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Objective. This study is aimed at investigating the regulating mechanisms of the interferon regulatory factor (IRF) family genes in
head and neck squamous cell carcinoma.Methods. Based on the HNSC data in the ‘The Cancer Genome Atlas (TCGA)’ database,
the expression pattern of IRF family genes was investigated. The association of IRFs family genes and survival outcomes were
analyzed by Kaplan–Meier plotter web portal. The relation of IRF genes and tumor stages was evaluated by using stage plots
and based on GEPIA portal. 50 genes interacting with IRFs were identified using the NetworkAnalyst’s protein-protein
interaction (PPI) network construction tool. The top 200 correlated genes with similar expression patterns in HNSC were
obtained by the similar gene detection module of GEPIA. Furthermore, functional enrichment analysis was performed to
determine the biological functions enriched by the interacting and correlated genes. The potential implication of IRFs in tumor
immunity was investigated in terms of tumor-infiltrating immune cells, a pair of immune checkpoint genes (CD274 and
PDCD1), and ESTIMATE-Stromal-Immune score. Results. The unpaired sample analysis shows that all of the IRF family genes
were highly expressed in HNSC tumor samples compared to control samples. The survival analysis results showed that the
overexpression of IRF1, IRF4, IRF5, IRF6, IRF8, and IRF9 was associated with better overall survival in HNSC, while the other
IRFs genes (IRF2, IRF3. and IRF7) did not show prognostic values for overall survival outcome of HNSC. Four genes (STAT1,
STAT2, FOXP3, and SPI1) were overlapping among 50 interacted genes in the PPI network and top 200 correlated genes
identified by GEPIA. The 50 interacting genes in the PPI network and top 200 correlated genes were integrated into 246 genes.
These 246 genes were found to be overrepresented in multiple KEGG pathways, e.g., Th17 cell differentiation, T cell receptor
signaling pathway, cytokine-cytokine receptor interaction, natural killer (NK) cell-mediated cytotoxicity, FOXO signaling,
PI3K-Akt signaling, and ErbB signaling. Most correlations between IRF gene members and TIICs were positive. The strongest
positive correlation was identified between IRF8 and T cells (r = 0:849, p < 0:001). The majority of correlation between IRF
family genes and ESTIMATE-Stromal-Immune score was found to be positive. The highest positive correlation was found to
be between IRF8 and Immune score (r = 0:874, p = 1:09E − 158). Most correlations between IRFs and two immunoinhibitor
genes (CD274 and PDCD1) were positive. IRF1 and PDCD1 were found to show the highest positive correlation (r = 0:764, p < 2:2
e − 16). Conclusions. The current analysis showed IRFs were differentially expressed in HNSC, indicated significant prognostic
values, were involved in tumor immunity-related signaling pathways, and significantly regulated tumor-infiltrating immune cells.
IRF family genes could be potential therapeutic biomarkers in targeting tumor immunity of head and neck cancer.

1. Introduction

Interferon regulatory factors (IRFs) are well-known to be
transcription factors involved in the regulation of interferon

genes [1]. The interferon regulatory factor (IRF) family in
mammals consists of nine members: IRF1, IRF2, IRF3,
IRF4, IRF5, IRF6, IRF7, IRF8, and IRF9 [2]. Interferon reg-
ulatory factors (IRFs) are required for the activation of
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innate immune responses in response to pathogens and the
subsequent induction of adaptive immunological responses
[3]. It is believed that dysregulation of IRF signaling has a
key role in the pathogenesis of autoimmune diseases, due
to its inappropriate regulating role in immune cell activation
and differentiation [3]. Although it was originally believed
that IRFs function largely in the immune system by contrib-
uting to innate immune response, recent discoveries based
on increasing evidence have revealed that IRFs play key roles
in the governing oncogenesis [4–6]. Several outstanding and
detailed reviews [4–6] have examined the role of IRFs in
immunological disorders and malignancies in detail. They
concluded that IRFs are placed at the nexus of immunity
and cancer, connecting the processes governing both.

Increasing evidence has shown the role of IRF family
genes in activating antitumor immunity and inhibiting
immunosuppression. IRF1 was found to regulate C-X-C
motif chemokine 10 (CXCL10)/chemokine receptor 3
(CXCR3) signaling axis, thereby further activating antitu-
mor immunity in hepatocellular carcinoma (HCC). IRF4
was found to negatively regulate the development of
myeloid-derived suppressor cells (MDSC) and its immuno-
suppressive function in tumors [7]. In addition, IRF family
genes were found to be implicated in the antitumor immu-
nity by controlling the differentiation and maturation pro-
cess of tumor-associated immune cells including dendritic
cells, NK cells, B lymphocytes, and T lymphocytes. For
instance, IRF8 was shown to suppress tumor progression
by inducing the maturation and differentiation of antigen-
presenting cells (APCs) (e.g., MФ, DCs, and B lymphocytes)
[8]. IRF4 was found to regulate the apoptosis of B lympho-
cytes by targeting the Fas apoptosis inhibition molecule
[9]. Based on all this evidence, IRF family genes should
be regarded as key mediators in regulating tumor immu-
nity and thus might provide potential strategies in cancer
immunotherapy.

Squamous cell carcinoma of the head and neck (HNSC)
is the sixth most prevalent type of cancer worldwide, with a
5-year survival rate of less than 50% [10]. Previous studies
demonstrated that IRF family genes were aberrantly
expressed and also identified as diagnostic and prognostic
markers in various hematological malignancies such as colo-
rectal cancer [11], breast cancer [12], pancreatic cancer [13],
and gastric cancer [14]. However, the effect of IRF family
genes remains largely unclear in HNSC. The roles of IRFs
in HNSC have not yet been investigated by using a system-
atic approach such as bioinformatics analysis. To the best
of the authors’ knowledge, this is the first study to examine
the prognostic value and regulatory role of IRF4 especially
focusing on immunity involvement.

The link between IRF family gene mRNA expression and
clinical features of HNSC patients was studied using geno-
mic and clinical data from The Cancer Genome Atlas
(TCGA) database. Furthermore, the significant value of
IRF family genes in HNSC prognosis was evaluated. In addi-
tion, functional enrichment analysis was used to determine
IRF4’s putative biological functions in HNSC. More impor-
tantly, the relationship between IRF4 and immunity was
evaluated from several significant aspects including TIICs

(tumor-infiltrating immune cells), a pair of classic immune
checkpoint genes comprising of a receptor and its ligand
(PD1 and PDL1), as well as the tumor microenvironment.
The current research on IRFs may give a theoretical founda-
tion for their mechanistic roles in tumor formation and
immunology, as well as guidelines for medication therapy
selection.

2. Methods

2.1. Study Design of the Present Research. Figure 1 used a
flowchart to show the study design of the current research.
Firstly, the genetic mutation, mRNA expression, protein
expression, relation to tumor stages, and prognostic values
of IRF family genes in HNSC were investigated. Afterwards,
the interacted genes and correlated genes of the IRF family
genes were, respectively, identified. After integrating the
interacted and correlated genes, this group of genes were
used for the functional enrichment analysis. More impor-
tantly, tumor immunity involvement of IRFs in HNSC was
analyzed by investigating three aspects including tumor-
infiltrating immune cells, two classic immunoinhibitory
genes, and ESTIMATE-Stromal-Immune score.

2.2. cBioPortal Analysis. The cBioPortal (https://www
.cbioportal.org/) for Cancer Genomics is a free and open-
source software platform that allows users to easily visualize
and analyze genomic datasets on cancer at a large scale. The
present study included results from 3 published HSNC stud-
ies: [1] TCGA, Nature 2015: 279 tumor samples; [2] TCGA,
Firehose Legacy: 530 tumor samples; and [3] TCGA, Pan-
Cancer Atlas: 523 tumor samples. The cBioPortal analysis
tool (version v1.11.3) was used to summarize the probable
genetic changes of the nine IRF family genes in HNSC.

2.3. Unpaired and Paired Sample Analyses. The HNSC (head
and neck squamous cell carcinoma) project retrieved RNA-
seq data in level 3 HTSeq-FPKM format from the TCGA
(URL: https://portal.gdc.cancer.gov/) database. The FPKM
(fragments per kilobase per million) format of the RNAseq
data was translated to TPM (transcripts per million reads)
and log2 transformed. The current study contained 546
samples, 502 of which were HNSC tumor samples and 44
of which were healthy control samples. The mRNA expres-
sion of nine IRF family genes was examined and shown in
TCGA-HNSC data using the R package ggplot2. We con-
ducted both unpaired and paired sample analyses.

2.4. Receiver Operating Characteristic (ROC) Curve Analysis.
Receiver operating characteristic (ROC) analysis is a widely
used technique in clinical epidemiology for evaluating the
effectiveness of diagnostic tests for binary classification
based on the distribution of tumor markers. The area under
curve (AUC) value is a frequently used as an indication of
test accuracy. A ROC plot running through the upper left
corner indicates perfect discrimination, showing 100 percent
sensitivity and 100 percent specificity. The closer the receiver
operating characteristic plot is to the upper left corner, the
greater the AUC, and the test is generally more accurate.
The quantitative value for the AUC to segregate the quality
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of a classifier is as follows: AUC: 0.9-1 denoting excellent;
0.8-0.9 denoting very good; 0.7-0.8 denoting good; 0.6-0.7
denoting average; and 0.5-0.6 denoting poor. The diagnostic
value of each IRF mRNA expression in HNSC was evaluated
by plotting the ROC curve.

2.5. Correlation Analysis of IRF Family Genes. To determine
the association between each pair of IRF family genes, a
Pearson correlation coefficient (PCC) study was done. The
expression level of each IRF gene was determined in
TCGA-HNSC tumor samples. Between each pair, the r and
p values were determined. Following that, a heatmap was
created using the ggplot2 package (version 3.3.3) in the R
software (version 3.6.3).

2.6. Protein Expression of IRF Family Genes in Primary
HSNC Tumor Samples Compared with Healthy Control
Samples. As an integrated data-mining platform, UALCAN
(URL: http://ualcan.path.uab.edu/index.html) facilitates a
comprehensive analysis of the cancer transcriptome. This
web-based platform’s functionalities enable users to analyze
relative expression between tumor and normal samples for a
query gene or multiple genes. The International Cancer Pro-
teogenome Consortium (ICPC) datasets and the Clinical Pro-

teomic Tumor Analysis Consortium (CPTAC) data are used
by UALCAN to analyze protein expression. In addition, pro-
tein expressions are available for colorectal cancer, breast can-
cer, ovarian cancer, clear cell renal cell carcinoma, uterine
corpus endometrial carcinoma, gastric cancer, glioblastoma,
pediatric brain tumors, head and neck squamous cell carci-
noma, lung adenocarcinoma, lung squamous cell carcinoma,
liver cancer, pancreatic cancer, and prostate cancer. With
UALCAN, users can export gene and protein expression and
survival analysis results into graphical images that are
publication-ready in png, jpeg, and PDF formats. The protein
expression of IRF family genes in primary HNSC tumor sam-
ples compared with healthy control samples were analyzed in
this webserver, and the statistical significance was calculated.

2.7. Kaplan–Meier Plotter (KM Plotter) Database for Survival
Analysis. The KM plotter (http://kmplot.com/) was used to
determine the effect of 30 k genes on survival in 21 different
forms of cancer by using gene arrays, RNA sequencing, or
next-generation sequencing. The datasets were constructed
using data from GEO, EGA, and TCGA. The KM plotter
database contains information on the survival of 500
patients with HNSC. In the KM plotter online database,
the prognostic relevance of IRF family members were

Study flow chart
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Figure 1: The schematic illustration of this study.
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assessed. The Kaplan–Meier curves were used to determine
the link between target gene mRNA expression levels and
relapse survival rate (RFS) and overall survival (OS) rates
in the HNSC tumor group. The Kaplan–Meier survival
graphs were used to illustrate the results. Using an online
tool, the hazard ratio (HR) and 95% confidence interval
(CI) were calculated automatically. The mean standard devi-
ation is used to express the values for each group. When the
Log-rank test was applied, a p value of 0.05 was considered
statistically significant.

2.8. The Relationship between IRF Family Genes and Tumor
Stages. The expression DIY module of the web platform
Gene Expression Profiling Interactive Analysis (GEPIA)
(http://gepia.cancer-pku.cn) was used to plot gene expres-
sion by tumor stage, based on the TCGA clinical annota-
tion. The F test was used to determine the expression of
IRFs in various stages of HSNC tumors. The pathological
stage map was created by using GEPIA platform to com-
pare the expression of a certain IRF family member in
various stages of HSNC tissue. p < 0:05 was judged as sta-
tistically significant.

2.9. NetworkAnalyst Webtool Analysis. NetworkAnalyst
(URL: https://www.networkanalyst.ca/) is a visual analytics
platform for comprehensive gene expression profiling and
meta-analysis. Firstly, the organism was specified to be H.
sapiens (human), and Entrez ID of all IRF family genes were
uploaded: 3659, 3660, 3661, 3662, 3663, 3664, 3665, 3394,
and 10379. Secondly, generic protein-protein interactions
(PPI) was selected to be constructed based on the STRING
interactome database. The confidence score cutoff was set
as 900, and all the interactions required experimental evi-
dence. Afterwards, a network comprising of 59 nodes, 87
edges, and 9 seeds was built and viewed.

2.10. Similar Gene Detection Analysis. A similar gene detec-
tion module in the GEPIA webtool was used for identifying
genes that have a similar expression pattern with a gene sig-
nature (IRF1-9) in the HNSC cancer type. The top 200 cor-
related genes were identified according to the descending

order of the Pearson correlation coefficient (PCC) value.
According to the interpretation of the Pearson correlation
coefficients defined in the medicine area, jrj value: 0: none;
>0-0.3: poor; 0.3-0.6: fair; 0.6-0.8: moderate; >0.8: very
strong; and 1: perfect.t

2.11. Venn Diagram Analysis. In the previous steps, the 50
genes interacting with IRFs were identified by building a
PPI network by using NetworkAnalyst, and the top 200
genes highly correlated with the IRF gene signature were
identified by using the GEPIA webtool. A Venn diagram
webtool (URL: http://bioinformatics.psb.ugent.be/webtools/
Venn/) was used to identify the gene list which were over-
lapped between these two groups of genes. This tool is able
to calculate the intersections of list of gene elements. The
correlations between the overlapping genes and IRFs were
identified and shown in a heatmap.

2.12. Metascape Analysis. Metascape database (URL: https://
metascape.org) is able to combine functional enrichment
and gene annotation into a single integrated gateway,
leveraging over 40 separate knowledge bases. The IRFs-
interacted genes and IRFs-correlated genes were integrated
and the union genes of these two groups were obtained. This
gene list was uploaded in the Metascape webtool, and cus-
tom enrichment analysis was performed. Four functional
sets (GO biological processes (3683), GO molecular func-
tions (577), GO cellular components (391), and KEGG path-
ways (212)) were, respectively, selected.

2.13. Tumor-Infiltrating Immune Cell (TIIC) Analysis. Pear-
son correlation coefficient analysis was used to determine
the relationship between IRF family genes and tumor-
infiltrating immune cells in HNSC tumor samples. The sta-
tistical method used the ssGSEA algorithm from the GSVA
package (version 1.34.0). The lollipop plot was used to illus-
trate the link between the expression of IRFs and 24 different
types of TIICs in HNSC samples.

2.14. ESTIMATE-Stromal-Immune Score. An analysis was
carried out to analyze the correlation between IRF family
genes and tumor immune microenvironment (TIME).

Study of origin

IRF1

IRF2

IRF3

IRF4

IRF5

IRF6

IRF7

IRF8

IRF9

1.4%

4%

0.5%

1.7%

1.4%

1.9%

1.3%

1.1%

1.5%

Genetic alteration Missense mutation (unknown significance)

Splice mutation (putative driver)

Splice mutation (unknown significance)

Truncating mutation (putative driver)

Truncating mutation (unknown significance)

Amplification

Deep deletion

No alterations

Study of origin Head and neck squamous cell carcinoma (TCGA, firehose legacy)

Head and neck squamous cell carcinoma (TCGA, nature 2015)

Head and neck squamous cell carcinoma (TCGA, pancancer atlas)

Figure 2: Oncoprint plot shows the genetic alterations of 9 IRF family genes in HSNC.
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Researchers recently developed an algorithm for detecting
infiltrating stroma and immune cells based on gene expres-
sion signatures called ESTIMATE (Estimation of Stromal
and Immune Cells in Malignant Tumor Tissues Using
Expression Data). Based on the ESTIMATE algorithm, the

correlation between IRF family genes and ESTIMATE-
Stromal-Immune score were calculated in HNSC.

2.15. TISIB Webtool Analysis. TISIDB (http://cis.hku.hk/
TISIDB/) is a web-based comprehensive database for
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tumor-immune system interactions that incorporates a vari-
ety of data types. This web portal was used to investigate the
relations between two typical immunoinhibitor genes
(PDCD1 and CD274) and expression, copy number, methyla-
tion, or mutation of each specific IRF gene. The reason of
selecting these two genes is based on the fact that programmed
cell death-1 (PDCD1) and its ligand programmed cell death 1
ligand 1 (CD274/PDL1) have been established to implicated in
the T cell-mediated suppression of antitumor immunity.

3. Results

3.1. Genetic Alterations of IRF Family Genes in HNSC. The
OncoPrint plot was generated to analyze genetic alterations
(Figure 2). The distribution of each IRF family gene’s geno-
mic alterations in the TCGA HNSCC dataset is shown as
follows: IRF1 (1.4%), IRF2 (4%), IRF3 (0.5%), IRF4 (1.7%),
IRF5 (1.4%), IRF6 (1.9%), IRF7 (1.3%), IRF8 (1.1%), and
IRF9 (1.5%).
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Figure 4: The protein expression of all IRF family genes in head and neck squamous carcinoma. Z-values represent standard deviations
from the median across samples for the given cancer type. Log2 Spectral count ratio values from CPTAC were first normalized within
each sample profile and then normalized across samples.
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3.2. The Dysregulation of IRF Family Genes in HNSC. The
unpaired sample analysis was based on 546 samples contain-
ing 502 HNSC tumor samples and 44 healthy control sam-
ples. The results showed that the samples did not pass the
normality test (p < 0:05); thus, the Mann–Whitney U test
(also named as Wilcoxon rank sum test) was adopted for this
investigation. Figure 3(a) shows that the mean expression
levels of all IRF genes were significantly greater in HNSC
tumor samples than in healthy control samples (p < 0:05).

The paired sample analysis was based on the 43 HNSC
tumor samples and their adjacent 43 healthy control sam-
ples. The results revealed that the differences between the
tumor and control groups did not meet the criteria of the
normality test (p < 0:05); thus, the Wilcoxon signed rank test
was used for the current study. Figure 3(b) shows that the
expression level values of all IRF genes in the HSNC tumor

sample group were greater than that in the healthy control
sample group. There was no statistically significant differ-
ence in IRF4 and IRF8; however, a statistically significant
difference was observed for the other genes.

3.3. Diagnostic Value of IRF mRNA Expression in HNSC.
The results (Figure 3(c)) showed that the AUC value of each
IRF gene was, respectively, as follows: IRF1: AUC = 0:706
(good); IRF2: AUC = 0:676 (average); IRF3: AUC = 0:925
(excellent); IRF4: AUC = 0:632 (average); IRF5: AUC =
0:681 (average); IRF6: AUC = 0:804 (very good); IRF7:
AUC = 0:859 (very good); IRF8: AUC = 0:611 (average);
and IRF9: AUC = 0:892 (very good).

3.4. Correlation between the IRF Family Genes in HNSC. The
correlation analysis results in Figure 3(d) and Table 1
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Figure 5: Kaplan–Meier survival curves for visualizing the association of overall survival (OS) and expression of IRF family genes in TCGA_
HNSC data.
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indicated that there was a strong correlation among the IRF
family genes. There was a significant positive correlation
among most IRF genes. The negative correlation was
observed in the following pairs: IRF5 and IRF7 and IRF6
and IRF8.

3.5. Dysregulated Protein Expression of IRF Family Genes in
HSNC. Figure 4 shows that the protein level of IRF1, IRF2,
and IRF8 were significantly downregulated in HNSC com-
pared with healthy control samples. Except for these three
genes, the protein level of the other IRF family genes
(IRF3, IRF4, IRF5, IRF6, IRF7, and IRF9) were significantly
upregulated in HNSC compared with healthy control
samples.

3.6. The Prognostic Values of IRF Family Genes in HNSC.
The TCGA database was applied for investigating the prog-
nostic value of IRF family genes’ mRNA expression in
HNSC. Based on each IRF family gene’s expression level,

patients with TCGA-HNSC were divided into the IRF-high
and IRF-low groups based on the median expression level.
Figure 3 shows that patients in the IRF1-high group
(p = 0:045), IRF4-high group (p = 1:6e − 06), IRF5-high
group (p = 0:039), IRF6-high group (p = 0:035), IRF8-high
group (p = 0:0028), and IRF9-high group (p = 0:025) were
associated with better survival in the TCGA-HNSC cohort
(p = 0:025) (Figure 5). However, the other IRF family genes
(IRF2 (p = 0:17), IRF3 (p = 0:11), and IRF7 (p = 0:32)) did
not show prognostic values in the TCGA-HNSC cohort.
Figure 6 shows that the higher mRNA expression of IRF1
and IRF8 was correlated with poor relapse-free survival
(p < 0:05), while the mRNA overexpression of the other
IRF family genes (IRF2, IRF3, IRF4, IRF5, IRF6, and IRF7)
did not significantly affect the overall survival in HNSC
cases.

3.7. The Expression of IRF Family Genes in Different Tumor
Stages of HNSC Patients. The expression of members of the
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Figure 6: Kaplan–Meier survival curves for visualizing the association of relapse-free survival (RFS) and expression of IRF family genes in
TCGA_HNSC data.
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IRF family was examined in various stages of HNSC. IRF3
expression levels differed significantly between tumor stages
(p = 0:0173 < 0:05), whereas the expression levels of the
other IRFs did not alter significantly among tumor stages
(Figure 7).

3.8. The PPI Network Construction. Figure 8 and Table S1
show that 22 genes interacted with IRF3, 17 genes
interacted with IRF7, 14 genes interacted with IRF1, 10
genes interacted with IRF4, 9 genes interacted with IRF8, 9
genes interacted with IRF5, 8 genes interacted with IRF2,
and 5 genes interacted with IRF9. IRF3 interacted with the
greatest number of genes. The 50 genes interacting with
IRFs were considered to be interacted genes and will be
used for the subsequent analysis.

3.9. Identification of IRFs’ Correlating Genes by GEPIA. By
using the similar gene detection module of GEIPIA webtool,
the top 200 genes with similar expression pattern with IRFs
in HNSC were identified. Table S2 shows that the top 10
genes highly correlated with IRF family genes signature are
as follows: IRF1, TIGIT, ICOS, IL2RB, SLA2, AKNA,
FMNL1, CD2, FGD2, and ARHGAP30.

3.10. The Overlapping Genes between Interacted Genes and
Correlated Genes. The Venn diagram in Figure 9(a) shows
that 4 genes were at the intersection between 50 interacted
genes in the PPI network and 200 correlated genes identified
by GEPIA. These four genes are as follows: STAT1, STAT2,
FOXP3, and SPI1. The correlation analysis results in
Figure 9(b) and Table 2 showed that the majority of gene
pairings had a substantial positive correlation. Between
IRF6 and SPI1, a negative association was detected
(r = −0:148, p < 0:001). IRF8 and SPI1 had the strongest pos-
itive connection (r = 0:864, p < 0:001).

3.11. Identification of IRFs Involved in Biological Functions.
The 50 IRFs-interacting genes and 200 IRFs-correlated genes
were integrated into 246 genes. Figure 10 shows that these
246 genes were implicated in immune cell-related biological
processes (BPs) (e.g., leukocyte activation, regulation of lym-
phocyte activation, positive T cell selection, and negative
regulation of leukocyte activation) and cytokine-related
BPs (e.g., positive regulation of cytokine production,
response to cytokine, and regulation of cytokine tumor
necrosis factor (TNF) production). In addition, these 246
genes were significantly enriched in multiple molecular

3
4

5
6

7
8

9 F value = 1.69
Pr ( > F) = 0.168

Stage I Stage II Stage III Stage IV

IRF1

1
2

3
4

5
6

7 F value = 0.751
Pr ( > F) = 0.522

Stage I Stage II Stage III Stage IV

IRF2

5
6

7
8

F value = 3.41
Pr ( > F) = 0.0173

Stage I Stage II Stage III Stage IV

IRF3
0

1
2

3
4

F value = 1.4
Pr ( > F) = 0.241

Stage I Stage II Stage III Stage IV

IRF4

1
2

3
4

5
6

F value = 0.547
Pr ( > F) = 0.65

Stage I Stage II Stage III Stage IV

IRF5

2
4

6
8

F value = 0.642
Pr ( > F) = 0.588

Stage I Stage II Stage III Stage IV

IRF6

2
4

6
8

F value = 2.33
Pr ( > F) = 0.0738

Stage I Stage II Stage III Stage IV

IRF7

0
1

2
3

4
5

6

F value = 1.84
Pr ( > F) = 0.14

Stage I Stage II Stage III Stage IV

IRF8

4
5

6
7

8
9

F value = 1.91
Pr ( > F) = 0.128

Stage I Stage II Stage III Stage IV

IRF9

Figure 7: Pathological stage plot demonstrating the expression of a specific member of the IRF family at various tumor stages in HNSC
patients.
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functions (MFs), for example, cytokine binding, TNF recep-
tor superfamily binding, T cell receptor binding, and virus
receptor activity. Furthermore, these 246 genes were impli-
cated in several cellular components (CCs), for instance,
focal adhesion, immunological synapse, and phosphoinosi-
tide 3-kinase (PI3K) complex. Most importantly, several
KEGG pathways were found to be enriched, e.g., Th17 cell
differentiation, T cell receptor signaling pathway, cytokine-
cytokine receptor interaction, Natural killer (NK) cell-

mediated cytotoxicity, FOXO signaling, PI3K-Akt signaling,
and ErbB signaling.

3.12. The Correlation between IRF Expression and Immune
Cells in HNSC. Figure 11(a) shows that most correlations
between IRF gene members and TIICs were positive. The cor-
relations between IRF6 and most TIICs (e.g., B cells, CD8 T
cells, cytotoxic cells, dendritic cells, immature dendritic cells,
macrophages, NK CD56dim cells, NK cells, plasmacytoid

Figure 8: The generic protein-protein network obtained from the NetworkAnalyst webtool.
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dendritic cells, T cells, T effector memory, T follicular helper,
and T regulatory cells) were negative. The strongest positive
connection (r = 0:849, p < 0:001) was seen between IRF8 and
T cells. IRF6 and plasmacytoid dendritic cells had the stron-
gest negative connection (r = −0:36, p < 0:001).

3.13. The Correlation between IRF Family Genes and
ESTIMATE-Stromal-Immune Score. Figure 11(b) and
Table 3 show that majority of correlations were found to be
positive. The highest positive correlation was found to be
between IRF8 and Immune score (r = 0:874, p = 1:09E − 158
). The highest negative correlation was found to be between
IRF6 and ESTIMATE score (r = −0:236, p = 8:75E − 08).

3.14. Relations between Each IRF Gene and Two
Immunoinhibitor Genes. Figure 11(c) shows that the most
correlations between IRFs and two immunoinhibitor genes
(CD274 and PDCD1) were positive. The strongest positive
connection (r = 0:764, p = 2:2e − 16) was reported between
IRF1 and PDCD1. IRF6 and PDCD1 had the negative con-
nection (r = −0:27, p = 4e − 10).

4. Discussion

The main findings of the current research showed that IRF
family genes were involved in several signaling pathways, e.
g., FOXO signaling pathway, PI3K-Akt signaling pathway,
and ErbB signaling pathway. IRF family genes were signifi-
cantly implicated in tumor immunity by being mainly posi-
tively correlated with tumor-infiltrating immune cells and
regulating tumor immunosuppression.

Figure 9(b) shows that the majority of IRF family genes
were positively correlated with their interacting and correlat-
ing four genes (STAT1, STAT2, FOXP3, and SPI1) in head
and neck cancer. A significant role of the TAT1 and STAT2
proteins lies in an important role in interferon (IFN) signal-
ing and cellular antiviral responses and adaptive immunity
[9]. STAT1 and STAT2 proteins were found to associate
with IRF9 to form a heterotrimeric transcription factor com-
plex known as ISGF3 [15]. This should be the reason leading
to the positive correlation between STAT1-2 and IRF9. The
forkhead/winged-helix family transcriptional repressor
FOXP3 is a surface marker specifically expressed in CD4

+CD25+ Treg cells and plays a pivotal role in regulating its
development and differentiation [16]. A previous study
found that IRF1 was found to negatively regulate the func-
tion of CD4+CD25+ Treg cells by directly and specifically
repressing the expression of FOXP3 gene, suggesting the
negative correlation between IRF1 and FOXP3 in tumor
immunity [17]. However, the prediction of our computa-
tional biology analysis showed a positive correlation between
IRF1 and FOXP3 in HNSC. The transcription factor SPI1, as
a protein of ETS family, is a surface marker expressed in
macrophages and neutrophils [18]. The present research
showed that SPI1 was positively correlated with the majority
of IRF family genes except for IRF6. IRF4 and IRF8 were
found to cooperate with SPI1 and thereby upregulate the
expression of pro-inflammatory genes (e.g., CD20, Ig light
chain enhancers, IL-18, and IL-1β) [19–21]. SPI1-IRF coac-
tivating complexes such as IRF4-SP1 and IRF8-SPI1 were
found to bind to a SPI1-IRF composite element in the pro-
moter of the proinflammatory cytokine IL-1β [22]. Based
on the role of interleukin-1β (IL-1β) in modulating the
tumor microenvironment and further promoting tumor
growth, the SPI1-IRF coactivating complexes might play a
role in contributing to the formation of an inflammatory
tumor microenvironment.

The functional enrichment analysis showed that IRF
family genes’ 246 correlated and interacted genes were sig-
nificantly involved in several KEGG signaling pathways
including FOXO signaling pathway, PI3K-Akt signaling
pathway, and ErbB signaling pathway. A previous conducted
by Yuan et al. identified IRF7 to be an important target gene
of FOXO3 by carrying out genome-wide location analysis
and gene deletion experiments [23]. FOXO3 as a member
of the forkhead family was shown to negatively regulate a
subset of antiviral genes (e.g., Gbp2, Ccl5, Ifit1, Irf7, and
Oasl1) [24]. A regulatory circuit formed by FOXO3, IRF7,
and IFN-I was found to limit inflammatory consequences
resulting from antiviral responses [25]. In addition, the rela-
tionship of IRF family genes and PI3K/Akt pathway has
been demonstrated by previous evidence [24]. Dhamanage
et al. discovered that activation of the PI3K/Akt signaling
pathway is required for IRF-7 translocation from the cyto-
plasm to the nucleus in plasmacytoid dendritic cells [26,
27]. The PI3K/Akt pathway was shown to diminish IRF-3-

Table 2: The correlation between IRFs and four interacted and correlated genes, based on the Pearson correlation coefficient analysis.

STAT1 STAT2 FOXP3 SPI1
r value p value r value p value r value p value r value p value

IRF1 0.729 <0.001 0.61 <0.001 0.607 <0.001 0.601 <0.001
IRF2 0.483 <0.001 0.436 <0.001 0.51 <0.001 0.382 <0.001
IRF3 0.087 0.052 0.217 <0.001 0.116 0.009 0.2 <0.001
IRF4 0.367 <0.001 0.283 <0.001 0.738 <0.001 0.604 <0.001
IRF5 0.045 0.319 0.043 0.332 0.312 <0.001 0.343 <0.001
IRF6 0.107 0.016 0.064 0.152 -0.009 0.841 -0.148 <0.001
IRF7 0.575 <0.001 0.543 <0.001 0.289 <0.001 0.321 <0.001
IRF8 0.556 <0.001 0.49 <0.001 0.836 <0.001 0.864 <0.001
IRF9 0.438 <0.001 0.508 <0.001 0.234 <0.001 0.178 <0.001
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dependent promoter activity and impede dimerization of
IRF-3, thereby further resulting in the loss of host antiviral
activity [26]. The ErbB family of proteins consists of four
receptor tyrosine kinases (e.g., Her1 (EGFR, ErbB1), Her2
(Neu, ErbB2), Her3 (ErbB3), and Her4 (ErbB4)) that share
structural homology with the epidermal growth factor recep-
tor (EGFR) [27]. The upregulation of IRF1 was found to be

induced by the activation of EGFR signaling was manifested
in an EGF dose-dependent manner. The induced expression
of tumor suppressor IRF1 was found to alert antitumor
immunity by activating immune effector cells and inhibiting
cell proliferation of human cancer cells [28].

In terms of IRF family genes’ relationship to tumor
immunity, the present research revealed that the IRF family
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Figure 11: Continued.
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gene expression was associated with many types of immune
cells, for example, NK cells, Treg cells, Th1 cells, macropa-
hages, and Th17 cells. Our research showed that IRF3 was
positively correlated with NK cells in HNSC (Figure 8(a)).
In accordance with such findings, a previous study con-
ducted by Andersen et al. found that exosomes derived from
head and neck cancer cells were able to increase the expres-
sion of interferon regulatory factor 3 (IRF3) and further pro-
moted the function of NK cells with respect to proliferation,
cytotoxicity, and the release of perforin and granzyme M
[29, 30]. Our research showed that IRF1 was significantly
positively correlated with Treg cells and Th1 cells. In a
related finding, a previous study conducted by Chen et al.

showed that IRF1 exhibited immunomodulatory activities
by controlling Treg depletion and governing Th1 polariza-
tion [31]. Additionally, it has been well established that a
high infiltration of macrophages is associated with decreased
overall survival and metastatic progression. Our research
found that IRF8 was positively correlated with macrophages
in HSNC. A study by Buccione et al. showed that IRF8 was
able to transcriptionally modulate the response of macro-
phages by driving macropshages towards a more protumor
and prometastasis phenotype [32]. Additionally, the present
study found that IRF8 was positively correlated with Th17 in
HNSC. However, a previous study using experimental colitis
showed a negative correlation between IRF8 and Th17. This

(c)

Figure 11: The tumor immunity analysis results regarding IRF family genes in HNSC. (a) The heatmap showing the relations between
tumor-infiltrating immune cells and IRF family genes. (b) The correlation between IRF family genes and ESTIMATE-Stromal-Immune
score in HNSC. (c) TISIB web portal for examining how immunoinhibitors (CD274 and PDCD1) were regulated by IRF family genes.

Table 3: The correlation between IRF family genes and ESTIMATE-Stromal-Immune score in HNSC.

IRF family genes
ESTIMATE score Stromal score Immune score

r value p value r value p value r value p value

IRF1 0.5 4:38E − 33 0.198 7:98E − 06 0.667 5:93E − 66
IRF2 0.239 5:82E − 08 0.182 4:21E − 05 0.239 5:67E − 08
IRF3 0.042 0:353 -0.068 0.13 0.133 0.003

IRF4 0.633 1:49E − 57 0.403 5:19E − 21 0.705 1:14E − 76
IRF5 0.165 2:08E − 04 0.073 0.103 0.213 1:46E − 06
IRF6 -0.236 8:75E − 08 -0.193 1:35E − 05 -0.224 4:05E − 07
IRF7 0.303 3:86E − 12 0.101 0.023 0.422 4:25E − 23
IRF8 0.844 2:46E − 137 0.609 2:30E − 52 0.874 1:09E − 158
IRF9 0.054 0.225 -0.101 0.023 0.185 2:98E − 05
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study found that IRF8 is required for Th17 cell differentiation
to be suppressed: IRF8 transduction decreased the expression
of genes linked with Th17; and vice versa, the lack of IRF8 was
able to enhance the immune response induced by Th17 [33].
The tumor microenvironment of HNSCwas found to strongly
induce Th17 cells through cytokines; and in another way, the
presence of Th17 cells was able to promote the proliferation
and angiogenesis of HNSCC [34]. Based on the promoting
role of Th17 in the carcinogenesis of HNSCC as well as the
promoting role of IRF8 in HNSCC, the correlation between
Th17 and IRF8 should be speculated to be positive; however,
it still needs to be verified in the future experimental
investigations.

Regarding the involvement of IRF family genes in tumor
immunosuppression, the present study found that IRF fam-
ily genes were significantly correlated with the immune
checkpoint genes (PDL1 and its receptor PDCD1) in HNSC.
The correlation between PDL1 and interferon-γ (IFNγ) has
been demonstrated by showing that IFN upregulated PDL1
in a variety of HNSC cell lines regardless of HPV infection.
The high link between IFN and PDL1 is explained by the
fact that an antitumor cellular immune response mediated
by natural killer (NK) cells and CD8+ tumor-infiltrating
lymphocytes (TILs) produces IFN, which in turn induces
PDL1 expression on tumor cells [35]. However, the current
research regarding the correlation between PDL1 and IRF
family genes especially in HNSC is lacking. According to
the authors’ knowledge, there is a paucity of evidence show-
ing the PDL1 and IRF family genes in other types of cancers.
For instance, a previous study investigating lung cancer
found that interferon-β (IFN-β) induced the upregulation
of PDL1 in lung cancer cells via the activation of the IRF9
pathway [36]. Although a different tumor type, the current
research also found a positive correlation between PDL1
and IRF9 in HNSC; however, such finding needs to be veri-
fied by future experimental research. Another research
investigating hepatocellular carcinoma (HCC) also found
that IRF-1 was able to upregulate the IFN-γ-induced PDL1
mRNA and protein expressions, indicating a positive corre-
lation between IRF1 and PDL1 [37]. In accordance with
these findings, the present study also showed that PDL1
was positively correlated with IRF1 in HNSC. Additionally,
the current study showed that IRF3 was not associated with
PDL1 in HNSC (p = 0:0928); however, a previous research
found that IRF3 promoted the induction of PDL1 by form-
ing a transcriptional complex with NF-κB/p65, and further
resulting in the solar ultraviolet radiation- (UVR-) induced
immune suppression [38].

In summary, the current research provided a compre-
hensive view regarding the implication of IRF family genes
in HNSC from a variety of aspects, for example, expression
pattern, prognostic values, relationship with clinical stages,
interacting and correlating genes, enriched biological func-
tions, involved signaling pathways, correlation with tumor
cells, and classic immune checkpoint genes. The current
research has identified directions towards a better under-
standing of mechanisms of IRF family genes in HNSC, and
these findings based on computational prediction warrant
experimental work for validation.

5. Conclusion

The upregulation of the IRF1, IRF4, IRF5, IRF6, IRF8, and
IRF9 genes was identified as a potential prognostic indicator
in HNSC. IRF family genes played a tumor-promoting role
in HNSC by involving several pathways including Th17 cell
differentiation, T cell receptor signaling pathway, cytokine-
cytokine receptor interaction, NK cell-mediated cytotoxicity,
FOXO signaling, PI3K-Akt signaling, and ErbB signaling.
Given such findings, the genes of the IRF family should be
considered possible therapeutic targets in the treatment of
head and neck cancer.
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