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Diffuse axonal injury (DAI) represents a frequent traumatic brain injury (TBI) type, significantly contributing to the dismal
neurological prognosis and high mortality in TBI patients. The increase in mortality can be associated with delayed and
nonspecific initial symptoms in DAI patients. Additionally, the existing approaches for diagnosis and monitoring are either low
sensitivity or high cost. Therefore, novel, reliable, and objective diagnostic markers should be developed to diagnose and
monitor DAI prognosis. Urine is an optimal sample to detect biomarkers for DAI noninvasively. Therefore, the DAI rat model
was established in this work. Meanwhile, the ultraperformance liquid chromatography quadrupole-time-of-flight hybrid mass
spectrometry- (UPLC/Q-TOF MS-) untargeted metabolomics approach was utilized to identify the features of urine
metabolomics to diagnose DAI. This work included 57 metabolites with significant alterations and 21 abnormal metabolic
pathways from the injury groups. Three metabolites, viz., urea, butyric acid, and taurine, were identified as possible biomarkers
to diagnose DAI based on the great fold changes (FCs) and biological functions during DAI. The present study detected
several novel biomarkers for noninvasively diagnosing and monitoring DAI and helped understand the DAI-associated
metabolic events.

1. Introduction

Traumatic brain injury (TBI) represents a severe and com-
plex worldwide and is associated with poor prognosis,
long-term disabilities, and high mortality [1]. Diffuse axonal
injury (DAI), with features of extensive axonal damage to
the white matter of the brain, is more common in patients
undergoing severe TBI [1, 2]. Recently, DAI has identified
primary contributors to the clinical symptoms and poor
functional and neurological prognosis of patients with TBI
[3, 4]. The pathological mechanism of DAI is highly compli-
cated and is still poorly understood [5]. Recently, axonal
damage has been caused by direct shear or tensile forces of
the brain and subsequent biochemical cascades postinjury
[5]. The current gold standard for diagnosing DAI depends
on a histopathological examination that reveals significant

limitations in clinical application. Moreover, as axons are
associated with the dissemination and microscopic charac-
teristics, conventional neuroimaging approaches, including
computed tomography (CT) or conventional magnetic reso-
nance imaging (MRI), cannot visualize axonal histopatholo-
gical changes due to head trauma, leading to a high rate of
misdiagnosis [1]. Of note, an earlier identification of patients
with DAI can influence physicians to determine appropriate
therapeutic interventions to prevent axons from further
damage, which may ultimately improve patient outcome.
Thus, novel noninvasive diagnostic tools for DAI remain
urgently within the neurological community to enable early
diagnosis and appropriate therapeutic interventions.

In recent years, diffusion MRI has shown significant
advantages in identifying pathological changes within the
tissue microenvironment (below 100mm) and could be used
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in the early diagnosis of DAI [1, 6]. Unfortunately, despite
its higher adequate spatial sensitivity, the specificity and sta-
bility of the changes through diffusion MRI are inconsistent
and insufficient for clinical implementation [1, 6]. Benjamini
et al. used multidimensional MRI to identify biomarkers of
axonal injury, and it may be a novel noninvasive method
for detecting DAI [1]. However, this examination is costly
and time-consuming, limiting the application scope. In addi-
tion to radiological procedures, omics-based research has
also become an essential topic in developing noninvasive
DAI biomarkers.

Urine and plasma are the most accessible source of
biomarker analysis for numerous diseases, such as diabe-
tes, acute kidney injury, and myocardial infarction. Our
previous study conducted in the last few years has
explored the metabolomic profile of DAI in plasma sam-
ples to gain a deeper understanding of the molecular
mechanisms of DAI and identify novel and reliable bio-
markers. Several plasma metabolites were identified as
candidate biomarkers using an integrated 1H nuclear mag-
netic resonance spectroscopy (NMR) and ultraperformance
liquid chromatography quadrupole-time-of-flight hybrid
mass spectrometry- (UPLC/Q-TOF MS-) based metabolo-
mics approach [7]. However, there still exist some limita-
tions in the study, such as only one time point was
concerned and the dynamic evolvement process of the
identified metabolites was not studied. Moreover, urine
presents unique advantages in the biomarker analysis, such
as noninvasive, rapidly and easily obtained, and available
in copious amounts [8]. Thus, urine is an optimal speci-
men to develop biomarkers to diagnose and monitor
DAI survival noninvasively. Metabolomics, which focuses
on providing an unbiased view of changes in endogenous
metabolites, has been successfully applied for identifying
diagnostic biomarkers of many diseases [9–12]. At present,
one of the most powerful analytical technologies for non-
targeted metabonomic mapping is ultraperformance liquid
chromatography quadrupole-time-of-flight hybrid mass
spectrometry (UPLC/Q-TOF MS) technology, which could
accurately quantify and discover the remarkably altered
metabolites in biofluids or tissues. Recently, UPLC/Q-
TOF MS-based metabolomics approach has been widely
used in the study of disease diagnosis and the associated
mechanisms [13, 14].

Therefore, the current work focused on understanding
the urine metabolome features and identifying differen-
tially changed metabolites of DAI. A well-established rat
model and the UPLC/Q-TOF MS-untargeted metabolo-
mics method would be utilized. Histopathological exami-
nation, multivariate pattern recognition, pathway analysis,
and evaluation of prognostic ability were also carefully
investigated. Moreover, this work is the first to detect bio-
markers for noninvasively and reliably diagnosing DAI in
urine specimens through metabolomics analysis. Our
results identified novel possible biomarkers for diagnosing
and monitoring DAI cases, thereby decreasing the use of
harmful diagnostic approaches and may shed more light
on those mechanisms based on extensive axonal injury
posttrauma.

2. Material and Methods

2.1. Chemicals and Drugs. This work obtained acetonitrile,
formic acid, and high-performance LC (HPLC) grade meth-
anol from Tedia (Fairfield, OH, USA). The remaining
reagents were analytically pure.

2.2. Animals and Ethics Statement. This work obtained 46
eight-week-old male adult Sprague-Dawley (SD) rats
(weight, 250-300 g) from the Laboratory Animal Center of
Chongqing Medical University (Chongqing, China). In
addition, the animals were raised in a standard laboratory
environment. All animal treatments in the present work
strictly followed the Guide for the Care and Use of Labora-
tory Animals. The animal experiments gained approval from
the Ethics Committee of Hainan Medical University (HYLL-
2021-303).

2.3. Models and Sampling

2.3.1. DAI Rat Model Establishment. Based on our previous
work, we established the DAI rat model [15]. Briefly, we ran-
domized 30 rats to develop the DAI rat model. Death was
reported in seven animals shortly after injury (mortality,
23.3%). In contrast, the rest survived after the coma period
(5:24 ± 1:36 min). Then, we randomized 16 survivors in
the injury group and assigned them to two subgroups of
eight rats each: 1 d (n = 8) group and 3d (n = 8) group.
Additionally, without damage, 16 sham rats were enrolled
in the control group for equal treatment before the injury,
including scalp incision and anesthesia. These animals were
also assigned to two subgroups of eight rats each: 1 d control
group or 3 d control group with eight rats each. The animals
were sacrificed at the respective time points.

2.3.2. Urine Sample Collection and Preparation. Twenty-
four-hour urine samples were collected at 1 d or 3 d postin-
jury by placing rats in individual metabolic cages, followed
by 10min centrifugation at 13,000 rpm and 4°C to remove
the insoluble impurities [8]. Supernatants were then trans-
ferred and preserved under -80°C before analysis. The super-
natants within every urine specimen were thawed at ambient
temperature and then added with 2mL methanol under 10 s
shaking through the vortex mixer. Later, the sample was
subjected to 15min centrifugation at 13,000 rpm and 4°C.
Supernatants were subsequently filtered with the 0.22μm
mesh to conduct UPLC/Q-TOF MS-based metabolomics.

2.3.3. Histopathological Examination of Brain Tissue. Each
rat was intraperitoneally injected with 100mg/kg sodium
pentobarbital at 1 d or 3 d after injury. After achieving an
appropriate anesthetic level, the animals were euthanized
through decapitation. Then, the brain tissue was immedi-
ately dissected, followed by fixation with 10% paraformalde-
hyde (PFA) for at least 12 h. Then, the brain tissue was sliced
into 4μm paraffin sections, followed by hematoxylin and
eosin (HE) staining. Later, sections were stained using
Bielschowsky silver for validation.

2.4. UPLC/Q-TOF MS Analysis. The Eksigent UPLC system
(Shimadzu Corporation, Kyoto, Japan) was used by
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combining with the AB SCIEX Triple-TOF 5600 mass spec-
trometry (MS) (Massachusetts, USA) for UPLC/Q-TOF MS-
based urine metabolomic analysis. Autosampler and column
temperatures were set to 4 and 40°C, respectively, and the
injection volume was 5μL. Moreover, detailed procedures
for metabonomics analysis have been reported previously
[8, 16].

This work made samples for quality control (QC) as a
pooled mixture of an aliquot of supernatants (20μL) col-
lected in diverse urine specimens to avoid intrabatch vari-
ability and to evaluate whether the UPLC/Q-TOF MS
system was stable and repeatable [16, 17]. The relative stan-
dard deviation (RSD) was determined to ensure that our
metabolomic analysis system was suitably stable.

2.5. Data Analyses. The current work transformed raw data
from metabolomics analysis to mzXML files, alignment,
deconvolution, and normalization using MarkerView v1.2.1
software (AB SCIEX, Massachusetts, USA) before the multi-
variate analysis. Afterward, multivariate analysis was per-
formed on those normalized data through the SIMCA-P
software (v14.0, Umetrics, Umeå, Sweden). Meanwhile,
orthogonal partial least squares discriminate analysis
(OPLS-DA) and principal component analysis (PCA) were
carried out to visualize discrimination in DAI urine com-
pared with control samples. Multivariate models were ana-
lyzed for validity and robustness using the following
parameters: R2X, Q2, and R2Y . We estimated that the
OPLS-DA model-generated variable importance of project
(VIP) values statistically indicated the significance of differ-
ences in injury compared with the control groups. Differen-
tial variables were selected based on three limitations: (1)
VIP value > 1, (2) fold change ðFCÞ of injury compared with
control groups > 1:5, and (3) p value < 0.05. Those potential
metabolites were identified by querying the exact accurate
m/z, MS/MS spectra, and retention time pairs in the online
database, including the HMDB. MetaboAnalyst 4.0 platform
analyzed receiver operating characteristic (ROC) curves and
validated biomarkers to determine whether the identified
significantly changed metabolites could be the novel bio-
markers. The online approach MetaboAnalyst was utilized
to analyze the metabolic pathways enriched by those metab-
olites with significant FC.

2.6. Statistical Analysis. Biological factors were compared
based on significant differences using Student’s t-test among
injury compared with control groups. SPSS21.0 statistical
software (IBM, Armonk, NY, USA) was employed to
undergo statistical analysis. p < 0:05 (two-sided) stood for a
significant difference.

3. Results

3.1. DAI Model Histopathological Confirmation. This work
first conducted a histopathological examination of the brain
tissue to detect axonal retraction balls (ARBs), disconnec-
tion, and axonal swelling to validate our constructed DAI
rat models. ARBs could be seen within the affected rats’ cor-
pus callosum, which confirmed the successful establishment

of the DAI rat model utilized in this work and its feasibility
in subsequent UPLC/Q-TOF MS-based urine metabolomics.
Representative histopathology sections of brain tissue are
shown in Figure 1.

3.2. Urine Sample Metabolomics Data-Based Multivariate
Analysis. RSD values for QC samples established that our
metabolomic analysis system was stable and suitable, indi-
cating its feasibility in further analyses (Table S1). This
work discovered 399 metabolites in urine samples, which
were aligned, normalized, and utilized in multivariate
regression. The PCA score plot revealed that the urine
samples from the injured rats were distinct from controls,
indicating the occurrence of urine metabolic disorder
among DAI rats (Figure S1). OPLS-DA, a supervised
clustering model, was undergone to elucidate differentially
expressed factors of both groups. As depicted in the score
plot, the 1 d group revealed clear segregation from control
(Figures 2(a) and 2(b); ESI+: R2X = 0:491, R2Y = 0:99, and
Q2 = 0:89; ESI-: R2X = 0:623, R2Y = 0:982, and Q2 = 0:942).
It revealed the significant segregation of the control from
the 3 d groups (Figures 2(c) and 2(d); ESI+: R2X = 0:573,
R2Y = 0:946, and Q2 = 0:886; ESI-: R2X = 0:746, R2Y =
0:999, and Q2 = 0:944). Moreover, the DAI rats had robust
metabolic alterations. Permutation tests (n = 300) were
conducted to validate the OPLS-DA model. Therefore, our
constructed OPLS-DA model revealed high validity and
reliability (Figure S2, 1 d vs. the control group, ESI+: R2 = ð
0:0, 0:613Þ, Q2 = ð0:0, –0:123Þ; ESI-: R2 = ð0:0, 0:329Þ, Q2 =
ð0:0, –0:071Þ; Figure S3, 3 d vs. the control group, ESI+: R2

= ð0:0, 0:735Þ, Q2 = ð0:0, –0:131Þ; ESI-: R2 = ð0:0, 0:465Þ,
Q2 = ð0:0, –0:051Þ).
3.3. Differentially Expressed Metabolite Identification
between the Plasma and Urine Specimens. Depending on
the S-plot from OPLS-DA, upon the thresholds of FC > 1:5
and VIP > 1, 30 factors between the 1 d group and control
group were detected, including 13 under positive and 17
under negative modes (Figure S4A-S4B), as observed in
Table S2. In the meantime, we discovered 30 metabolites
with significant changes (21 under positive whereas nine in
the negative modes, separately) from the 3 d group
(Figure S4C-S4D; Table S3). There were 57 metabolites
that had differential changes among injury groups by
comparative analysis, among which three (urea, butyric
acid, and taurine) showed significant differences between
1d/3 d and control groups. Those 57 metabolites with
significant changes were subject to clustering analysis to
analyze the different metabolite signatures in injury
compared with control groups. As a result, injury groups
were separated from the control group, as observed in the
heatmap (Figure 3).

ROC analysis was conducted to estimate whether the dif-
ferential metabolites were the accurate biomarkers. Of those
57 metabolites, we identified seven metabolites showing area
under the curve ðAUCÞ > 0:9 as possible biomarkers in the
1 d group based on their high sensitivity and specialty
(Table S4) and 13 metabolites in the 3 d group (Table S5).
The AUC, together with the appropriate 95% confidence
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interval (CI) of the representative potential biomarker
(taurine) in both 1 d and 3d groups, was depicted in
Figure S5.

3.4. Metabolic Pathway Analysis. Metabolites with significant
changes were examined with MetaboAnalyst 4.0 to detect the
most relevant pathways involved in the molecular mecha-

nisms of DAI and to observe metabolic pathway changes com-
prehensively. As a result, 21 metabolic pathways showed the
highest influence degrees following DAI (Figure 4). Four per-
turbed ones, including hypotaurine and taurine metabolism,
phenylalanine metabolism, tryptophan metabolism, and cys-
teine and methionine metabolism, were selected because of
high impact values related to the pathogenesis of DAI.
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Figure 1: Brian tissues collected in injury and control groups were subjected to histopathological analysis. (a, e) 1 d control; (b, f) 3 d
control; (c, g) 1 d; (d, h) 3 d groups. Tissues were examined after being stained with (a–d) HE and (e–h) Bielschowsky silver. This work
collected each specimen in the corpus callosum. Axons of injury groups exhibited swellings and disconnection with ARBs to varying
degrees (c, d, g, h; arrows), while the control group did not exhibit any abnormality in axons (a, b, e, f).
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4. Discussion

The early diagnosis of DAI has a critical role in reducing
mortality as it enables clinicians with robust evidence for
determining appropriate therapeutic interventions during
the early stages. While many studies have focused on identi-
fying sensitive DAI biomarkers, none have been established
[18]. Urine could be rapidly and easily obtained by the
patients in a noninvasive manner. Moreover, the metabolite
components and concentrations in urine are good indicators
of metabolic fluctuations [8–12]. Thus, urinary metabolomic
markers could collaborate to establish a more efficacious,
cheap, and safe screening method for diagnosis of many dis-
eases. Herein, we have addressed for the first time the anal-
ysis of metabolomic changes in urine of DAI. The UPLC/Q-
TOF MS technology, combined with multivariate statistics
analysis, has been applied in this study to obtain the urine
metabolic profiles of rats with DAI. The primary objective
of this study was to identify potential biomarkers in urine
to improve early clinical diagnoses and monitor the progno-
sis of DAI.

In this study, urea was significantly upregulated in urine
samples from injury groups compared to the control group.
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Figure 2: UPLC/Q-TOF MS-based OPLS-DA in the urine specimens collected from injury and control groups under positive and negative
modes. (a, b) Score plots of the 1 d group were obtained by the UPLC/Q-TOF MS-based analyses under positive and negative modes. (c, d)
Score plots of the 3 d group were obtained by the UPLC/Q-TOF MS-based analyses through positive and negative modes.
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Figure 3: Heatmap depicting the hierarchical clustering analysis on
injury and control urine samples. Red and blue stood for
upregulated and downregulated metabolites separately. Injury
groups were significantly different from the control group based
on metabolites.
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Urea is substantial nitrogen- (N-) containing end product of
protein metabolism, having a critical effect on excreting dan-
gerous N-containing substances [19, 20]. Ammonia will be
transformed into urea during the urea cycle, while urea is
later discharged through urine out of the body [19]. Previous
studies showed that blood flow was decreased in the cerebral
and energy metabolism was disturbed after TBI [15]. Glycol-
ysis is enhanced while the tricarboxylic acid cycle (TAC) is
inhibited after injury [21]. A study by Wang et al. indicated
that amino acid-related metabolisms had been disturbed in
acute ischemic stroke. The amino acids and urea were signif-
icantly downregulated in the serum [22]. In this work, an
increase in urine urea is possibly associated with the dys-
function of amino acid metabolism postinjury which was
consistent with our previous study [23]. Recent studies
showed that glutamate was excess released following TBI,
which induces metabolic energy failure and glutamate exci-
totoxicity [24]. Moreover, the excess released glutamate is
reduced through the urea cycle and shortens the tricarbox-
ylic acid cycle-induced glutamate oxidation [24]. Further-
more, previous research showed that brain urea played a
pivotal role in neurodegenerative diseases and was signifi-
cantly increased in Parkinson’s disease dementia (PDD),
Huntington’s disease (HD), and Alzheimer’s disease (AD)
[20]. During DAI, the upregulated urea in urine could be
an endogenous protective mechanism to reduce subsequent
axonal damage postinjury. These findings indicate that clin-
ical outcomes could be improved by promoting energy sup-
ply and urea excretion.

Butyric acid was also a selected metabolite biomarker,
and it displayed significant downregulation among DAI
urine samples than in controls. As a short-chain fatty acid,
butyric acid is generated through colonic gut microbiota
[25]. Recent studies have indicated that butyric acid partici-

pates in numerous biological processes (BPs), including
thermogenesis, hemodynamics, inflammation, appetite,
lipid/glucose metabolism, and gut microbial impact [25,
26]. Butyric acid produces a significant hypotensive and
vasodilative effect as one of the mediators between gut
microbiota and the circulatory system [25]. In addition,
butyrate supplements are beneficial for metabolism, such
as improving energy metabolism by decreasing energy
absorption while increasing lipid oxidation, anti-intestinal
inflammation, and regulating immunity [27, 28]. Previous
studies also demonstrated that TBI had complicated activi-
ties in the gastrointestinal tract (GIT), and intestinal infec-
tion could worsen the brain lesion injury and negatively
impact late outcomes among patients [29, 30]. Therefore,
butyric acid possibly showed an essential role in the brain-
gut axis, serving as the possible therapeutic target to reduce
axotomy and improve outcomes among DAI patients.

In addition, another potential biomarker was taurine,
which was involved in the remarkably perturbed metabolic
pathways and taurine and hypotaurine metabolism. Taurine
is a semiessential amino acid chiefly produced in the kidney
and liver and present in various organs, such as the heart,
brain, retina, muscle, placenta, and leukocytes [31, 32]. Tau-
rine, the free amino acid with the highest abundance within
the nervous system, has an essential nutritional effect on
brain cell proliferation, development, and differentiation
[32]. Previous studies have indicated that taurine adminis-
tration could effectively mitigate neuronal damage severity
and white matter injury in TBI and enhance cognitive
impairment [33–35]. Recently, Daniel’s group reported in
lampreys that taurine enhances axon growth after complete
spinal cord injury (SCI) [36]. Based on our results, taurine
was downregulated in urine, possibly associated with an
extracellular taurine increase in the central nervous system
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after injury and thus assisted with axotomy reduction and
outcome improvement among DAI patients [37].

In research on DAI, our previous plasma proteomics and
metabolomics study also found several significantly changed
metabolites and proteins in rats with DAI [23]. Combining
with results of this study, we found that significantly per-
turbed energy metabolism, inflammatory response, amino
acid metabolism, cytoskeletal disruption, and immunomod-
ulation may all participate in the axonal injury in DAI,
which were consistent with previous studies [38, 39].

Above all, we built the DAI rat model and conducted the
untargeted metabolomics study in urine samples to screen
DAI-related urine metabolites having differential changes.
Using the UPLC/Q-TOF MS-based metabonomics analysis,
this work detected 57 metabolites with significant differ-
ences. Among them, we deemed three (urea, butyric acid,
and taurine) possible diagnostic biomarkers which had
essential effects on axonal damage during DAI. However,
there are several limitations to our study. First, only one ana-
lytical platform was utilized, which could not obtain a holis-
tic view of the molecular mechanisms of DAI. An integrated
metabolomics and proteomics analysis may help to obtain a
comprehensive picture of urine after DAI, and we would
give more attention to this in our future studies. Second,
the number of biological samples in our single-center pilot
study was low. Hence, the results of this work should be val-
idated, and efficient biomarkers to diagnose DAI should be
identified through extensive investigations.
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