102

2650 (ICU)

42 (MVS)

GSE161731 GPL24676 46 19

GSE198449 GPL24676

149

2285 (asymptomatic)

64 (symptomatic)

Acquired immune deficiency syndrome

GSE18233 GPL6884
153

3
16 (EC)

GSE87620 GPL10558

83

1051 (EC)

32 (HAART-treated)

GSE104640 GPL10558 188 60

Hepatitis B virus infection

GSE83148 GPL570 122 6

GSE114783 GPL15491 3 3

GSE121248 GPL570 70 37

Tuberculosis

GSE28623 GPL4133

71

3746 (TB)

25 (LTB)

GSE153340 GPL21185 18 4

GSE152532 GPL10558
50

11
42 (TB)
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Table 1: Continued.

Disease Dataset Platform
Sample size

Patients Controls

8 (LTB)

Malaria

GSE1124

GPL96

20

5
5 (asymptomatic)

5 (uncomplicated)

5 (severe)

GPL97

20

5
5 (asymptomatic)

5 (uncomplicated)

5 (severe)

GSE5418 GPL96 22 22

GSE34404 GPL10558 94 61

Cardiovascular disease

GSE1145 GPL570 53 37

GSE5406 GPL96 194 16

GSE17800 GPL570 40 8

GSE33463 GPL6947 49 41

GSE48060 GPL570 31 21

GSE62646 GPL6244 28 14

GSE66360 GPL570 49 50

GSE74144 GPL13497 28 8

GSE109048 GPL17586 38 19

GSE120895 GPL570 47 8

Respiratory disease

GSE5058 GPL570 15 24

GSE42057 GPL570 94 42

GSE55962 GPL13667 24 82

GSE103174 GPL13667 37 16

GSE112811 GPL570 20 18

GSE151052 GPL17556 77 40

GSE32147 GPL6101
56 4

Rattus norvegicus dataset

Liver disease

GSE14323 GPL96 58 19

GSE77627 GPL14951

40

1432 (cirrhosis)

18 (noncirrhosis)

GSE135501 GPL13667

40

1416 (white tongue)

24 (yellow tongue)

GSE36533 GPL15354
11 10

Marmota monax dataset

Kidney disease

GSE37171 GPL570 63 20

GSE104948 GPL22945 53 18

GSE108113 GPL19983 269 5

GSE133288 GPL19983 239 5

Digestive disease
GSE16879 GPL570 61 12

GSE27411 GPL6255 12 6

Endocrine disease GSE9006 GPL96 55 24
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significant positive correlations of their expression perturba-
tions with VTP across diseases using a threshold of FDR<0:1
.

3. Results

3.1. Neurological Disorder. AD is a progressive neurodegen-
erative disease [5]. In four transcriptome datasets for AD
(GSE63063 [6], GSE118553 [7], GSE140831, and
GSE84422 [8]), the VTP values were significantly larger in
AD patients than in normal controls (P < 0:001)
(Figure 1(a)). In GSE84422, VTP values were significantly
larger in define than in possible or probable AD (P = 0:02)
(Figure 1(a)). In addition, we analyzed correlations between
VTP and several measures of the degree of AD progression
in GSE84422, including clinical dementia rating, Braak neu-
rofibrillary tangle score, average neuritic plaque density, sum
of consortium to establish a registry for Alzheimer’s diseases
(CERAD) rating scores in multiple brain regions, and sum of
neurofibrillary tangles density in multiple brain regions.
Notably, VTP displayed significant positive correlations with
these measures (P < 0:01) (Figure 1(a)). Mutations in PSEN2
may result in early-onset AD. In GSE158233 [9], Barthelson
et al. generated transcriptomes of two-types of PSEN2-
mutated (psen2T141_L142delinsMISLISV and psen2N140fs) lines
of zebrafish brains and transcriptomes of their wild type sib-
lings. We observed that VTP values were remarkedly greater
in PSEN2-mutated zebrafish brains than in their wild type
controls (P < 0:03) (Figure 1(a)).

Schizophrenia (SCZ) is a severe psychotic disorder char-
acterized by relapsing incidences of psychosis [10]. In four
transcriptome datasets (GSE38484 [11], GSE87610 [12],
GSE93577 [13], and GSE93987 [14]) generated from SCZ
patients and normal controls, VTP values were consistently
greater in SCZ patients than in normal controls (P < 0:02)
(Figure 1(b)).

Taken together, these results indicate that VTP is aug-
mented in certain neurological disorders (such as AD and
SCZ) and grows with disease progression.

3.2. Infectious Disease. COVID-19 is a highly contagious dis-
ease caused by SARS-CoV-2 infection and is currently wide-

spread around the globe. This disease has caused more than
552 million cases and 6.3 million deaths as of July 1, 2022
[15]. In four transcriptome datasets (GSE152075 [16],
GSE157103 [17], GSE161731 [18], and GSE198449 [19])
for COVID-19 patients, VTP values were significantly
greater in COVID-19 patients than in normal controls
(P < 0:01) (Figure 2(a)). Notably, in GSE157103, VTP values
were significantly greater in intensive care unit (ICU)
COVID-19 patients than in non-ICU patients (P < 0:001)
(Figure 2(a)). Moreover, COVID-19 patients requiring
mechanical ventilatory support (MVS) had greater VTP
values than those not requiring MVS (P < 0:001)
(Figure 2(a)). In addition, VTP displayed a significant posi-
tive correlation with the scores of the sequential organ fail-
ure assessment (SOFA) (P = 0:006; ρ = 0:36) (Figure 2(a)),
which indicates the severity of ICU patients.

Acquired immune deficiency syndrome (AIDS) is a
chronic condition resulting from infection with the human
immunodeficiency virus (HIV) [20]. In three transcriptome
datasets (GSE18233 [21], GSE87620 [22], and GSE104640
[23]) for AIDS patients, VTP values were significantly
upregulated in AIDS patients versus normal controls
(P < 0:001) (Figure 2(b)). In GSE18233, VTP correlated pos-
itively with viral loads (P = 0:002; ρ = 0:28) (Figure 2(b)). In
GSE87620, the AIDS patients with highly active antiretrovi-
ral therapy had greater VTP values than elite controllers,
who were the AIDS patients with undetectable levels of
HIV replication not receiving antiretroviral therapy
(P = 0:01) (Figure 2(b)). In addition, in GSE62117 [24], the
AIDS patients treated with abacavir or zidovudine had lower
VTP values than those without such therapies (P < 0:05)
(Figure 2(b)).

Hepatitis B virus (HBV) infection is a major etiologic
factor for hepatocellular carcinoma [25]. In three tran-
scriptome datasets (GSE83148 [26], GSE114783 [27], and
GSE121248 [28]), VTP values were greater in HBV-
infected patients than in normal controls (P < 0:01)
(Figure 2(c)).

Pulmonary tuberculosis (TB) is an infectious disease
caused by Mycobacterium tuberculosis attacking lungs
[29]. In three transcriptome datasets (GSE28623 [30],
GSE153340 [31], and GSE152532 [32]), TB patients showed

Table 1: Continued.

Disease Dataset Platform
Sample size

Patients Controls

T1D (43)

T2D (12)

GPL97

55

24T1D (43)

T2D (12)

GSE19420 GPL570 30 12

GSE35725 GPL570

57

4446 (recent onset)

11 (longstanding)

Note: EC: Elite controllers. HAART: Highly active antiretroviral therapy. LTB: Latently tuberculosis. T1D: Type 1 diabetes. T2D: Type 2 diabetes.
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Figure 1: Associations between the VTP measure and disease development and progression in neurological disorder. (a) VTP values are
significantly greater in AD patients than in normal controls, larger in define than in possible or probable AD, and increase with AD
progression. The measures of Braak neurofibrillary tangle score, average neuritic plaque density, sum of CERAD rating scores in multiple
brain regions, and sum of neurofibrillary tangles density in multiple brain regions represent the degree of AD progression. VTP values
are remarkedly greater in PSEN2-mutated zebrafish brains than in their wild type controls. (b) VTP values are significantly greater in
SCZ patients than in normal controls. AD: Alzheimer’s disease. N140: psen2N140fs. T141: psen2T141_L142delinsMISLISV. SCZ: Schizophrenia.
∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001. They also apply to the following figures.
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Figure 2: Continued.
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Figure 2: Continued.
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Figure 2: Continued.
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greater VTP values than normal controls (P < 0:001)
(Figure 2(d)). Moreover, in GSE152532 and GSE28623
[30], VTP values likely followed the pattern: active TB >
latent TB > normal controls (Figure 2(d)).

Malaria is a serious disease caused by a parasite and is a
major cause of death globally [33]. In three transcriptome
datasets (GSE1124 [34], GSE5418 [35], and GSE34404
[36]), malaria patients had greater VTP values than normal
controls (P < 0:01) (Figure 2(e)). Moreover, in GSE34404,
the high parasitemia group had significantly larger VTP
values than the low parasitemia group of malaria patients
(P = 0:004) (Figure 2(e)). In GSE1124, VTP values likely
followed the pattern: malaria associated with severe anemia
> uncomplicatedmalaria > asymptomatic infection
(Figure 2(e)). In addition, in another transcriptome dataset
(GSE5418), VTP values were greater in clinically apparent
than in presymptomatic malaria (P = 0:006) (Figure 2(e)).

Collectively, these results support that VTP is upregu-
lated in infectious diseases and increases with disease
severity.

3.3. Cardiovascular Disease. Heart disease is the leading
cause of death worldwide [37]. In numerous transcriptome
datasets of heart disease, such as GSE1145, GSE5406 [38],
GSE17800 [39], GSE48060 [40], GSE66360 [41],
GSE109048 [42], and GSE120895 [43], VTP values were sig-
nificantly greater in patients than in normal controls
(P < 0:05) (Figure 3(a)). In GSE17800, VTP had a significant
negative correlation with the cardiac index of left ventricular
ejection fraction (LVEF) (P = 0:035; ρ = −0:33)
(Figure 3(b)). In GSE62646 [44], the VTP values calculated
based on gene expression patterns in leukocytes from acute
myocardial infarction patients followed the pattern: the 1st
day of myocardial infarction > after 4 − 6 days > after 6
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Figure 2: Associations between the VTP measure and disease development and progression in infectious disease. (a) VTP values are
significantly greater in COVID-19 patients than in normal controls and increase with disease severity. (b) VTP values are significantly
greater in AIDS patients than in normal controls, greater in AIDS patients without treatment than in AIDS patients with treatment, and
increase with disease severity. (c). VTP values are significantly greater in HBV-infected patients than in normal controls. (d) VTP values
are significantly greater in TB patients than in normal controls and increase with disease progression. (e) VTP values are significantly
greater in malaria patients than in normal controls and increase with disease severity. ICU: intensive care unit. MVS: mechanical
ventilatory support. SOFA: sequential organ failure assessment. AIDS: acquired immune deficiency syndrome. HBV: hepatitis B virus.
TB: tuberculosis.
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months (Figure 3(c)). In addition, in two transcriptome
datasets (GSE33463 [45] and GSE74144) for hypertension,
VTP values were significantly larger in patients than in nor-
mal controls (P < 0:001) (Figure 3(d)). Altogether, these
results suggest that VTP is upregulated in cardiovascular
diseases and decreases with disease remission.

3.4. Respiratory Disease. Respiratory diseases are the diseases
affecting the organs and tissues involved in gas exchange in
air-breathing animals [46]. Some of the most common respi-
ratory diseases include obstructive lung disease, restrictive
lung disease, and respiratory tract infections. In many tran-

scriptome datasets of respiratory diseases, such as
GSE112811, GSE42057 [47], GSE55962 [48], GSE103174,
and GSE151052, VTP values were significantly larger in
patients than in normal controls (P < 0:05) (Figure 4(a)).
In chronic obstructive pulmonary disease (COPD), forced
expiratory volume in the first second (FEV1) and ratio of
FEV1 to forced vital capacity (FVC) are crucial in evaluating
the severity of disease [49]. In GSE103174, which is a tran-
scriptome dataset for COPD, VTP showed negative correla-
tions with both FEV1 (P = 0:018; ρ = −0:39) and FEV1/FVC
(P = 0:067; ρ = −0:31) (Figure 4(b)). The transcriptome
dataset GSE32147 [50] is gene expression profiles in lung
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Figure 3: Associations between the VTP measure and disease development and progression in cardiovascular disease. (a) VTP values are
significantly greater in heart disease patients than in normal controls and increase with disease severity. (b) VTP values correlate
negatively with the cardiac index of LVEF. (c) VTP values decrease with the remission of acute myocardial infarction. (d) VTP values
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samples of rats exposed to crystalline silica. We observed
that VTP values increased steadily with the progression of
silica-induced pulmonary toxicity: 1 week of exposed to
crystalline silica < 2weeks < 4 or 8weeks < 16weeks
(Figure 4(c)).

Collectively, these results support that VTP is upregu-
lated in respiratory diseases and is negatively associated with
their clinical outcomes.

3.5. Liver Disease. In three transcriptome datasets (GSE14323
[51], GSE77627, and GSE135501) for liver diseases, VTP
values were significantly larger in patients than in normal
controls (P < 0:01) (Figure 5(a)). The transcriptome dataset
GSE36533 [52] is gene expression profiles in woodchuck
infected with woodchuck hepatitis virus (WHV), an animal
model for studying the human HBV. Notably, VTP values
are greater in WHV chronically infected than in infection
resolved woodchuck (P < 0:001) (Figure 5(b)).

3.6. Kidney Disease. In four transcriptome datasets
(GSE37171 [53], GSE104948 [54], GSE108113 [54], and
GSE133288 [55]) for kidney disease, VTP values were signif-
icantly greater in patients than in normal controls (P < 0:001
) (Figure 6(a)). In addition, in GSE133228, VTP values were
significantly larger in focal segmental glomerulosclerosis and
glomerular disease than in minimal change disease (P < 0:01)
(Figure 6(b)). It indicates that VTP values increase with dis-
ease progression in kidney disease.

3.7. Digestive Disease. In two transcriptome datasets
(GSE16879 [56] and GSE27411 [57]) for digestive disease,
VTP values were significantly larger in patients than in nor-
mal controls (P < 0:01) (Figure 7(a)). GSE27411 is a tran-
scriptome dataset for patients with different stages of
Helicobacter pylori (H. pylori) infection. Interestingly, we
found that VTP values were significantly different among dif-
ferent stages of H. pylori infection and followed the pattern:
without current H:pylori infection < H:pylori − infected
without corpus atrophy < with current or past H:pylori −
infection with corpus-predominant atrophic gastritis
(Figure 7(b)). These results collectively support that VTP is
upregulated in digestive diseases and increases with disease
severity.

3.8. Endocrine Disease. Diabetes is a metabolic disease that
causes high blood sugar to cause many chronic health prob-
lems, such as cardiovascular diseases, vision damage, and
kidney disease [58]. In two transcriptome datasets
(GSE9006 [59] and GSE19420 [60]) for diabetes, VTP values
were significantly greater in patients than in normal controls
(P < 0:05) (Figure 8(a)). Moreover, in the transcriptome
dataset GSE35725 [61] for diabetes, VTP values were signifi-
cantly greater in recent onset diabetes patients than in long-
standing diabetes patients (P < 0:001) (Figure 8(b)).

3.9. Genes and Pathways whose Expression Perturbations
Correlate Positively with VTP across Diseases. We identified
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Figure 7: Associations between the VTP measure and disease development and progression in digestive disease. (a) VTP values are
significantly greater in digestive disease patients than in normal controls. (b) VTP values correlate positively with disease severity in
atrophic gastritis.
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369 genes whose expression perturbations showed significant
positive correlations with VTP values across diseases (Sup-
plementary Table S2). Notably, many of these genes are
involved in immune regulation (such as CD2, CD247,
CD300A, CD2AP, CD28, CD47, CD53, CD7, and CXCR2),
cell cycle (such as CCND2, CDK4, and SKP2), and
metabolism (such as LDHA, LDHB, PDHA1, GLO1, and
ME2). Furthermore, we identified 58 KEGG pathways
showing significant positive correlations of expression
perturbations with VTP across diseases. Notably, many of
these pathways are immune pathways, including natural
killer cell-mediated cytotoxicity, T cell receptor signaling, B
cell receptor signaling, chemokine signaling, cell adhesion
molecules, Fc gamma R-mediated phagocytosis, leukocyte
transendothelial migration, Fc epsilon RI signaling,
hematopoietic cell lineage, Toll-like receptor signaling, Jak-
STAT signaling, cytokine-cytokine receptor interaction,
intestinal immune network for IgA production, and NOD-
like receptor signaling (Figure 9). The 58 pathways also
included many metabolism-related pathways, such as
pyruvate metabolism, inositol phosphate metabolism,
propanoate metabolism, cysteine and methionine

metabolism, fructose and mannose metabolism, riboflavin
metabolism, β-alanine metabolism, and nicotinate and
nicotinamide metabolism. Moreover, many pathways
regulating cell growth and division were included in the list
of the 58 pathways. Such pathways included MAPK
signaling, Wnt signaling, calcium signaling, ErbB signaling,
oocyte meiosis, and cell cycle. In addition, the 58 pathways
also included many specific diseases-associated pathways,
such as leishmania infection, AD, vibrio cholerae infection,
epithelial cell signaling in Helicobacter pylori infection,
amyotrophic lateral sclerosis, viral myocarditis, pathogenic
Escherichia coli infection, arrhythmogenic right ventricular
cardiomyopathy, pancreatic cancer, non-small-cell lung
cancer, acute myeloid leukemia, colorectal cancer, glioma,
and chronic myeloid leukemia.

4. Discussion

Although transcriptomic data have been widely applied to
biomedical science, few studies have explored the association
between transcriptomic perturbations and disease develop-
ment and progression in a wide variety of diseases. For the
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Figure 8: Associations between the VTP measure and disease development and progression in endocrine disease. (a) VTP values are
significantly greater in diabetes patients than in normal controls. (b) VTP values are significantly greater in recent onset diabetes patients
than in longstanding diabetes patients. T1D: Type 1 diabetes.
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first time, we investigated the association between the VTP
and various diseases’ onset and progression. Our analysis
suggests that VTP values are upregulated in various diseases
relative to their normal controls, and that VTP values
increase with disease progression. Thus, this analysis
uncovers a common characteristic of transcriptomic pertur-
bations across various human diseases. In fact, the VTP
measure reflects the asynchronous degree of transcriptomic
perturbations in a disease status relative to the health status.
Our results indicate that the asynchronous degree of tran-
scriptomic perturbations is positively associated with disease
progression or severity. That is, the higher asynchronous
degree of transcriptomic perturbations suggests more unfa-
vorable clinical outcomes in disease. This is consistent with
the findings in cancer [1]. An intriguing question is whether
the variation of perturbations in other molecules, such as
genome, proteome, and metabolome, has similar associa-
tions with disease development and progression.

We identified numerous genes and pathways whose
expression perturbations correlated positively with VTP
scores across diseases. These genes and pathways are mainly
involved in the regulation of immune, metabolic, and cellular

activities. It is justified since deregulated immune, metabolic,
and cellular activities have been associated with various dis-
eases. Our data suggest that the disordered perturbations of
the molecules modulating immune, metabolic, or cellular
activities are associated with the development and progres-
sion of various diseases. Interestingly, by searching for the
database of publicly available GWAS summary statistics
(https://www.ebi.ac.uk/gwas/), we found that many of the
369 genes, which displayed significant expression perturba-
tions’ correlations with VTP values across diseases, had
genetic variants that are statistically associated with the risk
of the diseases we analyzed (Supplementary Table S3). For
example, there were 16 genes, including RDX, PIP4K2A,
PILRA, LPXN, LILRB2, ITGAX, IQGAP2, FOXN2, CR1,
CELF2, CDC42SE2, CD2AP, PDK4, PARP8, HSPA6, and
BNIP3, whose genetic variants are statistically associated
with the risk of AD. Six genes (TKT, TCF4, SWAP70,
DDHD2, ARHGAP31, and LTB) showed significant
associations of genetic variants with the risk of
cardiovascular disease. Notably, FOXN2 had genetic
variants statistically associated with the risk of both AD and
SCZ, and NOTCH2 displayed genetic variants that are
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statistically associated with the risk of both endocrine disease
and kidney disease. These data support the relevance of many
of these genes with the diseases.

This study has several limitations. First, although we have
analyzed numerous datasets for various diseases, more data-
sets are needed to be analyzed to bolster the validity of this
analysis. Second, the mechanism underlying the association
between VTP and disease development and progression
needs to be explored. Finally, the prospect of translating the
present findings into clinical practice remains unclear. Nev-
ertheless, our further study is to implement further investiga-
tions to overcome these limitations.

5. Conclusions

VTP is upregulated in the disease relative to health status,
and its upregulation is associated with disease progression
and severity in various diseases. The molecules whose abun-
dance perturbations correlate positively with VTP are
mainly involved in the regulation of immune, metabolic,
and cellular activities. Thus, VTP has potential clinical
values in disease diagnosis and prognosis.
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