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Background. Diabetic nephropathy (DN), a significant cause of chronic kidney disease (CKD), is a devastating disease worldwide.
Objective. The aim of this study was to reveal crucial genes closely linked to the molecular mechanism of tubulointerstitial injury
in DN. Methods. The Gene Expression Omnibus (GEO) database was used to download the datasets. Based on this, a weighted
gene coexpression network analysis (WGCNA) network was constructed to detect DN-related modules and hub genes. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichments were performed on the selected hub
genes and modules. Least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed on the
obtained gene signature. Results. The WGCNA network was constructed based on 3019 genes, and nine gene coexpression
modules were generated. A total of 57 genes, including 34 genes in the magenta module and 23 genes in the purple module,
were adapted as hub genes. 61 significantly downregulated and 119 upregulated genes were screened as differentially expressed
genes (DEGs). 25 overlapping genes between hub genes chosen from WGCNA and DEG were identified. Through LASSO
analysis, a 9-gene signature may be a potential prognostic biomarker for DN. To further explore the potential mechanism of
DN, the different immune cell infiltrations between tubulointerstitial samples of DN and healthy samples were estimated.
Conclusions. This bioinformatics study identified CX3CR1, HRG, LTF, TUBA1A, GADD45B, PDK4, CLIC5, NDNF, and
SOCS2 as candidate biomarkers for the diagnosis of DN. Moreover, DN tends to own a higher proportion of memory B cell.

1. Introduction

Diabetic kidney disease (DKD), also known as diabetic
nephropathy (DN) in the past, usually occurs in patients with
type 1 and type 2 diabetes mellitus (DM) without adequate
long-term glycemic control and is the leading causes of death
in patients with diabetes [1]. DN is one of the most important
causes of chronic and end-stage renal disease (ESRD) world-
wide [2]. In the United States, about 200,000 patients go
through ESRD because of DN and 50,000 new patients start
dialysis each year [2]. DN patients with ESRD are faced with
an approximately 20% annual mortality rate, which is higher
than the rate for many solid cancers (including prostate,
breast, or even renal cell cancer). The most important of all,
the dialytic patients with diabetes have higher mortality than
those without diabetes [3]. As a traditional point, glomeru-

lopathy was regarded to play a central role in the progression
of DN, while tubulopathy was recently reported as an impor-
tant diagnosis target in DN [4, 5]. However, the underlying
mechanisms of diabetic tubulointerstitial injury in the pro-
gression of DN remain poorly understood.

Gene network analysis is a method to find key genes by
dividing genes into different modules by the similarity of
expression, which helps to systematically understand the
gene function at the molecular level [6]. Coexpression net-
works have been found useful for describing the pairwise
relationships among gene transcripts and in identifying the
early detection biomarkers and therapeutic targets [7–9].
Until now, various biological processes were elucidated,
including cancer [10–12] and noncancerous diseases [6, 13,
14]. Thereby, the weighted gene coexpression network anal-
ysis (WGCNA) is a method for the analysis of the gene
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expression patterns of multiple samples. It can cluster genes
and form modules by similar gene expression patterns and
analyze the relationship between modules and clinical sub-
types [15]. In this study, according to the WGCNA algo-
rithm, the gene expression network should be assumed to
follow a scale-free distribution. Within this bioinformatics
analysis, gene coexpression networks and a hierarchical clus-
tering tree should be built by estimating the dissimilarity
coefficients of different nodes. Moreover, modules should
be identified by classifying high similarity genes into the
same modules and low similarity genes into different mod-
ules, finally identifying the corresponding gene modules for
the clinical characteristics.

This research was aimed at revealing DN-related specific
hub genes and the respective potentially involved pathways.
Based on the Gene ExpressionOmnibus (GEO) database, gene
expression data should be assessed, while subsequently, a
coexpression network should be constructed, and important
modules with diseases and identification of key genes for fur-
ther selecting the hub genes were carried out using WGCNA.
The results of this study should provide better understanding
of the molecular mechanism involved in DN to form a basis
for future research to reveal potential diagnostic and/or thera-
peutic approaches.

2. Materials and Methods

2.1. Datasets. The microarray dataset GSE104954 including
the tubulointerstitial transcriptome from the European
Renal cDNA Bank (ERCB) subjects with 105 kidney dis-
ease samples and 21 living donor biopsies was downloaded
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE104954) [16]. Samples included in
this analysis have been previously analyzed using older
CDF definitions and are included under previous GEO
submissions—GSE47184 (chronic kidney disease samples)
and GSE32591 (IgA nephropathy samples). Diabetic
nephropathy (DN, n = 17) and 21 healthy donors’ samples
were chosen.

2.2. Data Processing. The gene expression information was
achieved through microarray information by the expression
value of samples from the GEO dataset. Microarray samples
were matched with corresponding genes by using annota-
tion information. Samples with more than one gene were
eliminated, and the averaged value was calculated for genes
corresponding to more than one sample. The level of
expression was calculated using variance analysis (12,074
genes), and selected genes with a variance greater than all
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Figure 1: Cluster analysis of samples to detect outliers. All samples are located in the clusters and are divided into two clusters.
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the quartiles of variance (3019 genes) were selected for fur-
ther coexpression network construction. Prior to performing
the WGCNA calculation, genes and samples with too many
missing values were firstly checked by using the goodSam-
plesGenes function (from WGCNA package) [16]. Then,
the samples were clustered to see if there are any obvious out-
liers, and two clusters without outlier were observed.

2.3. Coexpression Network Construction. Firstly, the expres-
sion values of 3019 genes in 38 samples were used to con-
struct a scale-free coexpression network using the
WGCNA algorithm. The soft-thresholding power was calcu-
lated by network topology analysis, and “sft$powerEstimate”
was chosen as the soft-thresholding power [16]. Subse-
quently, an adjacency matrix was constructed to describe
the correlation strength between the nodes. The correlation
between genes was calculated by Pearson correlation matrix
and the means of the connecting rod. Then, adjacency to the
topological overlap matrix (TOM) was converted, which is a
method to quantitatively describe the similarity in nodes by
comparing the weighted correlation between two nodes and
other nodes. Average linkage hierarchical clustering was per-
formed based on the TOM-based dissimilarity measure to
group genes with similar patterns into modules, each con-
taining at least 30 genes (minModuleSize = 30). Finally, the

module eigengene (ME) was calculated, which was defined
as the first principal component of the expression matrix
for a given module, hierarchically clustering and merging
similar modules (abline = 0:28).

2.4. Identification of Clinically Significant Modules. The
module eigengene (ME) was correlated with different disease
types to quantify module–trait associations and to discover
the most significant associations to determine the interesting
modules and clinical traits. Using gene significance (GS, the
correlation between the gene and the trait) and module
membership (MM, the correlation of the module eigengene
and the gene expression profile) helps to quantify associa-
tions of genes with DN and to identify genes as candidates
for subsequent analysis.

2.5. Functional Enrichment Analysis. A Gene Ontology (GO)
analysis was performed on the interesting modules, which
were relatively associated with clinical features by using the
“ClusterProfiler,” an R package for statistical analysis and
visualization of functional profiles for genes and gene clusters
(https://www.bioconductor.org/packages/release/bioc/html/
clusterProfiler.html) [17]. Adjusted P < 0:002 was used as the
threshold to identify the enriched GO terms and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways.
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Figure 2: Analysis of network topology for various soft-threshold powers. (a) shows the scale-free fit index (y-axis) as a function of the soft-
threshold power (x-axis). (b) displays the mean connectivity (degree, y-axis) as a function of the soft-threshold power (x-axis). The red line
refers to an R2 cutoff of 0.9.
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2.6. Identification of the Hub Genes. The genes with MM>
0:8 and GS > 0:8 in magenta and purple modules, i.e., 34
and 23 genes chosen from magenta and purple modules as
hub genes and DEG, respectively, were identified by using
the limma package, with log 2 − fold change ≥ 1 and P <
0:001 as cutoff values (https://bioconductor.org/packages/
release/bioc/html/limma.html). The analysis was performed
in R language version 3.46.0, and 25 overlapped genes were
selected for LASSO regression analysis, which was per-
formed with the glmnet package (https://cran.r-project.org/
web/packages/glmnet/index.html) and resulted in 9 genes
filtered out [18].

2.7. Diagnostic Value and Functional Analysis of Hub Genes.
To validate hub genes’ diagnostic and prognostic value, ROC
analysis was performed by using the pROC [19] package in
R and PCA on these genes. At the same time, the PCA plot
was visualized by using the ggplot2 package in R [20].
GSVA, a gene set enrichment (GSE) method that estimates
variation of pathway activity over a sample population in
an unsupervised manner, was utilized on the expression of
hub genes to further investigate the potential functions of
hub genes [21].

2.8. Immune Infiltration Analysis via CIBERSORT. In order
to have a deep understanding of the immune microenviron-
ment in DN, the CIBERSORT method was used to analyze
the tubulointerstitial transcriptome data. The procession

was that the CIBERSORT was applied with a signature
matrix file “LM22” at 1000 permutations in the R software
and the proportions of 22 immune cells, including naive B
cells, CD8+ T cells, naive CD4+ T cells and 19 other kinds
of immune cells [22]. Boxplot was used to show the signifi-
cantly different infiltration level of immune cells between
DN and healthy samples by using “ggplot2” and “ggpubr”
R packages.

3. Results

3.1. Construction of Weighted Gene Coexpression Network
Identification of Modules Associated with Different Forms of
Kidney Diseases. After data processing, genes with variances
greater than 75% were chosen for further analysis, achieving
a total of 3019 genes. With 3019 genes and 38 samples, sam-
ples were clustered to detect outliers by using the hclust
function in R and average method (Figure 1), and there were
samples that were obviously divided into two clusters. To
choose a proper soft-thresholding power in order to meet
the criterion of approximate scale-free topology, the func-
tion “pickSoftThreshold” was performed, which returns a
set of candidate powers. The soft-power threshold β5 was
determined by the function “sft$powerEstimate” (Figure 2).
Using power 5, the adjacencies were calculated, following
transformation of the adjacency into a TOM to produce a
hierarchical clustering tree (dendrogram) of genes to iden-
tify 9 modules. Furthermore, modules whose expression
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Figure 3: Clustering dendrogram of genes. Clustering based on topological overlap, together with assigned merged module colors and the
original module colors. Each leaf, which is a short vertical line, corresponds to a gene. Each color responds to an identified module.
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profiles were very similar with choosing a height cut of 0.28
were merged. Finally, 9 modules, ranging from 1279 genes in
the purple module to 57 genes in the green-yellow module,
were revealed, with an extra module (grey) reserved for
unassigned genes, which contained 208 genes (Figure 3).

3.2. Correlation between Each Module and Choosing of
Interesting Modules. The associations between modules and
DN were quantified by correlating eigengenes in each mod-
ule with diseases types and visualization of the correlations
(Figure 4). Choosing relatively strong associations between
clinical traits and modules, box plots were also performed
(Figure 5). There were two modules highly related to DN
clinical traits, including the magenta (255 genes, P < 0:001
), which was negatively associated with the disease, and the
purple (1279 gens, P < 0:001) module, which was positively
associated with the disease. In the following analysis, genes

that had a high significance for weight as well as high mod-
ule membership in the two interesting modules were identi-
fied by using the GS and MM measures (Figure 6). The two
scatterplots, reflecting high correlation between GS and
MM, imply that genes significantly associated with a trait
were often the most important (central) elements of modules
associated with the trait.

3.3. Functional Enrichment Analysis. To explore the poten-
tial mechanism of DN and assess prospective functions of
the genes within the key module, GO and KEGG pathway
analyses were conducted on the magenta and purple mod-
ules. Results showed that genes in the magenta module were
mainly enriched in kidney development, renal system devel-
opment, and urogenital system development, whereas genes
in the purple module were mainly enriched in “neutrophil
activation involved in immune response,” “T cell” activation,
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and “neutrophil degranulation” (Figure 7). KEGG enrichment
analysis showed that genes in the purple module were mainly
enriched in the “phagosome,” “complement and coagulation

cascades,” and “hematopoietic cell lineage” and genes in the
magenta module weremainly enriched in “collecting duct acid
secretion” and the cancer-related pathway (Figure 8).
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3.4. Hub Gene Identification. Out of the modules, 34 and 23
genes were selected in the magenta and purple modules,
which were highly associated with DN and module
(GS > 0:8, MM> 0:8). Using a log 2 − fold change ≥ 2 and P
< 0:001 as cutoff values, 180 DEGs were identified in patients
with DN, including 61 downregulated genes and 119 upreg-
ulated genes. A volcano plot of the log2-fold change vs. the
P value (-log10 P value) for all genes was shown (Figure 9).
Finally, 25 overlapping genes were identified. Using 25 over-
lapping genes associated with DN, the least absolute shrink-
age and selection operator (LASSO) Cox regression analysis
was utilized, choosing lambda.1se (lambda:1se = 9) as
lambda to further choose biomarkers of DN (Figure 9). The
results showed that 9 genes were filtered out, including
CX3CR1, HRG, LTF, TUBA1A, GADD45B, PDK4, CLIC5,
NDNF, and SOCS2.

3.5. Diagnostic Value and Functional Analysis of Hub Genes.
ROC curves and area under the ROC curve (AUC) showed
their high diagnostic value as biomarkers for DN (Figure 10;
CX3CR1 AUC: 0.969, HRG AUC: 0.961, LTF AUC: 0.983,

TUBA1A AUC: 0.966, GADD45B AUC: 0.997, PDK4 AUC:
0.997, CLIC5 AUC: 1.0, NDNF AUC: 1.0, and SOCS2 AUC:
0.997). In the PCA plot, DN and normal samples were distin-
guishably divided into two clusters (Figure 10). These results
all showed that these hub genes had good diagnostic values.
Moreover, GSVA were performed on these genes to further
explore the function of 9 hub genes (Figure 11). Gene sets
including CYTOKINE_CYTOKINE_RECEPTOR_INTER-
ACTION, CHEMOKINE_SIGNALING_PATHWAY, GAP_
JUNCTION, and PATHOGENIC_ESCHERICHIA_COLI_
INFECTION were significantly upregulated in the DN group.
However, gene sets including MAPK_SIGNALING_PATH-
WAY, CELL_CYCLE, P53_SIGNALING_PATHWAY, JAK_
STAT_SIGNALING_PATHWAY, INSULIN_SIGNALING_
PATHWAY, and TYPE_II_DIABETES_MELLITUSwere sig-
nificantly downregulated in the DN group.

3.6. Immune Infiltration Analysis via CIBERSORT. In order
to confirm the role of immune infiltration in the progression
of DN, CIBERSORT was performed in the tubulointerstitial
transcriptome and immune cells, which were different in
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DN and healthy samples screened. The results showed that
the memory B cell was significantly different between DN
and healthy samples. Boxplot and radar chart were plotted
to visualize the results (Figure 12).

4. Discussion

Diabetic nephropathy (DN) is the leading cause of death in
patients with diabetes [1]. Proximal tubulopathy is reported
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as an important motivator in DN, which is oxygen-deficient
because of increased energy demands and reduced perfusion
combined with nonhypoxia-related forces resulting in divid-
ing the development of tubular atrophy and interstitial fibro-
sis [5].

Many factors such as ROS [23], autophagy [24] and
inflammation [25] are reported to contribute to diabetic
tubulointerstitial injury; however, the mechanisms still
remain to be declared. Applying bioinformatics methods
including high-throughput microarray help to screen hub
genes associated with diabetic tubulointerstitial injury and
provide insight into its pathogenesis.

This study constructed a gene coexpression network,
which can predict clusters of candidate genes involved in
the pathogenesis of DN. It might be hypothesized that
tightly coexpressed gene modules, enriched in shared func-
tional annotation, would provide the most fruitful predic-
tions of candidate gene sets that might underlie a given
biological process. WGCNA, a package provided in CRAN
[26], which provides the WGCNA algorithm to construct
the coexpression network and to study the relationship
between gene expression and clinical traits, was applied.
According to the results, magenta and purple modules were
relatively highly associated with DN. GO enrichment
showed (1) genes in the purple module, which were highly
positively associated with DN, mainly enriched in fibrosis-
and inflammation-associated GO terms, such as “T cell acti-
vation,” “neutrophil activation involved in immune
response,” “collagen-containing,” and “extracellular matrix,”
and (2) genes in the magenta module, which were negatively

associated with DN, mainly enriched in GO terms involved
with the maintenance of normal kidney development and
function, such as “kidney development,” “renal system
development,” and “urogenital system development.” The
results of the KEGG pathway analysis are consistent with
the GO enrichment analysis: the purple module is mainly
associated with inflammation, such as the “chemokine sig-
naling pathway” and “antigen processing and presentation”;
the magenta module is mainly associated with pathways
involved in oxidative stress and fibrosis in DN, such as the
HIF-1 signaling pathway, AMPK signaling pathway, and
p53 signaling pathway [27–29]. According to the results of
gene enrichment analysis, the positive module was mainly
involved in immune activation and fibrogenesis, whereas
the negative module was mainly associated with kidney
development and repair. Therefore, it can be hypothesized
that genes in the magenta and purple modules may be
potential diagnostic biomarkers and therapeutic targets for
patients with DN. This appears to be one main implication
of the current study.

With threshold values of GS > 0:8 and ME > 0:8, 34 and
23 genes were chosen from the magenta and purple mod-
ules, and a total of 180 DEGs were screened using the limma
package. For further selection of potential biomarkers of
DN, 25 overlapping genes were put into LASSO regression,
and finally, 9 genes were determined as candidate biomark-
ers, including CX3CR1, HRG, LTF, TUBA1A, GADD45B,
PDK4, CLIC5, NDNF, and SOCS2. Furthermore, ROC
curves and PCA plot showed that all nine genes could serve
as biomarkers to distinguish DN from healthy samples
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sensitively and accurately. Indeed, all these genes appeared
as promising candidates as therapeutic targets. C-X3-C
motif chemokine receptor 1 (CX3CR1), also known as
CCRL1, is identified as a chemokine receptor that selectively
targets mouse kidney dendritic cells (DCs), which accumu-
late in the tubulointerstitium of CKD and produce human
transforming growth factor-β (TGF-β) to drive the develop-
ment of fibrosis and progression of CKD [29, 30]. Histidine-
rich glycoprotein (HRG) is reported to be an activator of
ErbB4, which can induce Madin-Darby canine kidney cell
tubulogenesis [31]. Roles of lactotransferrin (LTF) are
reported by suppressing oxidative stress-induced cell death,
protecting against inflammation, augmenting autophagy
and antifibrosis in human kidney tubular cells [32]. Tubulin
alpha 1a (TUBA1A) can enhance renal tubular cell prolifer-
ation and tissue repair but reduces cell death and cell-crystal
adhesion to play an important role in kidney stone disease
[33]. However, its role in DN remains to be explored.
Growth arrest and DNA-damage-inducible 45 beta

(GADD45B) participates in mediating cell cycle arrest,
DNA damage repair and apoptosis in response to cell injury
and has an effect in diabetes-induced renal tubular
epithelial-mesenchymal transition (EMT) and apoptosis via
the p38 MAPK and JNK pathways, which may be an impor-
tant mechanism of diabetic kidney injury [34, 35]. The
upregulation of pyruvate dehydrogenase kinase 4 (PDK4)
drives the mitochondrial dysfunction [36]. More impor-
tantly, dysfunctional renal mitochondria serve as pathologi-
cal mediators of DN, and it is reported that the diabetic
milieu and inherited factors that underlie abnormalities in
the mitochondrial function synergistically drive the develop-
ment and progression of DN [37]. Emerging evidence iden-
tified chloride intracellular channel 5 (CLIC5) as a new
component that is enriched in and necessary for foot process
integrity and podocyte function in vivo [38]. Moreover, it
has been shown that podocyte injury and loss contribute to
the progression of DN [39]. The neuron-derived neuro-
trophic factor (NDNF) is a glycosylated, disulfide-bonded
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secretory protein that contains a fibronectin type III domain
and suppresses the EMT in RCC cells to inhibit migration
and invasion of renal cancer cells [40]. EMT has been
reported as a major pathway leading to renal interstitial

fibrosis in DN [41, 42]. NDNF may be a protective factor
in the generation of diabetic tubulointerstitial fibrosis in
DN. Suppressor of cytokine signaling 2 (SOCS2) is a mem-
ber of the SOCS family, a group of related proteins
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implicated in the negative regulation of cytokine action
through inhibition of the Janus kinase/signal transducers
and activators of the transcription (STAT) signal-
transduction pathway [43]. Studies show that overexpres-
sion of SOCS2 in rat mesangial cells inhibited IGF-1-
induced activation of extracellular signal-regulated kinase,
which subsequently reduced type IV collagen and DNA syn-
thesis [44].

Moreover, GSVA was applied to the expression of 9
genes to further explore their biological functions. The
results of GSVA showed that inflammation-related path-
ways, such as CYTOKINE_CYTOKINE_RECEPTOR_
INTERACTION, CHEMOKINE_SIGNALING_PATH-
WAY and GAP_JUNCTION were enriched in the DN
group of these hub genes, suggesting their contribution to
inflammation of tubulointerstitial injury. In order to confirm
the role of immune infiltration in the diabetic tubulointersti-
tial injury, CIBERSORT was conducted in the tubulointersti-
tial transcriptome, and results showed that memory B cells
had a significant difference between DN and healthy tissue.
Memory B cells are greatly expanded in kidneys of patients
with active lupus, and B cell signaling and activation, lipid/
saccharide metabolism and endocytosis pathways were
abnormally upregulated in memory B cells [31]. Their possi-
ble pathophysiological roles are accelerating apoptosis,
poorly costimulating T cells and producing proinflamma-
tory cytokines [45]. In this current study, memory B cells
were accumulated in the tubulointerstitial tissue of DN
patients. The potential pathophysiological roles of memory
B cells in DN remain to be explored.

4.1. Strengths and Limitations. This bioinformatics study
used a comprehensive analytic protocol to reveal different
hub genes, related pathways and immune cells in diabetic
tubulointerstitial injury. The findings can provide a good
basis for future research in the field. Nevertheless, some lim-
itations must be recognized. The main issue is that the cur-
rent analysis was restricted to bioinformatics; a validation
is still pending and required to reveal the real clinical impli-
cations of the findings. In particular, the fact that findings
are limited on the transcriptomic level must be taken into
account. Additionally, no patient-related information can
be considered in such models. Different samples of heteroge-
neous patients are the basis for the dataset. This limits the
ability to draw strong conclusions based on the results. Alto-
gether, the findings are of potential clinical interest; how-
ever, further validation of the results is still strictly needed.

5. Conclusions

In the current study, 9 genes were screened as candidate
diagnostic biomarkers for diabetic tubulointerstitial injury,
including CX3CR1, HRG, LTF, TUBA1A, GADD45B,
PDK4, CLIC5, NDNF, and SOCS2. Furthermore, DN tends
to own a higher proportion of memory B cell. Further
research needs to clarify whether the revealed genes lead to
new diagnostic and therapeutic targets for patients with
DN, for which the current study can form a basis.
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