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Background. Increasing evidence supports that immune cell infiltration (ICI) patterns play a key role in the tumor progression of
lung squamous cell carcinoma (LUSC). However, to date, the immune infiltration picture of LUSC has not been elucidated.
Method. TCGA was used to download multiomics data from LUSC samples. At the same time, we included two datasets on
lung squamous cell carcinoma, GSE17710 and GSE157010. To reveal the landscape of tumor immune microenvironment
(TIME), the ESTIMATE algorithm, ssGSEA approach, and CIBERSORT analysis are used. To quantify the ICI pattern in a
single tumor, consistent clustering is used to determine the LUSC subtype based on the ICI pattern, and principal component
analysis (PCA) is used to obtain the ICI score. The prognostic value of the Kaplan-Meier curves is confirmed. GSEA (Gene Set
Enrichment Analysis) was used to perform functional annotation. To investigate the immunotherapeutic effects of the ICI
score, the immunophenotyping score (IPS) is used. Finally, analyze the mutation data with the “maftools” R package. Results.
We identified four different immune infiltration patterns with different prognosis and biological characteristics in 792 LUSC
samples. The identification of ICI patterns in individual tumors developed under ICI-related characteristic genes based on the
ICI score helps to analyze the biological process, clinical results, immune cell infiltration, immunotherapy effects, and genetic
variation. Immune failure is indicated by a high ICI score subtype marked by immunosuppression. Patients with low ICI
scores have an abundance of efficient immune cells, which corresponds to the immunological activation phenotype and may
have therapeutic benefits. The immunophenotypic score was used as a surrogate indicator of immunotherapy results, and
samples with low ICI scores obtained significantly higher immunophenotypic scores. Finally, the relationship between the ICI
score and tumor mutation burden (TMB) was proven. Conclusion. This study fully clarified the indispensable role of the ICI
model in the complexity and diversity of TIME. The quantitative identification of ICI patterns in a single tumor will help draw
the picture of TIME and further optimize precision immunotherapy.
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1. Introduction

Non-small-cell lung cancer (NSCLC) is the world’s most deadly
and fatal cancer [1, 2], with lung squamous cell carcinoma
(LUSC) accounting for roughly 20-25 percent of NSCLC cases
[3]. Viable genomic mutations have completely changed the
treatment paradigm for lung adenocarcinoma (LUAD). Due
to the presence of operable oncogenes in 20%-60% of patients
with LUAD, many patients choose targeted therapy as an
option, resulting in improved clinical outcomes. In contrast,
fewer manipulable oncogenes are defined in LUSC, which pose
a greater challenge for the treatment of LUSC [4, 5].

Tumor immunotherapy has revolutionized the way LUSC
is treated. The employment of antitumor immune responses
to locate and destroy tumor cells by activating the host’s
immune system is known as immunotherapy. In recent years,
a series of studies of immunotherapy for advanced squamous
cell carcinoma of the lung have changed clinical practice guide-
lines. Based on studies such as KEYNOTE-024, KEYNOTE-
042, and KEYNOTE-407, the 2020 CSCO guidelines recom-
mend pembrolumab as a single agent (PD-L1 TPS ≥ 50% only)
and pembrolumab in combination with paclitaxel and platinum
for the first-line treatment of advanced squamous cell carci-
noma of the lung. The RATIONALE 307 study, the CameL-
sq study, the orientation -12 study, and IMpower110, all con-
ducted by domestic scholars, have shown that immunotherapy
has better safety and prognosis compared with conventional
radiotherapy [6–9]. Furthermore, there is mounting evidence
that immune infiltration in the TIME is a factor in LUSC prog-
nosis prediction [10–12]. As a result, the autoimmune cell infil-
tration (ICI) profiling approach divides LUSC samples into
molecular-specific subgroups according to ICI patterns, allow-
ing for more personalized treatment and better therapeutic
effects. However, there have been no studies that look at the full
context of ICI pattern-mediated LUSC.

The GSE17710 and GSE157010 datasets, as well as genomic
and transcriptome data from 792 LUSC samples from the
TCGA-LUSC project, were employed to synthesize the possible
interaction of the ICI pattern with the TIME context. The
CIBERSORT algorithm, ssGSEA technique, and ESTIMATE
algorithm were utilized to map the TIME landscape using the
LUSC genomic data. Four separate subtypes of ICI patterns
were identified using a consensus clustering approach. In addi-
tion, to identify ICI patterns in individual samples and evaluate
immunotherapy response, an ICI-based scoring scheme was
developed. Predicting immunotherapy response in various ICI
scored samples will also provide promising insights for
improved precision immunotherapy. Finally, the intrinsic rela-
tionship and synergistic effects between ICI scores and tumor
mutation load (TMB) were demonstrated. In conclusion, our
findings suggest that the ICI models play an inseparable role
in shaping the diversity and complexity of TIME and help to
tailor immunotherapy strategies for LUSC.

2. Materials and Methods

2.1. LUSC Datasets and Samples. A total of 792 LUSC sample
datasets were procured from publicly available datasets
(TCGA-LUSC from TCGA database, GSE17710 and

GSE157010 from Array Express database), patient’s infor-
mation is shown in Table S1. The TCGA-LUSC gene-
expression profiles were received in the Fragments Per
Kilobase per Million (FPKM) format from the TCGA site
(http://cancergenome.nih.gov) and then converted into
TPMs (transcripts per kilobase million). GSE17710 is a
GEO dataset of 56 patients with lung squamous cell
carcinoma confirmed by postoperative pathology. The
overall design was RNA from tumors and a common
reference were hybridized to Agilent two-color microarrays,
see https://www.ncbi.nlm.nih.gov/bioproject/PRJNA118343
for more information. And the GSE157010 is a GEO dataset
of 235 patients with lung squamous cell carcinoma confirmed
by postoperative pathology. The overall design was total RNA
from squamous cell carcinoma specimens were extracted for
mRNA profiling with microarray analysis, see https://www
.ncbi.nlm.nih.gov/bioproject/PRJNA659803 for more
information. To limit the possibility of batch effects induced
by non-biotechnology differences across various data sets, the
“ComBat” algorithm [13] is utilized.

2.2. Clustering of Tumor-Infiltrating Immune Cells by
Consensus. Gene expression data from the TCGA and
GEO cohorts was processed with the CIBERSORT program
(http://cibersort.stanford.edu/) to generate a fraction matrix
for ICI, which evaluated the abundance of 22 different leu-
kocyte subpopulations [14]. The expression data (ESTI-
MATE) method [15] uses unique aspects of transcription
profiles to infer tumor cell shape and tumor purity in stro-
mal and immune cells in malignant tumors. ESTIMATE,
immune, and stromal scores were generated using the ESTI-
MATE approach to predict amounts of infiltrating immune
and stromal cells, which are used to infer tumor purity. In
addition, based on the expression levels of 29 immune-
related features, single-sample gene set enrichment analysis
(ssGSEA) was done using the R package “GSEABase.” In this
study, the unsupervised clustering “PAM” approach based
on Euclidean and Ward’s linkage was applied, with the
“ConsensusClusterPlus” R package [16] being used to assure
classification stability.

2.3. DEGs and Enrichment Analysis in Inter-ICI Clusters. The
data are classified into ICI subgroups using the prior consen-
sus clustering approach, and the genes associated with the
ICI pattern are identified. Then, in these ICI patterns, use
the “limma” R package to find the differentially expressed
genes (DEGs) linked with ICI. DEGs with an adjusted P value
less than 0.05 and an absolute multiple change more than 1.5
were considered to be significant and used in further research.
Gene Ontology (GO) annotations were used to further under-
stand the biological role of DEG.

2.4. Dimension Reduction and ICI Score Generation. The
DEG value is utilized to classify TCGA patients using the
unsupervised clustering approach, and the DEG values that
are positively and negatively correlated with the cluster sig-
nature are referred to as ICI gene signatures A and B, respec-
tively. The ICI gene signatures A and B are reduced in
dimensionality using the Boruta technique, and the principal
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component 1 is extracted as the signature score using PCA.
To determine each patient’s ICI score, we employ an
approach comparable to the gene expression grading index:
ICI score = ΣPC1A − ΣPC1B.

3. Results

3.1. The Immuno-Cell Infiltration Landscape in LUSC’s TIME.
To measure the activity or enrichment levels of immune cells
in LUSC tumor tissues, we employed the CIBERSORT and
ESTIMATE algorithms (Tables S2 and S3) [14, 15]. Based on
792 immune cell infiltration (ICI) signature-matched tumor
samples from the metacohort (array expression databases:
GSE17710 and GSE157010; TCGA-LUSC (Cancer Genome
Atlas)). To classify LUSC patients into distinct subgroups,
unsupervised clustering was performed using the R program
ConsensusClusterPlus.

We discovered that k = 4 had the optimum clustering sta-
bility based on the ICI profiles’ similarity. Significant clustering
was identified by the increasing trend of the cumulative distri-
bution function (CDF) values (Figures S1A–S1G). Model C1
(304 samples), model C2 (323 samples), model C3 (74
samples), and model C4 (91 samples) were the four ICI

models identified using unsupervised clustering. The
integrated heat map investigated and documented the link
between the ICI models and clinical traits (Figure 1(a)). The
Kaplan-Meier survival study of the four ICI models revealed
that ICI clusters C2 and C4 had a considerable advantage in
median survival time, whereas ICI cluster C1 had the worst
prognosis (see Figure 1(b) for P values between the clusters).
We provide a connection to depict the entire picture of TIME
to further reveal the probable association between
immunological scores and invading immune cells
(Figure 1(c)). We analyzed the immune cell composition of
TIME to learn more about the intrinsic biological distinctions
that rise to diverse clinical presentations. ICI clusters C2 and
C4 were shown to be related with a favorable prognosis
among the four major immunological subtypes. They were
characterized by a large infiltration of memory-activated CD4
T cells, CD8 T cells, follicular helper T cells, resting dendritic
cells (DCs), M1 macrophages, activated mast cells, and
activated NK cells. Patients with ICI cluster C3 were
characterized by a significant density of naive B cells,
memory-dormant CD4 T cells, M0 and M2 macrophages,
dormant NK cells, and plasma cells. ICI cluster C1 patients
were characterized by a significant increase in memory B cells,
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(d)

Figure 1: The immune cell infiltration landscape in the TIME context. (a) In LUSC patients, unsupervised clustering of tumor-infiltrating
immune cells. (b) Kaplan-Meier curves for all LUSC patients in separate ICI clusters for overall survival (OS). (c) The infiltrating immune
cell subpopulation, immune score, and stromal score in four ICI clusters. (d) The intrinsic link between infiltrating immune cells and
immune scores. (∗P < 0:05; ∗∗P < 0:01; ∗∗∗ P < 0:001; ∗∗∗∗ P < 0:0001).
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γ-T cells, and neutrophils. Stromal score were significantly
higher in the C3 group than in the C2 and C4 groups. In
addition, heat maps of correlation coefficients were generated
to visualize the general picture of immune cell interactions in
TIME (Figure 1(d)).

We also evaluated the expression levels of six critical
immune checkpoint blockade- (ICB-) related genes in the
four ICI clusters, including CTLA4, IDO1, PD1, TIM3,
PD-L1, and PD-L2. These results suggest that there may be
differences in the selection of optimal ICB targets by differ-
ent ICI clusters. For C2 and C4, CTLA-4, PD-L1, IDO1,
and TIM3 seem to be more suitable, and for C3, CTLA4
may be more appropriate. As for C1, they seem to benefit
from all these targets. (Figure 2).

3.2. Identified Immune Gene Subtype. We did not combine
the TCGA database and the GEO database due to the differ-
ent data contexts of these two databases. In the subsequent
analysis, the main focus was on the TCGA-LUSC cohort,
which had the largest number of patients and the most
detailed clinical information in this study. Using the limma
package, we identified 2168 DEGs, which are regarded as

critical indicators to identify distinct ICI symptoms, to
investigate potential transcriptional expression alterations
linked with ICI in diverse ICI patterns (Table S4).
Unsupervised cluster analysis was used to classify the data
into different transcriptome phenotypes (gene clusters A
and B; Figures S2A–S2F) based on the 2168 most typical
ICI phenotype-associated genes found, in order to better
understand the underlying molecular mechanisms. There
were 1131 DEGs with ICI-A gene signature positively
associated with this gene cluster, and 1037 DEGs were
introduced into the ICI-B gene signature (Table S5). The
genetic differences between these genotypes were visualized
using a heat map (Figure 3(a)). Kaplan-Meier curves were
utilized for survival analysis to evaluate the prognostic
value of ICI gene clustering. Although there was no
statistically significant difference between the two gene
clusters (P = 0:19; Figure 3(b)), the A gene cluster‘s mean
survival time was longer than the B gene cluster’s. The
ESTIMATE algorithm and the CIBERSORT approach were
utilized to estimate the relative subpopulation of
infiltrating immune cells to elucidate the probable role of
distinct gene clusters in TIME. Gene cluster A was strongly
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Figure 2: A comparison of ICB-relevant critical genes from different ICI clusters. CTLA4 (a), PD1 (b), PD-L1 (c), PD-L2 (d), IDO1 (e), and
TIM-3 (f) expression levels in patients from different ICI clusters. The asterisks represented the statistical P value. (∗P < 0:05; ∗∗P < 0:01;
∗∗∗ P < 0:001; ∗∗∗∗ P < 0:0001).
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Figure 3: Subtypes of immunogenic genes are created. (a) Unsupervised clustering of common DEGs across three ICI cluster groups to
divide patients into two subgroups: gene cluster A and B. (b) Analysis of overall survival in patients with two ICI-relevant signature
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associated with memory B cells, CD4 memory-activated T
cells, CD8 T cells, follicular helper T cells, DCs activation,
eosinophils, M1 macrophages, mast cell dormancy, and
NK cell activation, corresponding to the active immune
phenotype [17, 18]. In contrast, gene cluster B shows
increased infiltration of naive B cells, CD4 memory
dormant T cells, Treg, M0 and M2 macrophages, and NK
cell dormancy, termed the immunosuppressive phenotype
[19, 20]. Gene cluster A, for example, had a higher
immune score, implying an immunologically “hot”
phenotype (Figure 3(c)). We discovered that the ICI
signature gene A is enriched in the immune response-
activating surface receptor signaling pathway, which
appears to correspond with the “hot” immunophenotype,
by exploring and showing the biologically meaningful
enrichment using GSEA analysis (Figures 3(d) and 3(e)).

Furthermore, in addition to PD-1 and PD-L1, the
expression levels of ICB-related genes were significantly dif-
ferent across the two gene clusters (Figures 4(a)–4(f)). When
compared to the ICI-B gene cluster, the ICI-A gene cluster
dramatically boosted the expression levels of ICB-related

genes, suggesting that the ICI-A gene cluster might benefit
from immunotherapy.

3.3. Validation of the ICI Score in Lung Squamous Cell
Carcinoma. Although the potential role of the ICI models
in prognostic prediction and TIME information was found,
the above analysis was performed only for the sample popu-
lation and could not be performed accurately in individuals.
To form quantitative indicators of ICI and use them for indi-
vidual evaluation, we developed a scoring system called ICI
score based on these characteristic genes associated with
the ICI phenotype. Two composite scores were calculated
using principal component analysis (PCA): [1] ICI score A
(ISA) from signature gene A and [2] ICI score B (ISB) from
signature gene B. The total and individual correlation of the
individual accomplishment scale were used to determine the
ICI scores and characteristics for each patient in this investi-
gation (Table S6). Finally, we obtained prognostic
characteristic scores, defined as ICI scores. Patients in the
TCGA cohort were separated into two groups based on the
best cut-off values achieved using the X-tile software: a
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Figure 4: A comparison of ICB-relevant important genes from different ICI gene clusters. CTLA4 (a), PD-1 (b), PD-L1 (c), PD-L2 (d),
IDO1 (e), and TIM-3 (f) expression levels in patients from different ICI gene clusters. (∗P < 0:05; ∗∗P < 0:01; ∗∗∗ P < 0:001; ∗∗∗∗ P <
0:0001).
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high and a low ICI score group. The distribution of patients
in the two gene clusters is represented by Sankey plots
(Figure 5(a)).

The predictive significance of the ICI score in predicting
overall survival was established by categorizing patients as
having a high or low ICI score. As expected, survival was sig-
nificantly poorer in the low-ICI score group than in the
high-ICI score group (P = 0:039, Figure 5(b)); in patients
with high ICI scores, the leukocyte transendothelial migra-
tory signaling pathway was significantly active (Figure 5(c)).

3.4. Correlation of ICI Score and TIME Context in the
Prognosis of Squamous Lung Cancer. We looked into how
ICI scores might contribute to the complexities of the TIME.
First, patients with low ICI scores had considerably higher
stromal, immunological, and projected scores than those
with high ICI ratings (Figure 6(a)). The results showed that
patients with high ICI scores were significantly stronger in
dendritic cell activation, mast cell resting, and NK cell acti-
vation than those with low ICI scores. In contrast, plasma
cell expression was higher in patients with low ICI scores
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Figure 5: The ICI scores are being developed. (a) Sankey diagram illustrating the distribution of ICI gene clusters in subgroups with
different ICI clusters, ICI scores, and survival status. (b) Kaplan-Meier curves for the TCGA-LUSC cohort’s high and low ICI score
groups. (c) Enrichment plots demonstrating that in patients with high ICI scores, the leukocyte transendothelial migratory signaling
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(Figure 6(b)). ssGSEA data revealed that immature B cells
and B cell activation were considerably higher in patients
with a low ICI score than in patients with a high ICI score,
although natural killer T cells were the reverse (Figure 6(c)).

The heat map depicts the immunological enrichment for
each patient in the low-/high-ICI score subgroup
(Figure 6(d)). Based on these findings, we discovered substantial
disparities in ICI phenotypes among the various ICI score sam-
ples. Subjects with low ICI scores expressed more immune cells
than patients with high ICI scores, indicating an immune acti-
vation profile that may have an immunotherapeutic advantage.

3.5. Correlation between ICI Score and Immunotherapy and
Construction of Prognosis Nomogram.We assessed the toler-
ance status and immune activity of the low-/high-ICI score
subgroup. Analysis of the expression levels of ICB-related
genes and inflammatory genes [21, 22] was shown in
Figure 7(a). In patients with low ICI score, the expression
levels of 13 genes related to immune activity and tolerance
conditions were significantly upregulated (P < 0:001).

In addition, six ICB key target genes (PD-1, PD-L1, PD-
L2, CTLA-4, TIM-3, and IDO1) were associated with ICI
scores to reveal their potential role in ICB therapy for LUSC
(Figure 7(b)). We found a significant negative correlation
between ICI score and these six targets, suggesting that ICI
score may play a significant role in predicting the response
to ICB therapy in LUSC patients.

To predict the outcome of immunotherapy under ICI
score, we used two subtypes of IPS values as substitutes for
the immunotherapy response of LUSC patients (Table S7).
In our prediction protocol, samples with low ICI scores
had higher IPS-CTLA4_negative-PD-1_positive and IPS-
CTLA4_positive-PD-1_positive scores (all P < 0:001;
Figure 8(a)), indicating that LUSC samples with low ICI
values may be suited for immunotherapy.

Meanwhile, using the stepwise Cox regression model, we
created prognostic nomograms for OS prediction at 1, 3, and
5 years. We created a predictive nomogram comprising of
ICI score to quantitatively determine the OS rate of individ-
ual patients (Figure 8(b)).
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Figure 6: Correlation between ICI score and TIME characterization. (a) The ESTIMATE algorithm (estimate score, stromal score, and
immune score) was compared among patients with varied ICI scores. (b) Infiltrating immune cell subgroups and levels differ across
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3.6. The Correlation between the ICI Scores and Tumor
Mutation Burden. Previous research has found a link between
high tumor burden mutations (TMB) and an increase in infil-
trating CD8+ T lymphocytes that detect tumor neoantigens,

resulting in a potent tumor-killing action that eliminates
tumor cells [23–25]. As a result, we hypothesized that TMB
may be used as a predictive factor for anticancer immunother-
apeutic response and set out to look into the possible
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Figure 7: The immunotherapeutic importance of ICI scores. (a) Expression of ICB-related genes (CTLA4, PD-1, PD-L1, TIM-3, and IDO1)
and inflammatory-related genes (CD8A, CXCL10, CXCL9, GZMA, GZMB, IFNG, PRF1, and TBX21) in high and low ICI score subgroups.
There is a link between the ICI score and key immune checkpoint blockage genes. (b) Correlation analysis of immune checkpoint inhibitors
with the ICI score (CTLA4, PD-1, PD-L1, TIM-3, and IDO1). (∗P < 0:05; ∗∗P < 0:01; ∗∗∗ P < 0:001; ∗∗∗∗ P < 0:0001).

9Disease Markers



interaction between ICI score and TMB in order to uncover
genetic diversity in ICI score subgroups. First, TMB levels in
subgroups with low and high ICI scores were investigated.
We found that the subgroup with the lowest ICI score had
the highest TMB (P < 0:001, Figure 9(a)). TMB was found to
be significantly positively linked with ICI score (R = 0:16, P
< 0:001; Figure 9(b)) after further correlation analysis. The

patients were then separated into subtypes based on their
TMB immune setpoint, and we used the Kaplan-Meier analy-
sis to show that having a low TMB signifies having a better
chance of survival (P < 0:001,Figure 10(d)). We verified the
synergistic effect of the two indicators in the prognosis predic-
tion of LUSC to further explore the validity of the ICI score
with the consistent prognostic importance of TMB. As shown
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Figure 8: The estimation of the ICI score in immunotherapy response. (a) IPS-CTLA4_negative-PD-1_negative, IPS-CTLA4_negative-PD-
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by the stratified survival curve, the H-TMB+L-ICI score group
had the worst outcomes, the L-TMB+H-ICI score group and
the L-TMB+L-ICI score group had better prognosis, and the
H-TMB+H-ICI group was in between (see Figure 9(c) for P
values between the combined groups). Taken together, our
findings imply that the ICI score could be used to assess the
clinical success of antitumor immunotherapy as a significant
prognostic predictor.

We also examined how somatic variations in LUSC driver
genes differed between low and high ICI subsets. Using maf-
tools [26] to access LUSC driver genes, the top 20 most often
changed driver genes were further investigated (Figure 10).
The altered frequencies of NFE2L2, TRIM51, and GOLGB1
were most significantly different between the low- and high-
ICI score groups, according to mutation annotation data.
These findings could lead to new insights into the mechanism
of tumor ICI composition and gene mutation in the context of
immune checkpoint blockade therapy.

4. Discussion

Immunotherapy is widely used to treat patients with non-
small-cell lung cancer (NSCLC), and multiple standard of care
(SOC) regimens have been approved for locally advanced and

metastatic disease [27]. Early immunotherapy studies in non-
small-cell lung cancer evaluated the efficacy of PD-L1 single-
agent blockade therapy in previously treated advanced NSCLC
and showed greater effectiveness than standard docetaxel che-
motherapy. Thus, based on the results of a series of clinical
studies, nivolumab, pembrolizumab, and atezolizumab were
conditionally approved for the treatment of non-small-cell
lung cancer [28–31], ushering in an era of immunotherapy
for lung cancer and the attendant management challenges
associated with immune-mediated toxicity [32, 33]. The tradi-
tional treatment for lung squamous cell carcinoma is chemo-
radiotherapy. The four commonly used chemotherapy drugs,
gemcitabine, paclitaxel, docetaxel, and vinorelbine, are
selected in combination with platinum, which is commonly
used cisplatin and carboplatin. But overall, chemotherapy is
relatively insensitive to lung squamous cell carcinoma. Nowa-
days, doctors also recommend sensitive gene testing for tar-
geted drugs for patients with lung squamous cell carcinoma.
Although the mutation rate of EGFR, ALK, and ROS genes
in lung squamous cell carcinoma is low, less than 10%, there
are still a few patients with mutant targets who can benefit
from targeted drugs. It is an option for patients who cannot
tolerate chemotherapy. In addition, immunotherapy plays a
great role in lung squamous cell carcinoma. Among the lung
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cancer treated by nivolumab and pembrolizumab, lung squa-
mous cell carcinoma has the best effect. Multiple clinical trials
have confirmed that the effect of nivolumab and pembrolizu-
mab in the treatment of lung squamous cell carcinoma is sig-
nificantly better than chemotherapy, and the short-term death
risk of patients is greatly reduced and the survival time is pro-
longed. The US FDA has approved pembrolizumab as a
single-agent first-line treatment for patients with stage III or
metastatic non-small-cell lung cancer who have PD-L1
expression ≥1% and no EGFR or ALK mutations. Multiple
studies have shown that immunotherapy combined with che-
motherapy has the opportunity to become the treatment of
choice for patients with advanced lung squamous cell carci-
noma, regardless of PD-L1 expression or TMB level. However,
a notable limitation of immunotherapy is that only a minority
of patients benefit from it. Even the Cancer Immunotherapy
Association emphasizes that patients should be identified as
candidates for immunotherapy. We developed a method to
evaluate the integrated TIME of LUSC in this work. The ICI
score appears to be a reliable predictive biomarker and predic-
tor of immunotherapy response, according to our findings.

Here, our findings show that increased infiltration of
activated CD4 T cells, CD8 T cells, follicular helper T cells,
resting dendritic cells (DCs), M1 macrophages, activated
mast cells, and activated NK cells is significantly associated
with better overall survival. This shows that immune activity
levels influence the clinical outcome of immunological ther-
apies in the opposite direction of tumor growth. However,
due to the heterogeneity of LUSC, a series of clinical investi-
gations of immunotherapy for LUSC found disparities in
objective response rates (ORR) and long-term survival
[27], implying that immunophenotypes cannot correctly
determine the outcome of immunotherapy.

Furthermore, we evaluated the ICI profiles of 792 LUSC
patients from the combined TCGA-LUSC, GSE17710, and
GSE157010 cohorts, and then used consensus clustering to
divide these samples into four separate ICI subgroups. Var-
ied immunophenotypes with different anticancer immune
profiles are linked to the four different ICI patterns. The
immunological rejection phenotype of ICI-C3 is character-
ized by a substantial invasion of quiescent immune cells rich
in matrix components [34].

The ability of the host to participate in an antitumor
immune response is determined by a variety of cytokines,
chemokines, and other TIME components, according to
LUSC’s molecular research. We believe that the ICI profile
and immune-related gene expression profile of patients with
a combination of phenotypes would be a novel approach to
specific therapeutic strategies, as these molecules in the
altered process may interfere with aggressive cell signaling
between immune cells, thus altering the balance among host
defense and immune activity, and we believe that the ICI
profile and immune-related gene expression profile of
patients with a combination of phenotypes would be a novel
approach to specific therapeutic strategies. Our main goal is
to characterize the LUSC-TIME-regulated immune system
at the molecular level; thus, we started by extracting
immune-related genes from prior and novel ICI gene clus-
ters. Among these gene clusters, ICI gene cluster B was
found to have the lowest immune score and a higher matrix
score, suggesting the presence of an immune hypothermic
phenotype. In contrast, ICI gene cluster A had a higher
immune score and inflammatory cell density. In addition,
high stromal scores were observed to be associated with
increased macrophage M0 and NK cell infiltration located
in ICI gene cluster B, suggesting the presence of a humoral
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immune response in the gene cluster [18]. In addition, ICI
gene cluster A had a favorable immune activation phenotype
with the highest density of CD8+ T cells and activated CD4+
T cells [35]. We expected that individuals with ICI gene clus-
ter A would benefit from immunotherapy since their antitu-
mor immune response was associated with a positive
prognosis. Our findings are consistent with earlier research,
implying that the gene clusters identified in this work could
lead to the creation of more specific immunotherapy.

Given the diversity of the individual immunological
milieu, quantifying the ICI models for individual malignan-
cies is very relevant. In breast cancer, esophageal cancer, and
the head and neck squamous cell carcinoma, the individual-
based models based on tumor subtype-specific biomarkers
have been well established to improve prognostic prediction
[36–38]. In this study, we established an ICI score to quan-
tify the ICI pattern. By GSEA, we found that genes of
immune activation pathways such as the leukocyte transen-
dothelial migration signaling pathway were significantly
enriched in the group with high ICI scores. In addition, we
found that TMB was significantly lower in patients with
lower ICI scores who were more sensitive to immunother-
apy. The correlation between ICI score and TMB was 0.16.

We used the CIBERSORT, ESTIMATE, and ssGSEA
algorithms to examine ICI patterns among subgroups with
low and high ICI scores to further investigate the impact of
ICI scores in TIME diversity and complexity. ICI scores
were strongly positively linked with practically all immune
cell infiltration, immunological scores, and immune-related
markers, implying that ICI scores may be an indicator of
immune activity. In addition, we verified that ICI scores
were significantly positively correlated with key targets of
ICB treatment (CTLA-4 and PD-1), suggesting that high
ICI scores may be more sensitive to immunotherapy, while
the opposite is true for PD-L1. Similarly, immunophenotype
scores were upregulated, with Ips-CTLA4_negative-PD-1_
positive, and Ips-ctla4_positive-pd-1_positive being higher
in samples with lower ICI scores, considering that LUSC
samples with lower ICI scores may be suitable for immuno-
therapy. These findings suggest that the ICI models may
provide new insights into predicting ICB treatment out-
comes in LUSC patients. We were unable to investigate the
link between ICI scores and ICB immunotherapy response
in the LUSC cohort due to the lack of an ICB treatment
dataset. However, these findings will need to be confirmed
in a broader cohort and at multiple centers.

Currently, some clinical data suggest an association
between genetic alterations and immunotherapeutic
response [39, 40]. The TMB (a predictor of immunotherapy
sensitivity) was calculated and determined, and it rose con-
siderably with the ICI score. In this study, we found that
NFE2L2 and GOLGB1 had significantly higher mutation
rates in subtypes with low ICI scores, while TRIM51 had
increased mutation rates in patients with high ICI scores,
which may provide a new target for ICB therapy. Differences
in the distribution driven by mutations associated with ICI
scores were significantly associated with antitumor immu-
nity, highlighting the complex interaction between ICI pat-
terns and somatic mutations in regulating the tumor

immune genome complex interactions between ICI patterns
and somatic mutations in regulating the tumor immune
genome. Following that, stratified survival curves revealed
that ICI scores have predictive power independent of TMB,
implying that TMB and ICI scores are different components
of immunology. Combined ICI score and TMB subgroup
analysis showed that the H-TMB+L-ICI score group had
the worst prognosis and the L-TMB+H-ICI score and L-
TMB+L-ICI score groups had a better prognosis. Further-
more, at the genomic level, the ICI score paired with muta-
tion data revealed significant variations in gene variation
rates between low- and high-ICI score groups.

In summary, the complexity and heterogeneity of the
tumor immune microenvironment is an important basis
for regulating antitumor immunity and is analyzed compre-
hensively using a unique ICI model. A comprehensive
assessment of ICI patterns in individual tumors will provide
new insights to describe the TIME picture and guide precise
immunotherapy strategies.
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tering. (E) The relative change in area under the CDF curve
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