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Background. Steroid-induced osteonecrosis of the femoral head (SONFH) has produced a substantial burden of medical and social
experience. However, the current diagnosis is still limited. Thus, this study is aimed at identifying potential biomarkers in the
peripheral serum of patients with SONFH. Methods. The expression profile data of SONFH (number: GSE123568) was
acquired from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in SONFH were
identified and used for weighted gene coexpression network analysis (WGCNA). Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to investigate the biological functions. The
protein-protein interaction (PPI) network and machine learning algorithms were employed to screen for potential biomarkers.
Gene set enrichment analysis (GSEA), transcription factor (TF) enrichment analysis, and competing endogenous RNA
(ceRNA) network were used to determine the biological functions and regulatory mechanisms of the potential biomarkers.
Results. A total of 562 DEGs, including 318 upregulated and 244 downregulated genes, were identified between SONFH and
control samples, and 94 target genes were screened based on WGCNA. Moreover, biological function analysis suggested that
target genes were mainly involved in erythrocyte differentiation, homeostasis and development, and myeloid cell homeostasis
and development. Furthermore, GYPA, TMCC2, and BPGM were identified as potential biomarkers in the peripheral serum of
patients with SONFH based on machine learning algorithms and showed good diagnostic values. GSEA revealed that GYPA,
TMCC2, and BPGM were mainly involved in immune-related biological processes (BPs) and signaling pathways. Finally, we
found that GYPA might be regulated by hsa-miR-3137 and that BPGM might be regulated by hsa-miR-340-3p. Conclusion.
GYPA, TMCC2, and BPGM are potential biomarkers in the peripheral serum of patients with SONFH and might affect
SONFH by regulating erythrocytes and immunity.

1. Introduction

Steroid-induced osteonecrosis of the femoral head (SONFH),
a chronic and progressive femoral head disease mainly
induced by long-term exposure to excessive glucocorticoids,
can cause hip joint damage and dysfunction and ultimately
affect the quality of life [1]. The worldwide morbidity of
SONFH is increasing year by year, and it is estimated that
20,000-30,000 patients are diagnosed with SONFH that does

not depend on transmission each year in United States [2].
In particular, it is expected that the incidence of SONFH will
rise in the next few years around the world because of the
continuing impacts of the novel coronavirus pandemic since
2019 (COVID-19) [3]. Currently, although the diagnosis of
SONFH, especially joint imaging techniques, is well estab-
lished, patients with an early stage of SONFH are difficult to
find because of the lack of effective and specific biomarkers
[4]. Moreover, the cost and inconvenience of joint imaging
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techniques severely limit their application, specifically in
China [5, 6]. Furthermore, total hip arthroplasty is effective
in improving the quality of life, but most patients still endure
the mental and financial pressure [7]. Therefore, the develop-
ment of new biomarkers for SONFH diagnosis and treatment
is urgently needed.

With the ongoing progression in sequencing technolo-
gies, bioinformatics analysis is an emerging and promising
tool for screening potential biomarkers in a variety of neo-
plastic and nonneoplastic diseases [8, 9]. Data remining by
using bioinformatics analysis based on public databases
has facilitated the screening of new biomarkers for non-
neoplastic diseases [10, 11]. In particular, combining
weighted gene coexpression network analysis (WGCNA)
and machine learning algorithms has greatly improved
the accurate identification of disease-related biomarkers
[12–15]. For example, FADD, CXCL2, and CXCL8 were
identified as immune-related biomarkers of rheumatoid
arthritis by integratingWGCNA and least absolute shrinkage
and selection operator (LASSO) logistic regression and sup-
port vector machine recursive feature elimination (SVM-
RFE) algorithms [12]. MACROD1 was found to contribute
to the early diagnosis of tendinopathy based on the LASSO
model, SVM-REF, and Gaussian mixture model (GMMs)
algorithms [13]. Moreover, LSP1, GNLY, and MEOX2 are

likely to aid in the diagnosis and treatment of rheumatoid
arthritis based onWGCNAmachine learning strategies. Fur-
thermore, CDK1, TOP2A, ADRA1A, FANCI, XRCC1,
TPX2, CCNB2, CDK4, GLYATL1, and CFHR3 were identi-
fied to be core hub genes as potential biomarkers and treat-
ment targets for hepatoblastoma by integrating WGCNA
and random forest (RF) algorithm [14]. However, most bioin-
formatics analyses for SONFH have not been performed by
integrating WGCNA and machine learning algorithms.

Therefore, the present study is aimed at identifying
potential biomarkers in the peripheral serum for SONFH
by integrating WGCNA and machine learning algorithms,
including LASSO logistic regression, SVM-RFE, and RF.
First, we identified differentially expressed genes (DEGs)
between SONFH and control samples in the GSE123568
dataset downloaded from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) in
NCBI. Moreover, WGCNA was performed based on the
expression matrix of DEGs to screen target genes, and
machine learning algorithms were used to identify potential
biomarkers. Finally, we investigated the possible functions
and regulatory mechanisms of the potential biomarkers.
This study may provide new biomarkers for the diagnosis
and treatment of SONFH and contribute to clarifying the
pathogenesis of SONFH.

0

5

10

Log2 (fold change)

−L
og

10
 (P

va
lu

e)

–2 0 2

(a)

Group
Case

Group

–3

–2

–1

0

1

2

3

Control

(b)

Figure 1: DEGs between SONFH patients and control samples. (a) Volcano plot showing the expression levels of DEGs. Red dots indicate
upregulated genes in SONFH patients compared with control samples, while blue dots indicate downregulated genes in SONFH patients
compared with control samples and gray dots indicate nonsignificantly different genes between SONFH patients and control samples. (b)
Heat map showing the expression levels of top100 DEGs. Red indicates high expression, while blue indicates low expression.
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Figure 2: Continued.
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2. Material and Methods

2.1. Data Collection and Preprocessing. The gene expression
matrix of the peripheral serum for 30 SONFH and 10 con-
trol samples from China in the GSE123568 dataset, which
was sequenced using the GPL15207 platform, was obtained
from the GEO database.

2.2. Identification of DEGs in the Peripheral Serum of
Patients with SONFH. “Limma” R package was used to
screen DEGs between SONFH and control samples [16],
and genes with P < 0:01 and ∣log2FC ∣ >1 were regarded as
DEGs.

2.3. Screening of Target Modules and Genes Based on
WGCNA. To screen potential genes associated with SONFH,
the expression matrix of DEGs was used to create a weighted
gene coexpression network by using “WGCNA” R package
[17]. First, clustering of all samples was performed to guar-
antee a reliable network. Second, we calculated the Pearson
correlation coefficient between each pair of genes to evaluate
the expression similarity of genes and acquire a correlation
matrix. Moreover, we used the soft threshold function to
convert the correlation matrix into a weighted neighborhood
matrix. To ensure that gene correlations were maximally
consistent with scale-free distribution, we used a soft
connectivity algorithm to select the optimal soft threshold.

Subsequently, the neighborhood matrix was transformed
into a topological overlap matrix (TOM). Furthermore,
coexpression modules were obtained based on the criteria
of dynamic tree cutting by setting the minimum number of
genes in a module as 30. Finally, key modules were selected
by correlation analysis, and genes in the key modules were
considered as key genes.

2.4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Enrichment Analyses. Biological func-
tion enrichment of GO and KEGG analyses was performed
by using the “clusterProfiler” R package [18]. GO enrich-
ment analysis was performed to investigate the gene-
related biological process (BP), molecular functions (MF),
and cellular components (CC). KEGG enrichment analysis
was conducted to explore gene-related signaling pathways.
Statistical significance was set at adjusted P value < 0.05.

2.5. Construction of a Protein-Protein Interaction (PPI)
Network. A PPI network was constructed to investigate the
protein interactions of genes through the Search Tool for
the Retrieval of Interacting Genes (STRING, https://string-
db.org/). Moreover, Cytoscape was selected to visualize the
network, and the confidence score was set at 0.4.

2.6. Identification of Potential Biomarkers in the Peripheral
Serum for SONFH Based on Machine Learning Algorithms.
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Figure 2: Identification of target genes by WGCNA. (a) Sample clustering analysis revealed that GSM3507251 sample was an outlier. (b)
Soft threshold analysis suggested that gene associations were maximally consistent with the scale-free distribution and when β = 26. (c)
Modules identified by merging modules with feature factors greater than 0.5 and setting the minimum number of genes in a module as
30. (d) Module correlations among the three identified modules. (e) Correlation between modules and SONFH.
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To begin with, the LASSO logistic regression algorithm [19]
was performed to screen potential genes by using the
“glmnet” R package [20], and receiver operating characteris-
tic (ROC) analysis was selected to test the model reliability
by calculating the area under the curve (AUC) value through
the “pROC” R package [21]. Next, the SVM-RFE algorithm
[22] was used to screen potential genes by using “e1071” R
package [23]. In addition, the random forest (RF) algorithm
[24] was conducted to screen potential genes by using the
“randomForest” R package [25]. Similarly, the ROC curve
was used to test the model reliability by using the “pROC”
R package [21], and the top 10 genes based on %IncMSE
ranking were regarded as the potential genes. Finally, over-
lapping genes among potential genes generated via LASSO,
SVM-RFE, and RF algorithms were considered as potential
biomarkers in the peripheral serum for SONFH.

2.7. Evaluation of the Expression Levels and Diagnostic
Implications for Potential Biomarkers. Wilcoxon’s rank-sum
test was used to analyze the expression levels of potential
biomarkers, and ROC analysis was performed to evaluate
whether potential biomarkers could differentiate SNOFH
samples from control samples by using the “pROC” R pack-
age [21].

2.8. Biological Functions and Regulating Mechanisms of
Potential Biomarkers. Firstly, Gene Set Enrichment Analysis
(GSEA) was performed using the “clusterProfiler” R package
[18] to investigate the biological functions of potential
biomarkers by the ordered gene expression matrix based
on the Pearson correlation between each biomarker and
other genes. Moreover, we also performed transcription

factor (TF) enrichment analysis for potential biomarkers
using the ChIP-X Enrichment Analysis 3 (ChEA3) database
(https://amp.pharm.mssm.edu/chea3/). We also constructed
a competing endogenous RNA (ceRNA) network by predict-
ing miRNAs and lncRNAs as potential biomarkers in the
miRwalk and miRanda databases, separately.

3. Results

3.1. Identification of DEGs in the Peripheral Serum of
Patients with SONFH. By setting the cut-off value as P <
0:01 and ∣log2FC ∣ >1, a total of 562 DEGs, including 318
upregulated and 244 downregulated genes, were identified
in the peripheral serum of SONFH patients compared with
control samples (Figures 1(a) and 1(b)).

3.2. Screening of Target Modules and Genes Based on
WGCNA. To further screen genes related to SONFH,
WGCNA was performed using 562 DEGs. As shown in
Figure 2(a), clustering analysis of all samples showed that
the GSM3507251 sample was poorly clustered. Therefore,
this sample was excluded as an outlier in the WGCNA anal-
ysis. Next, the expression matrix of DEGs in the remaining
39 samples was used to construct a weighted gene coexpres-
sion network. The analysis of soft threshold selection
revealed that gene associations were maximally consistent
with the scale-free distribution and when β = 26 (scale free
R2 = 0:85, Figure 2(b)). Moreover, three coexpression mod-
ules were screened in the weighted gene coexpression
network by merging modules with feature factors greater
than 0.5 and setting the minimum number of genes in a mod-
ule to 30 (Figure 2(c)). Furthermore, we also investigated the
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module correlations and found that MEbrown and MEtur-
quoise presented stronger correlations than MEblue
(Figure 2(d)). Finally, the MEblue module was selected as
the target module because it had the highest correlation with
SONFH (Figure 2(e)), and a total of 94 DEGs in the MEblue
module were regarded as target genes.

3.3. GO and KEGG Enrichment Analyses. GO and KEGG
enrichment analyses were performed to investigate the biolog-
ical functions of the 94 target genes. GO analysis suggested
that these target genes were mainly involved in erythrocyte
differentiation, homeostasis, and development; myeloid cell
homeostasis and development; and porphyrin metabolism-
related BPs (Figure 3(a)). Moreover, these target genes were
mainly associated with the cell cortex, cortical cytoskeleton,
and mitochondrial and organelle outer membrane-related
CCs (Figure 3(a)). Furthermore, KEGG enrichment analysis

suggested that these target genes were enriched only in the
porphyrin- and chlorophyll metabolism-related signaling
pathways (Figure 3(b)).

3.4. Construction of a PPI Network. To further investigate
the protein interactions of the target genes, we constructed
a PPI network. As shown in Figure 3(c), the PPI network
included 52 nodes with 146 edges, and EBP42, ALAS2,
FECH, TMOD1, ANK1, SLC4A1, HBQ1, GYPA, KLF1,
and DMTN could affect more proteins. Thus, these 52 target
genes were retained for subsequent analyses.

3.5. Identification of Potential Biomarkers in the Peripheral
Serum for SONFH Based on Machine Learning Algorithms.
To further identify the potential biomarkers in the periph-
eral serum of SONFH from 52 target genes, machine
learning algorithms were selected and executed. Firstly,
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Figure 4: Identification of potential biomarkers for SONFH based on machine learning algorithms. (a) Log (Lambda) value of the three
genes in LASSO model. (b) The most proper log (Lambda) value in LASSO model. (c) ROC curve of the LASSO model based on three
genes. (d) The optimum error rate of SVM model based on 16 characteristic genes. (e) ROC curve of the RF module based on top 10
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while constructing the LASSO model based on SONFH
and control samples, λ analysis suggested that the model
could accurately predict SONFH with λ = 3 (Figure 4(a)).
Thus, GYPA, TMCC2, and BPGM were identified to build
the LASSO module. We acquired the LASSO coefficient
spectrum of the potential genes according to λ = 3
(Figure 4(b)). In addition, AUC analysis suggested that the
LASSO module based on GYPA, TMCC2, and BPGM
showed excellent performance (Figure 4(c)). On the other
hand, SVM-RFE analysis revealed that the SVMmodel based
on 16 characteristic genes showed an optimum error rate
(0.044, Figure 4(d)). Thus, ANK1, BCL2L1, BPGM, BSG,
FAXDC2, GYPA, HBQ1, HEMGN, IFIT1B, KEL, MPP1,
SLC1A5, SPTB, TMCC2, TNS1, and TSPO2 were identified
as the potential genes. At the same time, the RF algorithm
identified the top 10 genes, including GYPA, RNF10, FECH,
DMTN, FKBP8, BPGM, HEMGN, BNIP3L, and IFIT1B,
from 52 target genes, and the RF module based on these 10
genes also showed good generalization performance
(Figure 4(e)). Finally, three common potential genes, namely,
GYPA, TMCC2, and BPGM, were regarded as the potential
biomarkers in the peripheral serum of SONFH patients using
the above three algorithms (Figure 4(f)).

3.6. Evaluation of the Expression Levels and Diagnostic
Implications for the Potential Biomarkers. To further investi-
gate the role of GYPA, TMCC2, and BPGM in SONFH, we
first observed their expression levels in SONFH patients.
Interestingly, we found that the expression of GYPA,

TMCC2, and BPGM was downregulated in SONFH patients
compared with the control samples (Figure 5(a)). Moreover,
ROC analyses suggested that GYPA, TMCC2, and BPGM
might be used as diagnostic biomarkers in the peripheral
serum of SONFH patients (Figure 5(b)).

3.7. Biological Functions and Regulating Mechanisms of the
Potential Biomarkers. To further investigate the biological
functions and regulatory mechanisms of GYPA, TMCC2,
and BPGM, GSEA was performed based on their ordered
gene expression matrix. As shown in Figure 6, GO and
KEGG analyses revealed that GYPA, TMCC2, and BPGM
are mainly involved in the B-cell receptor, endocytosis, FC
gamma R-mediated D phagocytosis, T-cell, and natural
killer cell-mediated cytotoxicity signaling pathways and are
associated with activation of the innate immune response,
adaptive immune response, antigen processing and presen-
tation, antigen receptor signaling pathways mediated by
antigen receptors, ATP metabolism, and B cell activation
(Figure 6).

Moreover, to investigate the regulatory mechanisms of
GYPA, TMCC2, and BPGM, we first predicted their TFs and
constructed a TF-potential biomarker network (Figure 7(a)).
Notably, GYPA might be regulated by ZBTB33, SOX9,
ESR1, and BACH1; BPGM might be regulated by CTCFL,
FOXO1, TCF7L2, USF2, RBPJ, and so on, and TMCC2 could
be regulated by MAFK, JUN, SOX11, AR, and so on
(Figure 7(a)). Furthermore, we also predicted the targeted
miRNAs and lncRNAs of GYPA, TMCC2, and BPGM and
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Figure 6: GSEA of potential biomarkers: (a) GO results for BPGM; (b) KEGG results for BPGM; (c) GO results for GYPA; (d) KEGG results
for GYPA; (e) GO results for TMCC2; (f) KEGG results for TMCC2.
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Figure 7: The regulating mechanisms of potential biomarkers. (a) The TF enrichment analysis of potential biomarkers. Blue diamonds
indicate predicted TFs, and red ovals indicate potential biomarkers. (b) The ceRNA network of potential biomarkers. Red circles indicate
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constructed a ceRNA network (Figure 7(b)). Interestingly,
only miRNAs were predicted for GYPA and BPGM, and the
corresponding lncRNAs were not predicted (Figure 7(b)).

4. Discussion

SONFH is a complicated disease of the femoral head with
complex pathogenesis, including genetic and environmental
factors [26]. According to statistics, there are approximately
36,000 to 48,000 new SONFH patients in China each year
[27, 28]. Currently, the clinical diagnosis of SONFH is some-
times full of significant difficulties due to the lack of frequent
symptoms and valid diagnostic biomarkers, especially in the
early stage of SONFH, and ultimately resulting in that most
patients miss the best time for treatment and become diffi-
cult to reverse [29, 30]. Although total hip replacement is
regarded as a proven treatment for femoral head necrosis,
patients with SONFH are often too young to undergo total
hip replacement. Thus, they still struggle with the psycho-
logical and economic burden of a revision surgery [31].
Therefore, identifying potential biomarkers is essential for
the diagnosis of SONFH.

In the present study, we first identified 562 DEGs in the
peripheral serum obtained from SONFH patients. Next, 94
genes of them were identified as target genes based on
WGCNA. Interestingly, these 94 target genes were mostly
related to erythrocyte differentiation, homeostasis, and
development, myeloid cell homeostasis and development,
and porphyrin metabolism-related BPs (Figure 3(a)). Thus,
we speculated that these genes may play key roles in SONFH
by regulating erythrocytes and myeloid cells. Recent studies
have found that erythropoietin can protect rat models of
SONFH by inhibiting the apoptosis of osteoblasts and oste-
ocytes and increasing the expression of VEGF [32, 33]. In
addition, increasing evidence has revealed that erythropoie-
tin can promote bone repair in SONFH by regulating the
hypoxia-inducible factor signaling pathway [34, 35].
Furthermore, erythropoietin also can prevent bone loss in
mouse models of osteonecrosis of the femoral head by regu-
lating osteogenesis, angiogenesis, and cell apoptosis [36]. On
the other hand, we found that 94 target genes were enriched
only in the porphyrin- and chlorophyll metabolism-related
signaling pathways (Figure 3(b)). Clearly, metabolism is a
key risk factor for nontraumatic SONFH [37, 38]. Therefore,
our study may contribute to the understanding of the molec-
ular mechanisms underlying SONFH.

Additionally, we further investigated the protein interac-
tions among 94 target genes and screened 52 genes by con-
structing a PPI network. Finally, we identified GYPA,
TMCC2, and BPGM as potential biomarkers using LASSO
logistic regression, SVM-RFE, and RF algorithms. GYPA
(Glycophorin A), a major sialoglycoprotein of the human
erythrocyte membrane, has been found to be related to
blood immunity by regulating the proliferation and differen-
tiation of hematopoietic and immunocompetent cells in
human marrow [39]. Thus, GYPA may play a critical role
in SONFH by regulating blood immunity and red blood
cells. TMCC2 (Transmembrane and Coiled-Coil Domain
Family 2) has been revealed to be related to human erythroid

differentiation [40]. Moreover, TMCC2 can affect AβPP
metabolism [41] and nitrogen metabolism and excretion
[42]. Hence, TMCC2 may play a key role in SONFH by
affecting erythroid differentiation and metabolism. BPGM
(Bisphosphoglycerate Mutase), a small molecule found at
high concentrations in red blood cells where it binds to
and decreases the oxygen affinity of hemoglobin, is associ-
ated with erythrocyte metabolic reprogramming in chronic
kidney disease [43]. More importantly, BPGM is related to
erythrocytosis [44, 45] and neutrophilia [46]. Therefore,
BPGM may play a decisive role in SONFH by affecting ery-
throid proliferation and immunity. Notably, no studies have
reported the role of GYPA, TMCC2, and BPGM in SONFH.
Thus, further investigations are necessary.

Finally, we also investigated the biological functions and
regulatory mechanisms of GYPA, TMCC2, and BPGM.
Interestingly, GSEA revealed that GYPA, TMCC2, and
BPGM were mainly involved in immune-related BPs and
signaling pathways, such as T- and B-cell receptor signaling
pathways. Currently, an increasing number of studies have
shown that the immune response has a significant impact
on the occurrence and development of SONFH. For exam-
ple, it has been suggested that macrophages and CD4+ T
cells are associated with SONFH [47, 48]. Therefore, GYPA,
TMCC2, and BPGM may play key roles in SONFH by regu-
lating the immunity. Moreover, we also explored the regula-
tory mechanisms of GYPA, TMCC2, and BPGM and found
that GYPA might be regulated by hsa-miR-3137, and BPGM
might be regulated by hsa-miR-340-3p. However, to the best
of our knowledge, their regulatory mechanisms are rarely
studied. Thus, further studies are required in the future.

5. Conclusion

In summary, 562 DEGs were screened between the peripheral
serum of SONFH patients and control samples. Moreover,
GYPA, TMCC2, and BPGM were identified as potential bio-
markers in the peripheral serum of SONFH patients based
on WGCNA and machine learning algorithms. Furthermore,
we found that GYPA might be regulated by hsa-miR-3137
and that BPGM might be regulated by hsa-miR-340-3p.
Therefore, our study may contribute to the understanding of
SONFH and may help in improving the diagnosis of SONFH.
However, further studies are needed to investigate the roles of
GYPA, TMCC2, and BPGM.
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