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Background. Hepatoblastoma (HB) is the most common malignant liver tumor in children. High-risk patients, especially those
with tumor metastasis, have poor prognosis. Serpin family E member 2 (SERPINE2) is overexpressed in a variety of tumors,
especially adenocarcinoma, and promotes tumor invasion and metastasis. The function and mechanism of SERPINE2 in HB
are still unclear. The purpose of this study was to investigate the potential clinical prognostic value and molecular mechanism
of SERPINE2 in HB. Methods. We performed bioinformatics analyses on HB microarray data GSE131329 to study the role of
SERPINE2. The expression level of SERPINE2 in HB and its clinical significance were further analyzed by quantitative real-
time polymerase chain reaction (qRT-PCR), Western blot, and immunohistochemistry. After constructing the SERPINE2
overexpression and knockdown in HepG2 and HUH6 cells, the 5-ethynyl-29-deoxyuridine (EdU) assay, wound healing assay,
Transwell experiment, and apoptosis assay were performed to explore the role of SERPINE2 in HB progress. Results.
Upregulation of SERPINE2 was found in HB tissues and was associated with a poor prognosis. Moreover, the SERPINE2
expression was related to tumor size, vascular invasion, and tumor metastasis. The Cox regressions show that high SERPINE2
expression is an independent risk factor for HB. SERPINE2 overexpression remarkably enhanced HB cell migration and
invasion and suppressed apoptosis, while knockdown of SERPINE2 exerted the opposite effect. In addition, SERPINE2
facilitated the epithelial to mesenchymal transformation (EMT) phenotype of HB cells in vitro. Conclusion. Our findings
indicated that SERPINE2 accelerates HB progression, suggesting that SERPINE2 may be a potential prognostic biomarker and
an underlying therapeutic target for HB.

1. Introduction

Hepatoblastoma (HB) is the most common malignant
tumor of liver in childhood [1]. In recent years, the inci-
dence of HB is on the rise [2]. Most HB children have no
obvious symptoms in the early stage and are not easy to
detect. Most children with hepatoblastoma are diagnosed
at a late stage when the disease has advanced to unresectable
tumor. With the improvement of surgical techniques and
adjuvant chemotherapy, the survival rate of HB children at
low risk is close to 80%, but for high-risk patients, the overall
survival rate is still very poor [3]. Currently, alpha-
fetoprotein (AFP) is used as an indicator to detect the

response to HB treatment and detect recurrent HB [4]. HB
is associated with gene mutations such as catenin beta 1
(CTNNB1), NFE2-like BZIP transcription factor 2
(NFE2L2), MYC protooncogene (MYC), and yes-associated
transcriptional regulator (YAP), and these gene tests may
also be useful indicators for early diagnosis [5]. However,
the specificity of these indicators is not enough. Improving
the molecular mechanism of the disease and finding effective
therapeutic targets are the most urgent needs for HB
treatment.

Microarray technology is a widely used method to
explore the pathogenesis of different diseases. This technol-
ogy combined with protein interaction network can help to
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understand key genes and their interactions. The MCODE
algorithm is very important to fully understand network
properties and protein interaction network functions [6].
Through bioinformatics methods, SERPINE2 was identified
as a candidate key gene. SERPINE2 is a glycoprotein and a
member of the serpin family with serine protease inhibitory
activity [7]. SERPINE2 has previously been reported to be
involved in a variety of pathophysiological processes [8].
Recent studies have reported that SERPINE2 is overexpressed
in a variety of tumors and promotes tumor progression, and
SERPINE2may be an oncogenic gene [9]. However, themech-
anism of SERPINE2 in HB has not been reported.

In this study, we examined SERPINE2 expression in
hepatoblastoma and its association with clinicopathological
features. In addition, we also studied the molecular mecha-
nism of hepatoblastoma development in HB cell lines. It
provides a theoretical basis for finding new molecular bio-
markers and effective therapeutic targets, which is of great
clinical significance for improving the clinical prognosis of
children with hepatoblastoma.

2. Material and Methods

2.1. Clinical Data. The study was approved by the Ethics
Committee of West China Hospital of Sichuan University
2019(1085), and informed consent was obtained. Hepato-
blastoma patients who underwent surgical treatment in the
Department of Pediatric Surgery in West China Hospital
of Sichuan University from January 2015 to December
2020 were collected. Inclusion criteria are as follows: (1)
pathological diagnosis of hepatoblastoma; (2) age < 14 years
old; and (3) preoperative radiotherapy, chemotherapy, or
other adjuvant therapy were not received. Exclusion criteria
are as follows: (1) complicated with severe organ dysfunc-
tion and (2) the patient requested to withdraw from the
study or did not receive follow-up. A total of 66 children
with complete clinical and pathological data were included
in the study. Clinical data were collected, and Pretreatment
Extent of Disease System (PRETEXT) stage was evaluated
by abdominal ultrasound, abdominal CT, abdominal MRI,
chest CT, etc. [10]. The COG stage was strictly in accordance
with the standard of American Children’s Oncology Group
(COG) [11]. Through outpatient and telephone follow-up,
the patients were followed up to December 2021, with a
median follow-up time of 33 months, and 4 cases were lost
to follow-up.

2.2. Microarray Data Information and Hub Gene Screen. We
use the keywords “hepatoblastoma” from Gene Expression
Omnibus (GEO) repository (http://www.ncbi.nlm.nih.gov/
geo) and download the data associated with HB. We
obtained the gene expression profile of GSE131329 from
GEO database; GSE131329 included 39 primary hepatoblas-
toma tissues, 14 metastasis hepatoblastoma tissues, and 14
normal liver tissues. The differentially expressed genes
(DEGs) were filtered via the R software with P < 0:05 [12].
WGCNA is a systematic biological method for characteriz-
ing gene association patterns between different samples
and can be used to identify highly synergistic sets of genes

and to screen for candidate biomarker genes or therapeutic
targets [13].We used theWGCNA function package in R soft-
ware to screen for gene modules associated with disease phe-
notypes and further analyzed the relationship between these
modules and HB tumor samples. We quantify associations
of individual genes with our trait of interest (tumormetastasis)
by defining gene significance (GS) as the correlation between
the gene and the trait. For eachmodule, we also define a quan-
titative measure of module membership (MM) as the correla-
tion of the module eigengene and the gene expression profile.
This allows us to quantify the similarity of all genes on the
array to every module [14]. The protein-protein interaction
(PPI) network was obtained by STRING (https://cn.string-db
.org/), and the MCODE plug-in was used to screen the hub
gene of the PPI network with the following parameter settings:
node score cutoff = 0:2, degree cutoff = 2, maximum depth
= 100, and k − core = 2 [15].

2.3. Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR). TRIzol method was used to extract total RNA
from HB tumor and adjacent tissues, and cDNA was
obtained after removing genomic DNA. PCR amplification
was performed using SYBR reagent (Genecopeia, USA) in
the Bio-Rad CFX Connect fluorescence quantitative PCR
instrument. The relative expression levels were calculated
by 2−ΔΔCt method. Primers were designed according to
the CDS sequence of SERPINE2:

(1) SERPINE2-F: 5′-AAGAAACGCACTTTCGTGGC-3′

(2) SERPINE2-R: 5′-GTGTGGGATGATGGCAGACA-3′

(3) GAPDH-F: 5′-GGTGGTCTCCTCTGACTTCAA
CA-3′

(4) GAPDH-R: 5′-TTTGCTGTAGCCAAATTCGTT
GT-3′

2.4. Immunohistochemistry (IHC). Paraffin-embedded tissue
slides were heated, dewaxed, and dehydrated, then repaired
with H2O2 and citric acid antigen, and sealed with goat
serum, and polyclonal SERPINE2 rabbit primary antibody
(1 : 50; GeneTex, USA) was incubated overnight (PBS was
used instead of primary antibody as negative control); goat
anti-rabbit secondary antibody was incubated the next day
and incubated at room temperature for 60min. The tissue
sections were rinsed with PBS for 3 times; DAB color solu-
tion was added and observed under an optical microscope.
(1) Staining intensity scoring criteria are as follows: 0 for
no staining, 1 for yellow, 2 for brownish yellow, and 3 for
tawny brown. (2) The scoring criteria for the proportion of
positive cells are as follows: 0 points for the number of pos-
itive cells < 5%, 1 point for the number of positive cells
between 6% and 25%, 2 points for the number of positive
cells between 26% and 50%, 3 points for the number of pos-
itive cells between 51% and 75%, and 4 points for the num-
ber of positive cells over 75%. When we multiply the above
two scores, we get 0-1 (-), 2-4 (+), 5-8 (++), and 9-12 (++
+). Low expression was defined as a final score of <5 and
the rest as high expression.
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2.5. Cell Culture. HB cell lines HepG2 and Huh6 (both pur-
chased from Cell Bank of Chinese Academy of Sciences
(CSTR: 19375.09.3101HUMSCSP510 and CSTR:
19375.09.3101HUMTCHu181) were cultured in DMEM
basal medium containing 10% fetal bovine serum, 100U/
mL penicillin, and 100μg/mL streptomycin. The cells were
placed in a cell incubator containing 5% CO2 and 95%
humidification at 37°C. After the cell fusion rate reached
90%, the cells were digested and passed by 0.25% trypsin
for subsequent experiments.

2.6. RNA Interference and Overexpression of SERPINE2.
Small interfering RNA (siRNA) to suppress the expression
of SERPINE2 was purchased from Beijing Optimus Biotech-
nology Co., Ltd. (Beijing, China). The CDS region of SER-
PINE2 was amplified by PCR from the cDNA of HB
tumor tissue and linked to the PCS2-C-myc vector to con-
struct the overexpressed plasmid (OE-SERPINE2). The
empty vector (PCS2-C-myc) was used as a control (OE-
NC). According to the manufacturer’s instructions, siRNA
and plasmid were transfected into HepG2 and Huh6 cell
lines using lipo8000TM (Beyotime C0533) transfection
reagent (Beyotime Shanghai, China), and SERPINE2 was
knocked down and overexpressed.

2.7. 5-Ethynyl-29-Deoxyuridine (EdU) Assay. Cell prolifera-
tion was measured by EdU method after transfection. The
assays were performed as recommended by the manufac-
turer of EdU detection kits. Then, BD-FACSCanto II flow
cytometry was used to analyze the proliferation rate of each
treatment group.

2.8. Apoptosis Assay. For detection of cell apoptosis, the
transfected cells were harvested, the Annexin V-FITC and
PI were successively added for staining in the dark room
according to the instructions of Annexin V/PI kit. The cells
were analyzed by flow cytometry using BD-FACSCanto II
flow cytometry. FlowJo-V10 software is used for data collec-
tion and processing.

2.9. Scratch Assay. The migration ability of HB cells was
detected by scratch assay. The transfected cells were
scratched with 20μL sterile spear tip, washed twice with
PBS, and cultured in new DMEM medium (excluding
FBS). Photos were taken at the same observation point at
0 h, 24 h, and 48 h under the microscope.

2.10. Transwell Assay. Transfected cells were collected, the
cell concentration was adjusted to 5 × 105/mL, and 100μL
cell suspension was inoculated into the upper chamber of
labselt-14341 (Beijing, China), and 700μL DMEM medium
(containing 10% FBS) was added to the lower chamber.
After 24 hours of coculture, the chamber was carefully
removed and stained with fast Reischel-Giemsa staining
kit. Nine fields were randomly selected to count. In the inva-
sion experiment, a layer of Matrigel (Corning CAT: 356243)
was laid on the bottom membrane of the upper compart-
ment before the cells were inoculated, and the other proce-
dures were the same as the migration experiment.

2.11. Western Blot (WB). Transfected cells were collected,
total protein was extracted by TNE lysis, and protein con-
centration was determined using BCA protein concentration
determination kit (Beyotime, Shanghai, China). The
extracted protein was separated with SDS-PAGE, and the
isolated protein was transferred to PVDF membranes (Milli-
pore, Billerica, MA, USA). The membranes were blocked in
5% skim milk, primary antibody (SERPINE2 antibody, Art.
GXT124069, 1 : 1500; E-cadherin antibody, GXT100443,
1 : 2000; N-cadherin antibody, GXT127345, 1 : 1500; and
internal reference β-actin, A1978, 1 : 3,000) was incubated
overnight, the membrane was washed for three times for sec-
ondary antibody (goat versus rabbit), and the membranes
were analyzed under a Bio-Rad image analysis system.

2.12. Statistical Analysis. The SPSS 22.0 software (IBM USA)
was used for data analysis. The chi-square test was used for
categorical variables, and Student’s t-test was used for con-
tinuous variables. The Kaplan-Meier method was used to
draw survival curves, and the log-rank test was used to com-
pare the survival differences of different variables. Indepen-
dent prognostic indicators of overall survival were used in
a multivariable Cox regression analysis. A double-sided P
value < 0.05 was considered statistically significant.

3. Result

3.1. Bioinformatics Analysis and Verification of SERPINE2 in
Hepatoblastoma. According to the cutoff criteria for select-
ing DEGs, a total of 7,468 DEGs were recognized between
metastatic hepatoblastoma and normal liver. The expression
profiles of these DEGs were analyzed using the WGCNA
package in R software. We obtained 11 different gene mod-
ules from WGCNA (Figure 1(a)). The brown module was
the gene module most associated with HB metastasis
(Figure 1(b)). The brown gene module contains 3,639 genes.
Because tumor metastasis was associated with poor progno-
sis in HB patients, we selected the genes in the brown mod-
ule for subsequent analysis. A total of 423 genes with high
similarity and significance (module membership > 0:8 and
gene significance > 0:2) were screened in the brown module
as candidate hub genes (Figure 1(c)). The 423 genes were
associated with HB metastasis. And then, the 423 genes were
input into the PPI network to explore the modules available
for exploring HB metastasis-related genes; the results
showed that there were 331 nodes and 1,077 edges in the
PPI network (Figure 1(d)). Based on the PPI network and
MCODE plug-in, there were four modules in the PPI net-
work, and the scores of the four modules were as follows:
10.343 (module 1), 7.429 (module 2), 6.000 (module 3),
and 3.000 (module 4), respectively. The first module (mod-
ule 1) with the highest scores is located at the center of the
whole network, including 36 nodes and 181 edges
(Figure 1(e)). Therefore, SERPINE2, with the highest degree,
which rank the first in module 1, maybe the most important
part of the whole network. To confirm whether SERPINE2 is
associated with the development of hepatoblastoma, we
examined the expression level of SERPINE2 in hepatoblas-
toma tissues. The SERPINE2 mRNA expression levels were
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higher in hepatoblastoma tissues than in normal liver tissues
in the GSE131329 dataset (Figure 1(c)). In addition, we
obtained the SERPINE2 mRNA expression from 9 pairs of
hepatoblastoma tissues and matched nontumor liver tissues
in our laboratory. The qRT-PCR results showed that SER-
PINE2 mRNA expression level in tumor tissues was signifi-
cantly higher than that in the corresponding liver tissues
(Figure 1(d)). We used immunohistochemistry to detect
SERPINE2 expression in 66 pairs of hepatoblastoma tumor
tissues and matched nontumor liver tissues (Figures 1(e)
and 1(f)). The SERPINE2-positive rate was 86.4% (57/66)
in HB tissue and 18.2% (12/66) in adjacent liver tissue; the
difference was statistically significant (P < 0:05).

3.2. SERPINE2 Is Correlated with Malignancies in
Hepatoblastoma.We used hepatoblastoma tissue in our hospi-

tal to explore the clinical value of SERPINE2. Detailed clinical
characteristics of 66 HB patients are summarized in Table 1.
We used IHC staining to explore the associations between SER-
PINE2 expression and the clinicopathological features of HB
patients. The SERPINE2 expression score < 5 was defined as
low expression group, and ≥5 was defined as high expression
group; 66 HB patients were divided into high expression group
(n = 43) and low expression group (n = 23). As shown in
Table 1, the high expression of SERPINE2 was closely related
to tumor size (P = 0:021), vascular invasion (P = 0:029), tumor
metastasis (P = 0:039), and PRETEXT stage (P = 0:049). These
results suggest that SERPINE2 may play an important role in
the invasion and metastasis of hepatoblastoma.

3.3. High Expression of SERPINE2 Is Associated with Poor
Outcomes in HB Patients. In view of the correlation between
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Figure 1: Bioinformatics analysis and SERPINE2 expression in hepatoblastoma. (a) The cluster dendrogram of genes. Genes that could not
be clustered into one of these modules were assigned to the gray module. Every gene represents a line in the hierarchical cluster. (b)
Heatmap of the module-trait relationships. (c) Scatterplots of gene significance (GS) versus module significance (MS) in brown modules.
(d) PPI networks show the interaction of genes related to HB metastasis. The nodes and edges are retrieved from the STRING tool and
plotted using Cytoscape software. (e) The four cluster subnetworks were identified from the PPI network with the help of Cytoscape
using the MCODE plug-in with a cluster score. (f) The expression of SERPINE2 in hepatoblastoma and normal liver in GSE131329. (g)
The expression of SERPINE2 in hepatoblastoma and matched nontumor liver tissues in our hospital. (h) Immunohistochemistry
detection of SERPINE2 expression in hepatoblastoma adjacent normal liver tissues. (Representative images were shown at ×40 (scale bar,
50mm) via microscope.) (i) Immunohistochemistry detection of SERPINE2 expression in hepatoblastoma tissues. (Representative images
were shown at ×40 (scale bar, 50mm) via microscope.)
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the expression level of SERPINE2 and tumor invasion and
metastasis, we speculate that the expression level of SER-
PINE2 is also correlated with the survival and prognosis of
patients. Therefore, we combined the follow-up data of HB
patients to evaluate the relationship between SERPINE2
expression and overall survival of HB patients. The
Kaplan-Meier survival curve showed that the overall survival
time was shorter in the SERPINE2 high expression group
(Figure 2). The mean postoperative survival time of the SER-
PINE2 high expression group was 48.34 months (95% CI:
35.94-60.73), and the 3-year survival rate was 60.47%. The
mean postoperative survival time of the low expression
group was 71.04 months (95% CI: 63.27-78.81), and the 3-
year survival rate was 91.30%. The survival rate of SER-

PINE2 high expression group was significantly lower than
that of SERPINE2 low expression group; the difference was
statistically significant (P < 0:001). Univariate Cox analysis
showed that vascular invasion (HR: 3.43, P = 0:012), tumor
metastasis (HR: 6.72, P < 0:001), PRETEXT stage (HR:
7.46, P < 0:001), and SERPINE2 (HR: 7.36, P < 0:008) were
the prognostic risk factors for hepatoblastoma. Multivariate
Cox analysis showed that tumor metastasis (HR: 3.84, P <
0:006), PRETEXT stage (HR: 4.57, P < 0:011), and SER-
PINE2 (HR: 4.71, P < 0:040) were the independent prognos-
tic risk factors for hepatoblastoma (Table 2).

3.4. SERPINE2 Significantly Inhibits HB Cell Apoptosis. To
explore the function of SERPINE2 in HB progression, we

Table 1: Relationship between SERPINE2 expression and hepatoblastoma clinicopathological features.

Characteristics
SERPINE2 expression

Overall
P valueLow High

(N = 23) (N = 43) (N = 66)
Gender

Male 15 (65.2%) 21 (48.8%) 36 (54.5%) 0.203

Age (months)

Mean (SD) 57.4 (28.3) 50.1 (19.0) 52.7 (22.7) 0.214

Tumor size

≥10 cm 6 (26.1%) 24 (55.8%) 30 (45.5%) 0.021

Histology type

Mixed 9 (39.1%) 10 (23.3%) 19 (28.8%) 0.175

Vascular invasion

Present 4 (17.4%) 19 (44.2%) 23 (34.8%) 0.029

Portal vein thrombus

Present 2 (8.7%) 3 (7.0%) 5 (7.6%) 0.801

Tumor metastasis

Present 3 (13.0%) 16 (37.2%) 19 (28.8%) 0.039

PRETEXT stage

III-IV 7 (30.4%) 24 (55.8%) 31 (47.0%) 0.049

COG stage

III-IV 7 (30.4%) 18 (41.9%) 25 (37.9%) 0.362

AFP

<100 ng/mL 1 (4.3%) 2 (4.7%) 3 (4.5%) 0.955

Albumin(g/L)

Mean (SD) 40.4 (5.3) 42.0 (5.0) 41.5 (5.2) 0.239

Total bilirubin (umol/L)

Mean (SD) 12.4 (8.1) 14.7 (11.6) 13.9 (10.5) 0.402

Direct bilirubin (umol/L)

Mean (SD) 5.4 (4.2) 7.9 (13.7) 7.1 (11.3) 0.404

Creatinine (umol/L)

Mean (SD) 53.2 (27.1) 43.1 (24.6) 46.6 (25.8) 0.13

INR

Mean (SD) 0.87 (0.20) 0.91 (0.17) 0.89 (0.18) 0.371

Platelet (109/L)

Mean (SD) 252 (132) 243 (131) 246 (131) 0.779

Prothrombin time(s)

Mean (SD) 11.1 (1.2) 11.0 (1.9) 11.0 (1.7) 0.864
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transfected OE-SERPINE2 plasmid and si-SERPINE2 into
HepG2 and HUH6 cells and measured SERPINE2 mRNA
and protein levels 48 hours later. The overexpression and

knockdown efficiencies were verified by qRT-PCR and
Western blot analysis (supplementary figure 1). The EdU
assay showed that SERPINE2 did not significantly affect
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Figure 2: SERPINE2 expression the hepatoblastoma cohort using the cutoff (low (IHC score< 5) vs. high (IHC score≥ 5)) as a determinant
of overall survival in the Kaplan-Meier analysis (P < 0:001, log-rank test). IHC: immunohistochemistry.

Table 2: Univariate and multivariate Cox proportional hazards analyses for the overall survival of hepatoblastoma.

Characteristic
Univariate Multivariate

HR 95% CI P value HR 95% CI P value

Gender

Male vs. female 0.52 (0.22-1.16) 0.148

Tumor size

≥10 cm vs. <10 cm 1.48 (0.63-3.50) 0.368

Histology type

Mixed vs. epithelial 1.31 (0.52-3.30) 0.568

Vascular invasion

Present vs. absent 3.43 (1.31-8.98) 0.012

Portal vein thrombus

Present vs. absent 2.46 (0.54-11.20) 0.243

Metastasis

Present vs. absent 6.72 (2.66-16.96) <0.001 3.84 (1.47-9.99) 0.006

PRETEXT stage

III-IV vs. I-II 7.46 (2.44-22.80) <0.001 4.57 (1.41-14.76) 0.011

COG stage

III-IV vs. I-II 1.95 (0.82-4.65) 0.13

AFP

<100 (ng/mL) vs. ≥100 (ng/mL) 2.66 (0.33-21.4) 0.357

SERPINE2

High vs. low 7.36 (1.70-31.96) 0.008 4.71 (1.07-20.71) 0.04
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HB cell proliferation in vitro (Figures 3(a) and 3(b)).
Apoptosis experiments showed that overexpression of
SERPINE2 inhibited early apoptosis in HepG2 and HUH6
cells, and knockdown of SERPINE2 promoted early
apoptosis (Figures 3(c) and 3(d)).

3.5. SERPINE2 Promotes the Migration and Invasion of HB
Cells. Scratch assay showed that in HepG2 and HUH6 cell
lines, the wound healing rate of transfected si-SERPINE2
group was significantly lower than that of the control group,

and the wound healing rate of OE-SERPINE2 group was sig-
nificantly higher than that of the control group (Figure 4).
Transwell migration experiment showed that the number
of migrated cells in the OE-SERPINE2 group was signifi-
cantly lower than that in the control group, and the number
of migrated cells in the OE-SERPINE2 group was signifi-
cantly higher than that in the control group (Figure 5(a)).
Transwell invasion assay showed that SERPINE2 overex-
pression markedly enhanced invasive efficiencies of HB cells
in vitro compared with the control empty vector transfected
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Figure 3: SERPINE2 did not significantly affect HB proliferation but significantly inhibited early apoptosis in HepG2 and HUH6 cells. (a)
EdU assays detect the proliferation ability of HepG2 cells in OE-SERPINE2 group and si-SERPINE2 group. (b) EdU assays detect the
proliferation ability of HUH6 cells in OE-SERPINE2 group and si-SERPINE2 group. (c) Flow cytometry detected the apoptosis rate of
HepG2 cells in OE-SERPINE2 group and si-SERPINE2 group. (d) Flow cytometry detected the apoptosis rate of HUH6 cells in
OE-SERPINE2 group and si-SERPINE2 group.
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cells, whereas the knockdown of endogenous SERPINE2 sig-
nificantly inhibited invasion (Figure 5(b)).

3.6. SERPINE2 Promotes Epithelial to Mesenchymal
Transformation of HB Cells. In view of the correlation
between the expression level of SERPINE2 and tumor inva-
sion and metastasis, we speculated that SERPINE2 might be
involved in epithelial-mesenchymal transition. Therefore,
we used Western blot to detect epithelial-mesenchymal
transition-related indicators. Knockdown SERPINE2
induced early apoptosis of HB cell lines, SERPINE2 protein
expression was decreased, E-Ca increased, and N-Ca
decreased. SERPINE2 overexpression increased SERPINE2
protein expression, decreased E-Ca, and increased N-Ca
(Figure 6), suggesting that SERPINE2 may promote epithe-
lial to mesenchymal transformation.

4. Discussion

Hepatoblastoma is a common liver tumor in children, and
the pathogenesis is unknown; transcriptome analysis and
bioinformatics may give us an insight into the overall mech-

anism of HB [16]. Since bioinformatics can give gene expres-
sion levels in the human genome simultaneously, it has been
frequently utilized to find diagnostic or prognostic biomark-
ers [17]. In this study, we used the weighted gene coexpres-
sion network analysis for the first time to screen out genes
related to hepatoblastoma metastasis, and then, these genes
were uploaded to STRING database. The protein interaction
network among these genes was created using Cytoscape
tools and MCODE app. After computation, SERPINE2 is
considered as hub gene. The adhesion of tumor cells to
extracellular matrix components can activate or secrete pro-
teolytic enzymes to promote matrix degradation, thus form-
ing a local lysis zone, which constitutes a pathway for tumor
cell metastasis. SERPINE2 affects tumor invasion and migra-
tion through regulation of matrix metalloproteinases and
plasminase systems [18]. Our study found that the expres-
sion level of SERPINE2 in HB tumor tissues was signifi-
cantly higher than that in adjacent tissues, suggesting that
SERPINE2 may be the oncogenic gene of HB. We found that
high SERPINE2 expression was associated with poor prog-
nosis of HB by IHC analysis. The high expression of SER-
PINE2 was related to tumor size, vascular invasion, tumor
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metastasis, and PRETEXT stage. Moreover, our data indi-
cated that elevated expression of SERPINE2 acts as an inde-
pendent prognostic biomarker of poor overall survival (OS)

in patients with hepatoblastoma. These results are similar to
the previous studies. SERPINE2 is differentially expressed in
many tumors and their corresponding normal tissues and is
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highly expressed in adenocarcinoma, especially enriched in
glandular organs of the digestive system and highly
expressed in liver tumors [19]. Therefore, SERPINE2 may
be a potential prognostic indicator of HB.

Apoptosis is the spontaneous and ordered death of cells
controlled by genes. Previous studies have shown that SER-
PINE2 is closely associated with tumor cell apoptosis and
malignant transformation [20]. Silencing SERPINE2 can
induce apoptosis in endometrial cancer cells [21]. Knock-
down of SERPINE2 in human papillary thyroid cancer cells
decreased the antiapoptotic protein Bcl-2 and increased the
proapoptotic protein Bax and caspase-3, thereby promoting
cell apoptosis [22]. Our results also support this conclusion;
knockdown SERPINE2 induces early apoptosis of HB cells,
while overexpression of SERPINE2 enhances HB cell viabil-
ity and inhibits early apoptosis. SERPINE2 may be an
important regulator of HB apoptosis.

Metastasis is an important cause of poor prognosis of
HB, and a large number of previous studies have reported
that SERPINE2 is closely related to tumor invasion and
metastasis. SERPINE2 is closely associated with the depth
of invasion and lymph node metastasis of esophageal squa-
mous cell carcinoma and promotes the migration and inva-
sion of esophageal carcinoma cells by inducing EMT [23].
SERPINE2 is overexpressed in gastric cancer and is associ-

ated with poor survival, promoting gastric cancer cell
migration and invasion [24]. SERPINE2 promotes mela-
noma metastasis through the glycogen synthesis kinase
3β (GSK-3β) signaling pathway [25]. In pancreatic can-
cer, SERPINE2 promotes pancreatic cancer invasion by
promoting extracellular matrix deposition [26]. Our study
also showed that SERPINE2 expression in HB was related to
vascular infiltration and metastasis. SERPINE2 may promote
the migration and invasion of HB cells by promoting EMT
in vitro. SERPINE2 plays an important role in regulating
extracellular matrix metabolism and is involved in the inva-
sion, migration, and apoptosis of hepatoblastoma.

In conclusion, we found that SERPINE2 was correlated
with poor prognosis in hepatoblastoma. SERPINE2 pro-
motes HB tumor progression by inhibiting apoptosis and
promoting migration and invasion of HB cells. We found
that SERPINE2 plays an important role in HB progression,
might represent a novel therapeutic strategy, and might be
used as a prognostic marker of HB.

Abbreviations

HB: Hepatoblastoma
SERPINE2: Serpin family E member 2
EMT: Epithelial–mesenchymal transition
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Figure 6: The effects of SERPINE2 on epithelial-mesenchymal transition in HB cells. (a–d) Western blot analysis of E-cadherin and N-
cadherin in HepG2 cells transfected with OE-SERPINE2 group and si-SERPINE2 group. (e–h) Western blot analysis of E-cadherin and
N-cadherin in HUH6 cells transfected with OE-SERPINE2 group and si-SERPINE2 group.
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AFP: Alpha-fetoprotein
CTNNB1: Catenin beta 1
NFE2L2: NFE2-like BZIP transcription factor 2
MYC: MYC protooncogene
YAP: Yes-associated transcriptional regulator
PRETEXT: Pretreatment Extent of Disease System
COG: American Children’s Oncology Group
GEO: Gene Expression Omnibus
DEGs: Differentially expressed genes
PPI: Protein-protein interaction
qRT-PCR: Quantitative real-time polymerase chain

reaction
IHC: Immunohistochemistry
siRNA: Small interfering RNA
EdU: 5-Ethynyl-29-deoxyuridine
WB: Western blot
OS: Overall survival.
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