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Chemokines have been reported to be involved in tumorigenesis and progression and can also modulate the tumor
microenvironment. However, it is still unclear whether chemokine-related long noncoding RNAs (lncRNAs) can affect the
prognosis of colon adenocarcinoma (COAD). We summarized chemokine-related genes and downloaded RNA-seq and clinical
data from The Cancer Genome Atlas (TCGA) database. A total of 52 prognostic chemokine-related lncRNAs were screened by
univariate Cox regression analysis; patients were grouped according to cluster analysis results. Lasso regression analysis was
applied to determine chemokine-related lncRNAs to construct a risk model for further research. This study first investigated
the differences between the prognosis and immune status of two chemokine-related lncRNAs clusters by consensus clustering.
Then, using various algorithms, we obtained ten chemokine-related lncRNAs to construct a new prognostic chemokine-related
lncRNAs risk model. The risk model’s predictive efficiency, validity, and accuracy were further validated and determined in the
test and training cohorts. Furthermore, this risk model played a vital role in predicting immune cell infiltration, immune
checkpoint gene expression, tumor mutational burden (TMB), immunotherapy score, and drug sensitivity in COAD patients.
These findings elucidated the critical role of novel prognostic chemokine-related lncRNAs in prognosis, immune landscape,
and drug therapy, thereby providing valuable insights for prognosis assessment and personalized treatment strategies for
COAD patients.

1. Introduction

Colon adenocarcinoma (COAD) is one of the digestive sys-
tem’s most common and deadly cancers [1]. Colonoscopy
is an early screening method that can effectively prevent
COAD’s occurrence. Still, its insidious onset, high malig-
nancy, and easy metastasis often lead to a worse prognosis
[2]. COAD is characterized by high biological invasiveness
and specific radio- and chemo-resistance, resulting in high
recurrence rates and tumor progression [3]. With the
advancement of surgery, chemotherapy, targeted therapy,
and novel immunotherapy, the efficacy and survival of
COAD patients have improved significantly. However,
advanced COAD patients are still prone to recurrence and
metastasis, and only a small number of patients benefit from
the above treatment. The common factors are epigenetic

changes and accumulation [4]. Thus, identifying effective
prognostic biomarkers and their underlying functional char-
acteristics may contribute to accurate survival prediction
and optimal treatment of COAD patients.

Long noncoding RNAs (lncRNAs) are composed of
sequences >200 bp and lack protein-coding capacity [5].
Many lncRNAs are involved in gene regulation and various
biological functions at the transcriptional, posttranscrip-
tional, and epigenetic levels, including the recent discovery
that some lncRNAs can encode small peptides/proteins [6].
Accumulating evidence showed that aberrant expression of
lncRNAs is not only associated with tumor malignancy but
many chemically modified lncRNAs have been validated in
various cancers [7, 8]. There may be interactions between
these modifications, with some competitive compensation.
Notably, multiple lncRNAs have been identified as prognostic
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biomarkers that can be used for tumor subtype identification,
treatment response prediction, and modulation of immune
status [9]. Studies on the clinical and biological functions of
tumor-related lncRNAs are still being reported.

Chemokines are a class of cytokines with the chemotac-
tic activity that has been reported to affect tumorigenesis and
serve as potential therapeutic targets. The dysregulation of
chemokines and chemokine receptors has been closely asso-
ciated with tumor progression, including COAD [10]. For
example, EMT-mediated CXCL1/5 can modulate resistance
to anti-EGFR therapy in colorectal cancer, and CXCL1/5
may be a potential serum biomarker for predicting colorectal
cancer resistance to EGFR therapy [11]. Another chemokine,
CCL11, exacerbates colitis and inflammation-related colon
tumorigenesis [12]. Chemokines can also affect the infiltra-
tion of various immune cells and the tumor microenviron-
ment, thereby affecting tumor progression. CXCL14 may
act as an important factor in determining the immune
microenvironment in gliomas, thereby promoting antitumor
CD8+ T cell responses [13]. CCL24 can promote multiple
cancer progression, including COAD, through M2 macro-
phage polarization, angiogenesis, invasion and migration,
and eosinophil recruitment [14]. lncRNAs are also involved
in the chemokine regulation of colon tumors; for example,
chemokine ligand 5 is engaged in tumor-associated den-
dritic cell-mediated colon cancer progression through non-
coding RNA MALAT-1 [15]. These reports suggested that
chemokine-related genes or lncRNAs play critical roles in can-
cers, especially tumor microenvironments (TMEs). Based on
this, studying the characteristics of chemokine-related
lncRNAs is of great significance for understanding how
lncRNAs affect the prognosis, immune status, and tumor-
related treatment of COAD patients.

The tumor microenvironment (TME), as an essential
component of malignancies, plays multiple roles in tumori-
genesis, progression, metastasis, recurrence, and therapy
resistance [16]. Complex interactions between tumor cells
and the TME can promote tumor progression. Xiao et al.
found that the tumor-infiltrating immune cells (TIICs) in
the TME environment are highly valued in predicting cancer
prognosis [17]. Recent studies have reported that immune
checkpoint proteins are associated with TME and can regu-
late immune signaling pathways to evade immune responses
and promote tumor progression [18]. Furthermore, some
articles showed that tumor mutational burden (TMB) was
markedly correlated with 21 tumor patients, and there were
specific differences in TMB among different tumors [19].
Jiang et al. reported that immune cell infiltration and TMB
scores could synergistically predict survival in gastric cancer
patients [20]. To elucidate how the chemokine-related
lncRNAs network affects the TME and TMB, it is necessary
to understand the crosstalk between different lncRNA pat-
terns. Understanding this network may provide essential
insights into COAD patients’ survival, tumor immunity,
and new therapeutic options.

This study first investigated the differences between the
survival outcomes and immune status of two chemokine-
related lncRNA clusters by consensus clustering. We then
constructed a new risk model of prognostic chemokine-

related lncRNAs that played a crucial role in predicting
immune cell infiltration, immune checkpoint gene expres-
sion, TMB, immunotherapy score, and drug sensitivity in
COAD patients. Furthermore, we analyzed the prognostic
value and expression level of each lncRNA in this model in
COAD patients. This study will help to explore the role of
prognostic chemokine-related lncRNAs and provide new
clues for the occurrence, progression, and treatment of
COAD.

2. Materials and Methods

2.1. Data Acquisition and Processing. Transcriptome
sequencing and clinical data of COAD patients were down-
loaded from The Cancer Genome Atlas (TCGA-COAD)
database. Raw data were collected from 473 tumor samples
and 41 normal tissues using Perl software (version 5.32.1).
We extracted expression data for lncRNAs and mRNAs by
annotating gene symbols using human GTF files. We
excluded COAD patients with no overall survival value or
missing status to reduce statistical bias. The relevant clinical
information involved age, grade, stage, TNM stage, survival
status, and survival time, as shown in Supplementary
Table S1.

2.2. Obtaining the Prognostic Chemokine-Related lncRNAs.
Based on previous studies on chemokines, we obtained 64
chemokine-related molecules (Supplementary Table S2) [21,
22]. The chemokine-related lncRNAs were screened and
extracted using Pearson correlation analysis with the criteria
of jPearsonRj > 0:3 and p < 0:001. lncRNAs associated with
one or more of the 64 chemokines regulators were defined
as chemokine-related lncRNAs. After obtaining chemokine-
related lncRNAs, we combined the survival status and
survival time of COAD patients with lncRNA expression
data. Univariate Cox regression analysis was performed to
determine the prognostic chemokine-related lncRNAs with
a p value of 0.05 via the survival package (Supplementary
Table S3). In addition, differences in the expression of
prognostic chemokine-related lncRNAs between tumor and
normal samples were tested using Wilcoxon signed rank
and shown as boxplots.

2.3. Analysis of COAD Subtypes Defined by Prognostic
Chemokine-Related lncRNAs. The consensus clusters were
determined based on the expression and underlying biolog-
ical features of prognostic chemokine-related lncRNAs by
the ConsensusClusterPlus package (pfeature = 1, resample
rate = 0:8, and iterations = 50). The optimal k value (k = 2)
was determined to obtain relatively stable clusters, namely,
clusters 1 and 2. The prognostic value of COAD patients in
subgroups was analyzed using the Kaplan–Meier method
and log-rank tests. The Chi-square test or Fisher’s exact test
was utilized to determine the relationship between clinical
characteristics and clusters. In addition, the differential
expression and clinical features of prognostic chemokine-
related lncRNAs were displayed using the pheatmap package.

2.4. Immune Infiltration Level Analysis among the
Subgroups. We used the CIBERSORT algorithm to assess
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immune cell infiltration, converting a matrix of gene expres-
sion in the sample into the content of immune cells, with
a pvalue < 0:05 indicating reliable cellular composition (Sup-
plementary Table S4). Immune, stromal, and ESTIMATE
scores were calculated to compare immune infiltration
between the subgroups using the ESTIMATE algorithm by
the limma and ggpubr packages (Supplementary Table S5).
Differences in immune cell infiltration between the two
clusters were verified using the vioplot package. Differences
in immune checkpoint inhibitor molecules between
subgroups were assessed using the Wilcoxon test. In
addition, the coexpression correlation between chemokine-
related lncRNAs and immune checkpoint inhibitors was
detected by corrplot and limma packages.

2.5. Construction and Validation of Risk Model. The 52 prog-
nostic chemokine-related lncRNAs were used to construct the
risk model by LASSO regression analysis. COAD patients with
survival data were randomly divided into training and testing
groups using R caret, glmnet, surviner, and the survival pack-
ages. The training cohort was used to build the risk model, and
the entire cohort and the test cohort were used to validate the
risk model (Supplementary Table S6). We identified ten
chemokine-related lncRNAs to build a risk model. The risk
score formula was as follows: risk score=∑n

i=1Coefi ∗ Expi,
where Coefi represents the coefficient, and Expi represents
the expression value of chemokine-related lncRNA. The
training and test groups were divided into the high-risk and
low-risk groups based on the median score. The prognostic
significance of the high- and low-risk groups was assessed
using the survival package. Receiver operating characteristic
(ROC) curves were used to evaluate the predictive accuracy
and validity of the model via the “survivalROC” package.
We plotted risk curves for COAD patients in the training
and test groups and evaluated survival status and risk with
the training and testing groups.

2.6. Independent Prognostic Value of the Risk Model and
Pathways. To investigate whether risk score might be an
independent prognostic factor, and the clinical characteris-
tics of COAD patients by univariate and multivariate Cox
regression analysis, ROC curve was used to verify the clinical
application value of the risk model. The predictive power of
risk scores in age, sex, grade, stage, and TNM stage sub-
groups was validated by stratified survival analysis. We con-
structed a nomogram to predict the survival time of COAD
patients using the “survival” and “regplot” R packages, and
the accuracy of the nomogram was assessed by obtaining a
calibration curve using the “rms” package. The hallmark
(h.all.v6.2.entrez.gmt) and KEGG were acquired from the
Molecular Signatures Database (MSigDB) using GSEA
V3.0 and the GSEABase, and reshape2 packages. The false
discovery rate FDR < 0:05 and p < 0:05 was statistically sig-
nificant. Furthermore, the potential biological mechanisms
of high- and low-risk groups were investigated using gene
set variation analysis (GSVA).

2.7. Correlation of the Risk Model with the TME and Immune
Cell Infiltration. The immune cell infiltration in all tumor

samples was calculated using different software (XCELL,
TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBER-
SORT-ABS, CIBERSORT); a pvalue < 0:05 indicated that
the inferred cellular composition is reliable (Supplementary
Table S7). The immune cell correlation analysis showed
which immune cells were associated with the patient’s risk
score and obtained a correlation bubble plot using the
scales and tidyverse packages. We examined the differences
between the two groups for immune, stroma, and
ESTIMATE scores by Wilcoxon’s test and plotted the
results as vioplot. The correlation analysis of prognostic
chemokine-related lncRNAs and immune checkpoint
inhibitory molecules were detected using the R packages
“limma,” “reshape2,” “ggplot2,” and “ggpubr,” and then
plotted by the corrplot package. Furthermore, single-
sample gene set enrichment analysis (ssGSEA) was utilized
to evaluate the differences in immune-related pathways
between high-risk and low-risk groups by using the R
packages “limma,” “GSVA,” “GSEABase,” “ggpubr,” and
“reshape2”.

2.8. Correlation between the Risk Model and Tumor
Mutation Burden. Tumor mutation burden (TMB) data of
COAD was downloaded from the TCGA database. The
COAD patients were classified into high or low TMB groups
based on median values. The correlation between the TMB
and risk model was verified by using “ggpubr,” “reshape2,”
and “ggplot2” packages. We also visualized the top 20 genes
with the highest mutation frequency in high-risk (Supple-
mentary Table S8) and low-risk groups (Supplementary
Table S9) using the maftools package. Survival differences
among patients with different TMB statuses and risk scores
were examined by survival analysis.

2.9. Clinical Value of the Risk Model in Immunotherapy and
Targeted Drug Screening. We downloaded the data of the
immunotherapy score from the TCIA database (Supplemen-
tary Table S10) and analyzed the effects of immunotherapy
in high- or low-risk groups. Then, the drug sensitivities were
assessed in patients with different risk groups using the
limma, ggpubr, and pRRophetic packages, which predict
50% inhibitory concentration (IC50) of common drugs for
COAD. Subsequently, we determined drug sensitivities in
different risk groups and screened for potential therapeutic
agents that might affect patient survival. Differences between
groups were assessed using the Wilcoxon signed-rank test,
with p < 0:001 as the screening criterion.

2.10. Tissue Sample Collection, RNA Extraction, and
Quantitative Real-Time PCR. We collected 20 human
COAD tissues and adjacent normal tissues from the First
Affiliated Hospital of Chongqing Medical University. This
study was approved by the Ethics Committee of the First
Affiliated Hospital of Chongqing Medical University, and
all patients signed the informed consent. Total RNA from
COAD samples was extracted using the Trizol reagent
(Takara, Japan) according to the manufacturer’s protocol.
Total RNA was reverse-transcribed to cDNA using the Pri-
meScript™ RT Reagent Kit (#RR037A, Takara, Japan). All
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primers were designed and synthesized by Sangon Biotech
(Sangon Biotech, China, Supplementary Table S11). The
qRT-PCR assays were performed using TB Green Premix
Ex Taq II (Takara, #RR820A). The relative expression (fold
change) of the target molecules was calculated using the 2
− ΔΔCT method. GAPDH was the internal control.

2.11. Statistical Analysis. All data were analyzed, and images
were generated using R (version 4.1.3) and GraphPad Prism
(version 8.03, GraphPad Software Inc., USA). Pearson correla-
tion test was used for the correlation analysis. Survival analyses
were performed using the Kaplan–Meier method with a log-
rank test. Wilcoxon signed-rank test and the Kruskal-Wallis
test were used for comparison between groups. The results
of PCR experiments were expressed asmean ± SD, and statis-
tical significance was determined by paired t-test. A p
value < 0:05 indicated statistical significance.

3. Results

3.1. Consensus Clustering of Prognostic Chemokine-Related
lncRNAs. This study’s workflow is shown in Figure 1. After
obtaining chemokine-related lncRNAs, we initially identified
52 prognostic chemokine-related lncRNAs by using univar-
iate Cox regression analysis (Figure 2(a)). The expression of
52 prognostic chemokine-related lncRNAs in tumor and
normal tissues was detected and displayed as heatmaps and
boxplots (Supplementary Figures S1A, S1B). Based on the
similarity in the expression of prognostic chemokine-related
lncRNAs, consensus clustering showed that COAD patients
were divided into 2 subgroups, the cluster stability was the
best, and the CDF value was the lowest. Therefore, the
lncRNAs were divided into clusters 1 and 2 (Figures 2(b)–
2(d)). To assess the survival of chemokine-related lncRNAs
in different clusters, survival analysis showed that patients in
cluster 2 had lower overall survival than those in cluster 1
(Figure 2(e)). The heatmap showed that the clinical
parameters of COAD patients in the two clusters were not
significantly different (Figure 2(f)). Afterward, we found
significant differences in the proportion of infiltrating
immune cells (TIICs) in each COAD sample, providing clues
for further investigation of chemokine-related prognostic
lncRNAs in the tumor microenvironment (Supplementary
Figure S1C).

3.2. Analysis of the TME and Immune Checkpoint Molecules
Clusters 1 and 2. We initially analyzed the differences in
immuneScore and immune cell infiltration and exhibited
a vioplot between clusters 1 and 2. Immune cells such as
Neutrophils and T cells follicular helper were highly clus-
tered in cluster 2, whereas Mast cells resting, Dendritic
cells resting, and T cells CD4 memory resting were highly
aggregated in cluster 1 (Figure 3(a)). Based on the ESTI-
MATE algorithm, the immuneScore, stromalScore, and
ESTIMATEScore in cluster 2 were dramatically higher
than in cluster 1 (Figures 3(b)–3(d)). Then, we verified
the correlation among 22 immune cells in COAD. For
example, immune cells such as Macrophages M0, Mast
cells activated, NK cells resting, and T cells CD4 memory

activated were markedly negatively correlated with cells
such as T cell CD8, NK cells activated, Mast cells resting,
Dendritic cells resting, B cells naïve, and Eosinophils (Supple-
mentary Figure S1D). Next, we examined the expression levels
of some immune checkpoint molecules in the two clusters
and the association of immune checkpoint molecules with
prognostic chemokine-related lncRNAs. The expression
levels of PD-L1, CTLA4, LAG3, PDCD1LG2, HAVCR2,
SIGLEC15, and TIGIT were remarkably higher in cluster 2
than in cluster 1 (Figures 3(e)–3(k)). Furthermore, PD-L1,
CTLA4, LAG3, PDCD1LG2, HAVCR2, and TIGIT were
positively correlated with multiple prognostic chemokine-
related lncRNAs, and only SIGLEC15 was negatively
correlated with the expression of some chemokine-related
lncRNAs (Figure 3(l)). Thus, we found that two chemokine-
related lncRNAs clusters were observably associated with
TME and immune checkpoint molecules.

3.3. Construction and Validation of the Risk Model for
COAD Patients. To identify the most potent prognostic sig-
nature, the lasso regression analyses were performed to iden-
tify potential survival-related chemokine-related lncRNAs,
resulting in the ten best candidates (Figures 4(a) and 4(b)).
The 473 COAD patients were randomized into training
and test cohorts, and a risk score was calculated for each
patient and then divided into high- and low-risk groups
based on the median risk score. The training cohort was
used for the establishment of the risk model. The coef value
of each lncRNA is shown in Figure 4(c). Ten lncRNAs were
identified to construct the prognosis signature in COAD
(Figure 4(d)). Based on the risk pattern of the risk model,
we performed dimensionality reduction for the whole gene,
64 chemokine-related genes, and genes in the risk model
by using principal component analysis (PCA) (Figure 4(e)).
Survival analysis showed that the prognosis of COAD
patients in the high-risk group was worse than that in the
low-risk group in both the training cohort (Figure 4(f))
and the test cohort (Figure 4(g)). To test the accuracy of
the risk model in predicting survival, the ROC curve
revealed that prognostic chemokine-related lncRNAs accu-
rately predicted overall survival in the training cohort, with
AUCs of 0.730, 0.773, and 0.806 for 1-, 3-, and 5-year overall
survival rates (Figure 4(h)). ROC results also displayed a
curve (AUC) of 0.680, 0.781, and 0.697 for the test cohort’s
1-, 3-, and 5-year overall survival rates (Figure 4(i)).

Subsequently, we achieved risk curves and assessed the
survival status and risk of prognostic chemokine-related
lncRNAs (Figures 5(a) and 5(b)). As the risk scores
increased, the number of deaths and the high-risk patient
ratios enhanced. The expression of protective lncRNAs
(AC004846.1 and AL137782.1) decreased with increasing
risk scores, while the expression of risk lncRNAs
(AL513318.2, AP003555.2, VIM-AS1, MYOSLID, SNHG26,
AL161935.3, AC004540.2, and AC073611.1) increased with
increasing risk scores (Figures 5(c), 5(d)). Thus, our risk
model had excellent distinguishing performance in predict-
ing the prognosis and risk of COAD patients. Furthermore,
we found ten prognostic chemokine-related lncRNAs were
expressed differently in tumor and normal tissues and
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displayed as a vioplot (Figure 5(e)). The heat map revealed
the significant differences in the grade, pT, and clinical stage
between the high- and low-risk groups, disclosing a close
correlation between clinical features and the risk model.
The COAD patients with pT3-4 and G3 had higher risk
scores than pT1-2 and G1. Likewise, the risk scores
improved obviously as the clinical stage increased from stage
I to stage IV (Figure 5(f)). These data suggested that the risk
score was dramatically associated with the clinical character-
istics of COAD patients. The above findings demonstrated
that this risk model has robust and stable predictive power.

3.4. Independent Prognostic Factors and Clinicopathological
Correlations of the Risk Model. We further validated the cor-
relation between the risk model and clinical features of
COAD patients. Univariate Cox regression analysis revealed
that age, grade, clinical stage, and risk score were associated
with the prognosis of COAD patients in the training cohort
(Figure 6(a)). Multivariate Cox regression analysis showed
that age and risk scores were markedly correlated with the
survival outcomes of COAD patients in the training cohort
(Figure 6(b)). However, both univariate and multivariate
analyses exhibited that the risk score was not associated with
the prognosis of COAD patients in the test cohort
(Figures 6(c) and 6(d)). To further explore whether the risk
model is superior to other clinical features in terms of prog-
nostic predictive role, the ROC curve confirmed that the risk
model had higher efficiency than other clinical features in
the training and test cohorts (Figures 6(e) and 6(f)). The
nomograms and calibration curves were developed to quan-

tify the prediction of individual survival probability at 1-, 3-,
and 5 years (Figure 6(g)). The consistency index (C-index)
and ROC of the nomogram were acquired to verify the accu-
racy and validity of the nomogram. We derived a C-index of
0.792 for the nomogram associated with multiple clinical
parameters. The calibration curve revealed that the predicted
overall survival was largely consistent with the actual obser-
vations at 1-, 3-, and 5 years (Figure 6(h)). For the ROC of
the overall survival nomogram, the AUC values were
0.680, 0.737, and 0.697 at 1-, 3-, and 5 years, respectively
(Figure 6(i)). Subsequently, the stratified survival analysis
was applied to evaluate the predictive ability of the risk
model for patients with different clinical parameters. Inter-
estingly, we observed that patients in the low-risk group
had better survival outcomes than those in the high-risk
group in all subgroups. Details were as follows: among
COAD patients with aged >60, aged ≤60 years old, female,
male, tumor grade 1-2, tumor grade 3, pT3-4, pN0, pN1-2,
pM0, pM1, stage I-II, and stage III-IV, the high-risk group
had a worse prognosis than the low-risk group (Supplemen-
tary Figure S2). These clinical data analyses confirmed the
good predictive performance of the risk model.

3.5. Analysis of Pathways Associated with the Risk Model. In
this model, multiple active pathways were gained in high-
risk or low-risk groups to study the KEGG pathway enriched
by risk scores and model lncRNAs. GSVA results revealed
numerous carcinogenic- and immune-related signaling
pathways were noteworthily associated with chemokine-
related lncRNAs and risk scores. For example, there was a

R > 0.3, P < 0.001

Univariate analysis P < 0.05

Lasso regression analysis 

Transcriptome data of TCGA-COAD 

LncRNAs expression Chemokine genes

Chemokine-related lncRNAs

Cluster analysis

Prognosis analysis

Tumor microenvironment 

Immune checkpoint

52 Chemokine-related prognostic lncRNAs

Risk model of 10 chemokine-related lncRNAs

Prognosis analysis

Independent prognosis

Predicting survival time

Correlation between model
and clinical parameter

GSEA and GSVA analysis

Correlation between immune
infiltration and model

Estimate TME

Immune pathway analysis Model lncRNAs expression 

Correlation between
model and TMB

TMB difference and survival 

Drug sensitivity and
immune therapy

Figure 1: Flow chart of this study.
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Figure 2: Continued.
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positive correlation between the VEGF, Toll-like receptor,
TGF-β, T cell receptor, Nod-like receptor, MAPK, JAK-
STAT, and B cell receptor and patient risk scores, and these
pathways were active in the high-risk group (Figure 7(a)).
Then, gene set enrichment analysis (GSEA) was performed
to ascertain the enrichment pathways in low-risk patients.
These pathways included the base excision repair, DNA repli-
cation, citrate cycle, pentose phosphate pathway, protein
export, nonhomologous end joining, selenium amino acid
metabolism, ribosome, steroid biosynthesis, RNA polymerase,
mismatch repair, and endometrial cancer (Figures 7(b)–7(h)).
We found that this risk model was associated with tumor- and
immune-related pathways in COAD.

3.6. Correlation Analysis of the Risk Model with Immune Cell
Infiltration and TME. Here, we used various software to cal-
culate the infiltration status of COAD samples and obtain
immune cell infiltration values. First, the correlation analysis

of immune cell infiltration and risk score was calculated,
showing that multiple immune cell infiltrations were associ-
ated with patient risk scores (Supplementary Table S12). The
correlation bubbles displayed that the following immune cell
infiltration levels were positively correlated with the risk
score: memory B cells, naive B cells, naive CD4+ T cells,
CD8+ T cells, monocyte, macrophage M1, myeloid dendritic
cells activated, and activated mast cells. However, infiltration
levels of resting NK cells and resting mast cells were
inversely associated with the risk score (Figure 8(a)). We
then examined significant positive associations between
expression levels of multiple immune checkpoints and risk
scores (Figure 8(b)). In the TME, the average immuneScore,
stromalScore, and ESTIMATEScore were markedly higher in
the high-risk group than in the low-risk group (Figure 8(c)).
Thus, the immune-related data of the risk model were
partially consistent with the chemokine-related lncRNAs
cluster analysis. Next, we identified differences in 13
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Figure 2: Consensus cluster analysis of chemokine-related lncRNAs in COAD. (a) Forest plot of the prognostic value of 52 chemokine-
related lncRNAs in COAD. (b) Consensus clustering cumulative distribution function (CDF) for k = 2 − 9. (c) Relative change in area
under the CDF curve for k = 2 − 9. (d) Consensus clustering matrix for k = 2. (e) Kaplan–Meier survival analysis of overall survival for
COAD patients in clusters 1 and 2. (f) The heatmap of clinicopathological characteristics and lncRNAs expression in clusters 1 and 2. ∗p
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immune-related pathways between the high- and low-risk
groups. The ssGSEA analysis indicated that 12 of the 13
pathways dramatically differed between the high-risk and
low-risk groups, and these 12 pathways were more active in
the high-risk group (Figure 8(d)). In addition, we examined
numerous model molecules associated with immune cell
infiltration, including VIM-AS1, AC004846.1, MYOSLID,
and AL161935.3 (Supplementary Table S13). Our findings
suggested that the risk model was closely correlated to
immune cell infiltration and TME, which could predict
immune cell infiltration and TME in COAD to a certain
extent.

3.7. Correlation between Risk Model and Tumor Mutational
Burden. We downloaded TMB data from TCGA-COAD
samples using R’s “maftools” and divided the TMB data into
high-risk and low-risk data based on the risk score. The
TMB status was then calculated and analyzed in the high-
risk and low-risk groups. Except for APC, TP53, and LRP1B
molecules, the mutation rate in the high-risk group was
more than 5% higher than that in the low-risk group
(Figures 9(a) and 9(b)). We observed the risk score was pos-

itively associated with TMB levels (Figure 9(c)). We also
compared the differences in TMB between low-risk and
high-risk groups, and the results revealed that patients in
the high-risk group had higher TMB levels than in the
low-risk group (Figure 9(d)). We divided the patients into
the high-TMB and low-TMB groups based on the TMB
levels and analyzed survival outcomes. The results indicated
that patients with high TMB had a poor prognosis compared
with patients with low TMB (Figure 9(e)). COAD patients
with high-risk scores in the high TMB group had the worst
survival outcomes. COAD patients in the low TMB group
with high-risk scores also had worse survival outcomes than
low TMB with low-risk scores (Figure 9(f)). Thus, the risk
model was associated with TMB and prognosis.

3.8. Analysis of Drug Sensitivity and Immunotherapy in the
Risk Model. Chemotherapy and targeted therapy are current
strategies to treat COAD; it is critical to understand the
effectiveness and sensitivity of these drugs to different risk
groups. We predicted the sensitivities to common anticancer
drugs, chemotherapeutics, and targeted agents in high- and
low-risk groups of COAD patients. The IC50 values of

0

20

10

SI
G

LE
C1

5 
ex

pr
es

sio
n

Cluster1 Cluster2

Cluster1
Cluster2

Cluster

30

⁎⁎

(j)

0

6

8

4

2

TI
G

IT
 ex

pr
es

sio
n

Cluster1 Cluster2

Cluster1
Cluster2

Cluster

⁎⁎⁎

(k)

A
C0

08
55

6.
1

U
62

63
1.

1
CY

TO
R

A
L5

13
31

8.
2

LI
N

C0
13

01
M

IR
44

35
-2

H
G

A
P0

03
55

5.
2

V
IM

-A
S1

LI
 N

CO
22

57
A

L5
12

30
6.

3
A

C0
04

84
6.

1
LI

N
C0

18
57

A
TP

2B
1-

A
S1

A
L6

62
84

4.
4

M
YO

SL
ID

A
C1

38
20

7.
5

LI
N

CO
23

81
U

62
31

7.
4

SN
H

G
26

A
CO

22
70

6.
1

A
L5

12
30

6.
2

A
L3

91
42

2.
4

A
CO

25
17

1.
4

D
U

BR
LI

N
C0

16
79

A
C0

19
20

5.
1

A
C1

04
97

1.
3

A
C2

43
96

0.
1

LI
 N

CO
25

93
LI

N
C0

08
61

LI
N

C0
14

80
LI

 N
C0

09
26

LI
 N

CO
23

87
A

C0
08

97
2.

2
A

L3
56

41
7.

2
A

L1
61

93
5.

3
LI

N
C0

12
15

A
C0

15
81

9.
1

LI
N

C0
15

03
A

C0
02

09
1.

2
A

C1
38

46
6.

1
A

C0
04

54
0.

2
PC

ED
1B

-A
S1

A
L1

37
78

2.
1

A
C0

83
96

7.
1

LI
 N

CO
20

84
A

CO
24

94
0.

1
A

C0
73

61
1.

1
A

C0
07

54
1.

1
A

L1
33

46
7.

1
A

L8
44

90
8.

1
FA

M
30

A

PD-L1

CTLA4

HAVCR2

LAG3

PDCD1LG2

SIGLEC15

TIGIT
–1

–0.8

–0.6

–0.4

–0.2

0.2

0.6

0.8

1

0

(l)

Figure 3: Analysis of the immune cell infiltration and TME in different clusters. (a) Infiltration levels of 22 immune cell types in clusters 1
and 2 subtypes. (b–d) Immune (b), stromal (c), and ESTIMATE (d) scores among subgroups in COAD. (e–k) Boxplot of the expression
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COAD. (l) Correlation of chemokine-related lncRNAs with differentially expressed immune checkpoint molecules. ∗p < 0:05, ∗∗p < 0:01,
∗∗∗p < 0:001.

11Disease Markers



–2

–1

0

1

2

C
oe

ffi
ci

en
ts

–5.0 –4.5 –4.0 –3.5 –3.0 –2.5

Log lambda

35 25 14 10 9 2

(a)

(b)

Figure 4: Continued.

12 Disease Markers



AC004846.1

AL137782.1

VIM–AS1

AC073611.1

AC014540.2

AL513318.2

MYOSLID

AP003555.2

SNHG26

AL161935.3

–1.0 –0.5 0.0 0.5 1.0

Coef

G
en

e

Regulate

Up

Down

(c)

AL513318.2 1.681 (1.127 – 2.508)0.011
AP003555.2 1.376 (1.203 – 1.573)< 0.001
VIM-AS1 1.408 (1.094 – 1.812)0.008
AC004846.1 6.797 (1.923 – 24.033)0.003
MYOSLID 5.122 (1.414 – 18.560)0.013
SNHG26 1.569 (1.093 – 2.253)0.015
AL161935.3 3.316 (1.276 – 8.617)0.014
AC004540.2 1.194 (1.068 – 1.335)0.002
AL137782.1 0.392 (0.187 – 0.820)0.013
AC073611.1 1.664 (1.155 – 2.397)0.006

Hazard ratiop value

0 5 10 15 20

Hazard ratio

(d)

Figure 4: Continued.

13Disease Markers



–6

6

8

–4

4

–2

2

0

–5 0 5 10 15 20

PC1

PC
3

–25
–20

–15
–10

–5 0
5

PC
2

High
Low

(e)

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (Years)

p < 0.001

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (Years)

112 72 42 21 13 8 5 5 4 1 0 0 0
0112 77 35 23 13 10 7 7 5 4 3 3

High risk
Low riskRi

sk

High risk
Low risk

Risk
+
+

p < 0.001

(f)

Figure 4: Continued.

14 Disease Markers



Camptothecin, Cisplatin, Docetaxel, Vinblastine, Elesclo-
mol, Pazopanib, Bexarotene, and Temsirolimus in the
high-risk group were lower than those in the low-risk group,
indicating that these drugs are more sensitive to the high-
risk patients (Figures 10(a)–10(h)). In contrast, the low-
risk group was more sensitive to BIRB.0796 (Doramapimod)

(Figure 10(i)). Risk stratification also revealed remarkable dif-
ferences in drug sensitivity between high- and low-risk groups
for many other drugs (Supplementary Figure S3). Next, we
downloaded immunotherapy score data from the TCIA
database and obtained the difference in immunotherapy
scores between high- and low-risk groups. The results
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Figure 4: Construction of risk model in COAD. (a and b) The LASSO Cox regression analysis was conducted to construct the risk model.
(c) The corresponding coefficients of 10 prognostic chemokine-related lncRNAs in the risk model. (d) Forest plot of 10 prognostic
chemokine-related lncRNAs in the risk model. (e) Principal component analysis (PCA) for the entire gene cohort. (f and g) Kaplan–
Meier survival curve for the high-risk or low-risk groups in training cohort (f) and test cohort (g). (h and i) ROC curve for predicting 1-
, 2-, and 3-year survival rates of the high-risk or low-risk in training cohort (h) and test cohort (i).
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exhibited that low-risk patients who were single positive for
CTLA4 and negative for both PD-L1 and CTLA4 had
higher immunotherapy scores, indicating that the patients
in the low-risk group would benefit from immunotherapy
(Figures 10(j)–10(k)). Therefore, our risk model was a
potential target for multiple drugs and had vital
implications for guiding the personalized treatment of
patients with COAD.

3.9. Prognostic Value and Expression of each lncRNA in our
Risk Model. To validate more valuable lncRNAs in the risk
model, we further examined each lncRNA’s prognostic value
and expression in COAD patients. Except for AL137782.1,

the remaining high-expressing lncRNAs had a worse progno-
sis in COAD patients than low-expressing lncRNAs, indicat-
ing the expression levels of most lncRNAs in the risk model
guide patient prognosis (Figure 11(a)). Next, we collected 20
COAD tumors and adjacent normal samples and then con-
ducted the qRT-PCR assays to examine the expression levels
of these lncRNAs in clinical samples. Six of ten lncRNAs were
differentially expressed between tumor and normal samples,
including AL513318.2, AP003555.2, VIM-AS1, MYOSLID,
AL137782.1, and AC073611.1 (Figure 11(b)). The expression
trends were consistent with those listed in TCGA-COAD data.
These results suggested that the most lncRNAs of this risk
model might exert a more vital function in COAD.
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Figure 5: Validation of the risk model in the training and testing groups. (a and b) Distributions of risk score and survival status in the
training cohort (a) and the test cohort (b). (c and d) Heatmap of expression levels of chemokine-related prognostic lncRNAs in the
training cohort (c) and the test cohort (d). (e) Boxplot of the expression levels of 10 prognostic chemokine-related lncRNAs in tumor
and normal tissues. (f) Heatmap of correlation analysis between risk score and clinical parameters. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001.
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4. Discussion

Numerous studies have reported that chemokine modifica-
tion events are involved in tumor progression, including
promoting cancer cell differentiation or regulating tumor
formation and metastasis potential [10, 23]. Studies have
also emphasized that chemokines regulate multiple biologi-
cal processes, including mammalian development, stem cell
renewal, immune responses, drug resistance, and tumor pro-
gression [24]. For example, Zeng et al. discovered that the
CCL5/CCR5 axis is involved in the pathological processes
of different diseases such as inflammation, chronic diseases,
cancer, and infection of COVID-19 and the related signaling
pathways of its regulatory axis [25]. Chen et al. found that
the CXCL2/CXCR2 axis induced cancer stem cell signatures
in CPT-11-resistant LoVo colon cancer cells [26]. Due to the
limited predictive power of general prognostic models, a
novel prognostic chemokine-related lncRNAs model could
improve the monitoring and management of malignancies
such as COAD. The study of prognostic chemokine-related
lncRNAs is of great significance for guiding the direction
and goals of COAD research. In this study, we first explored
the differences between the survival outcomes and immune
status of two chemokine-related lncRNAs clusters by con-
sensus clustering. We then constructed a risk model of prog-
nostic chemokine-related lncRNAs and validated the validity
and accuracy of the model in predicting survival and clinical
parameters in COAD patients. Our further analysis showed

that the risk model played a vital role in predicting immune
cell infiltration, immune checkpoint gene expression, tumor
mutational burden, immunotherapy score, and drug sensi-
tivity in COAD patients. Furthermore, we analyzed the
prognostic value and expression of each lncRNA in this
model in COAD patients. This study provided clues for
COAD progression and treatment by comprehensively ana-
lyzing the characteristics of novel prognostic chemokine-
related lncRNAs associated with the immune landscape.

We first obtained RNA-seq profiles of 473 COAD sam-
ples from the TCGA dataset and extracted the chemokine-
related lncRNAs data. Fifty-two prognostic chemokine-
related lncRNAs were identified in COAD patients by uni-
variate Cox regression analysis. By consensus clustering,
COAD patients were classified into subgroups based on the
consistent expression of prognostic chemokine-related
lncRNAs. COAD patients in cluster 2 had worse overall sur-
vival than patients in cluster 1, suggesting that the prognos-
tic chemokine-related lncRNAs cluster affects the survival of
COAD patients. Clinical correlation analysis revealed no sig-
nificant differences in the clinical parameters of COAD
patients between the two clusters. Afterward, we demon-
strated that COAD patients in cluster 2 had higher immune
scores, stromal scores, and ESTIMATE scores than those in
cluster 1, suggesting a higher degree of immune infiltration
in cluster 2 than in cluster 1. These findings were similar
to previous studies that demonstrated lower overall survival
in patients with tumors with high immune and stromal
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Figure 6: Independent prognosis value of the risk model. (a) Univariate Cox regression analysis of risk score and clinical parameters in the
training cohort. (b) The independent prognosis value of the risk score in the training group was validated by multivariate Cox regression
analyses. (c and d) Univariate (c) and multivariate (d) Cox regression analysis of risk score and clinical parameters in the test cohort. (e
and f) ROC curves showed the superiority of the risk score in predicting the survival rate of patients in the training group (e) and the
test group (f). (g) The nomogram for predicting the overall survival of patients based on risk score, risk, age, gender, grade, and stage.
(h) Calibration plots of the nomogram for predicting the overall survival probability at 1, 3, and 5 years. (i) ROC curves were plotted to
determine the accuracy of the nomogram for overall survival at 1, 3, and 5 years.
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Figure 7: Correlation between pathways and risk model. (a) GSVA results based on the chemokine-related lncRNAs risk model. (b) GSEA
results based on the chemokine-related lncRNAs risk model. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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scores [27, 28]. We also found that multiple immune check-
point molecules were expressed at higher levels in cluster 2
than in cluster 1, implying that the clustering pattern of
chemokine-related lncRNAs is closely related to TME. Jin
et al. reported that various lncRNAs could indirectly regulate
the expression of immune checkpoint molecules, thereby
affecting the survival outcomes of tumor patients [29]. Thus,
we speculated that cluster 2 might enhance the expression of
immune checkpoint molecules through numerous pathways,
causing the decreased overall survival of COAD patients.

To further explore the role and value of chemokine-
related lncRNAs in COAD, the 10 chemokine-related
lncRNAs were identified to construct the risk model using
LASSO Cox regression analysis. Survival analysis found that
in the training set, the survival outcomes of patients in the
high-risk group were worse than those in the low-risk group.
The AUC value of the ROC curve confirmed the risk model’s
efficiency and accuracy for the training and the test cohorts.
The high-risk and the low-risk groups also showed signifi-
cant differences in grades, pT, and clinical stage, and the risk
model also showed close correlations between clinical
parameters. Then, the expression levels of 10 prognostic
chemokine-related lncRNAs differed between tumor and
normal tissues. Tu et al. showed that TCF4 enhanced colo-
rectal cancer liver metastasis by regulating tumor-
associated macrophages through the CCL2/CCR2 signaling
pathway [30]. Jie et al. reported that targeting KDM4C
enhanced CD8 T cell-mediated antitumor immunity by acti-
vating the transcription of the chemokine CXCL10 in lung
cancer [31]. The above findings nicely explained that some

chemokine-related lncRNAs are overexpressed in tumors
to act as oncogenes, while others are highly expressed in nor-
mal tissues as tumor suppressors. Subsequently, we explored
that the risk score of the risk model was an independent
prognostic factor in predicting the survival outcomes of
COAD patients. ROC curves were also performed to validate
risk score accuracy in independent prognostic functions. All
patients with different clinical characteristics in the high-risk
group had worse survival outcomes than in the low-risk
group. Next, the nomogram predicted survival time was
almost consistent with the actual survival time. For example,
Liang et al. reported that the chemokine signature was iden-
tified for predicting overall survival in gastric cancer and
showed good predictive efficiency, similar to our model
[32]. In total, our risk model has sufficient efficiency and
accuracy in predicting the survival outcomes of COAD
patients.

Recent studies have reported that chemokines modifica-
tions and multiple lncRNAs can modulate the process of
cancer immunity, including immune cell infiltration and
immune resistance and activation in the TME, causing
tumor progression [33, 34]. Thus, to explore whether the
risk model played a role in tumor and TME, we first per-
formed GSEA and GSVA analyses. Multiple cancer- and
immune-related pathways were associated with the risk
model, such as the VEGF, Toll-like receptor, TGF-β, T cell
receptor, Nod-like receptor, MAPK, JAK-STAT, and B cell
receptor, base excision repair, DNA replication, citrate cycle,
pentose phosphate pathway, protein export, nonhomolo-
gous end joining, selenium amino acid metabolism,
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Figure 8: Correlation analysis of the risk model with immune cell infiltration and TME. (a) Bubble plot of the correlation between the risk
model and tumor immune cells in COAD patients. (b) Heatmap of the associations between expression levels of multiple immune
checkpoints and risk score. (c) Correlation of risk model and ESTIMATEScore, immuneScore, and stromalScore. (d) The difference in
the enrichment of 13 immune-related pathways between the low-risk and high-risk groups. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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ribosome, steroid biosynthesis, RNA polymerase, mismatch
repair, endometrial cancer, and these pathways were
enriched in the high-risk group. Also, some studies have
proved that these pathways could regulate immune cell infil-
tration and TME [23, 35]. Based on this, we considered that
the risk model was likely to affect cancer immune processes
in COAD, including immune cell infiltration, immune resis-
tance and activation, and immune checkpoint molecules.
Then, we found that the infiltration levels of memory B cells,
naive B cells, naive CD4+ T cells, CD8+ T cells, monocyte,
macrophage M1, myeloid dendritic cells activated, and acti-
vated mast cells were positively associated with the risk
score, suggesting that these cells were more infiltrated in
high-risk patients. Other resting NK cells and resting mast
cells were increased in the low-risk patients, meaning that
low-risk patients have more infiltration of these cells. Studies
have reported that tumor patients have a variety of immune
cell infiltration involved in tumor progression. For example,
patients with more CD4+ and CD8+ T cell infiltration
responded better and benefited from immunotherapy [36].
The massive infiltration of macrophages in solid tumors
can promote tumor progression and distant metastasis,
resulting in poor patient survival and weak treatment out-
comes [37]. Furthermore, the high-risk patients had higher
immune, stroma, and ESTIMATE scores than the low-risk
patients, indicating that the TME in the high-risk group
had more immune infiltration than the low-risk group.
These data were similar to previous studies showing that
malignancies with high immune and stromal scores had a
worse overall survival [38]. The literature also suggested that
more tumor-infiltrating immune cells in the high-risk group
were associated with an increased risk of recurrence and
poorer survival [39]. Thus, we speculated that lower immu-

noreactivity and higher immunosuppression in the TME
would cause worse survival in high-risk patients. These
results supported this risk model as a predictor of immune
landscape in COAD patients.

The expression levels of immune checkpoint molecules
and TMB are considered effective immunotherapy indica-
tors. Studies have shown that gastric cancer patients with
higher immune checkpoint gene expression and higher
somatic mutations have better effects on immunotherapy
[40]. We determined the expression of immune checkpoint
molecules corresponding to risk score and model lncRNAs;
the data revealed that the most immune checkpoint mole-
cules were significantly associated with high-risk patients,
suggesting that risk score was closely related to immune sta-
tus. Therefore, we speculate that high-risk patients may be
more sensitive to immunotherapy. Risk scores were subse-
quently found to be positively correlated with TMB, suggest-
ing that patients with high-risk scores had higher levels of
TMB. Meanwhile, high-risk patients with high TMB also
displayed the worst prognostic outcomes. Kim et al. con-
structed a novel TME signature and found that gastric can-
cer progression may be affected by TME and frameshift
mutations, similar to our model [41]. Thus, this risk model
was strongly associated with immune cell infiltration and
TMB. However, further study is required to investigate
whether immune cell infiltration is affected by TMB.

Jung et al. reported that the clinical utility of chemother-
apy and targeted agents for COAD had been extensively
studied [42]. Afterward, we assessed the sensitivity and effi-
cacy of immunotherapy in high- and low-risk groups. The
low-risk patients who were single positive for CTLA4 and
negative for both PD-L1 and CTLA4 had higher immuno-
therapy scores, meaning that these low-risk patients would
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Figure 9: Correlation between the risk model and TMB. (a and b) Waterfall chart of the top 20 genes with increased mutation frequency in
high- and low-risk groups. (c) Scatter plot of positive correlation between risk score and TMB. (d) Boxplot of the expression level of TMB
between the low-risk and high-risk groups. (e) The survival curve of the difference between the high TMB group and the low TMB group. (f)
The survival status of patients with low-risk or high-risk scores in the high TMB and low TMB groups.
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Figure 10: Continued.
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Figure 10: Drug sensitivity and immunotherapy in the risk model. (a–i) Risk stratification showed the responses of high- and low-risk
groups to multiple drugs. (j and k) The immunotherapy scores of patients with a single positive for CTLA4 and negative for both PD-L1
and CTLA4 in the low-risk patients were higher than that of high-risk patients. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001.
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benefit from immunotherapy. The high-risk group was also
markedly associated with susceptibility to multiple targeted
drugs, including commonly used clinical chemotherapy cis-
platin, docetaxel, vinblastine, and some novel drugs. These
data suggested that this prognostic chemokine-related
lncRNAs risk model has potential utility in estimating effi-
cacy and sensitivity to various medications. To validate a
reliable and accurate risk model, we not only investigated
the correlation between the expression of each lncRNA
and patient prognosis but also detected the expression levels
of lncRNAs in clinical samples. Many highly expressed
lncRNAs have a worse prognosis in COAD patients than
lowly expressed lncRNAs. Many lncRNAs in the risk model
were expressed differently between tumor and normal tis-
sues, and these expression trends were consistent with the
trend in the TCGA-COAD data. These findings further
demonstrated that lncRNAs in the risk model have more
excellent research value.

Nonetheless, the current study has some limitations. The
risk model was created using public data and lacks enough

clinical samples and data. The expression of 10
chemokine-related lncRNAs containing this signature was
validated on only 20 pairs of clinical samples. Furthermore,
the biological functions and mechanisms of prognostic
chemokine-related lncRNAs in COAD remained uncertain,
and experimental studies were needed to verify these find-
ings. Based on this, we will expand the sample size for vali-
dation and conduct further experimental studies.

5. Conclusions

In conclusion, we first explored the differences between the
survival outcomes and immune status of two chemokine-
related lncRNAs clusters by consensus clustering. We then
constructed a novel risk model of prognostic chemokine-
related lncRNAs and validated the validity and accuracy of
the model in predicting survival and clinical parameters in
COAD patients. The risk model also played a vital role in
predicting immune cell infiltration, TME, TMB, immuno-
therapy, and drug sensitivity in COAD patients. These
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Figure 11: Prognostic value and expression of each lncRNA in our risk model. (a) The risk model’s prognostic value of each lncRNA in
COAD patients. (b) Expression levels of each lncRNA between tumor and adjacent normal tissues in 20 clinic samples. ∗p < 0:05, ∗∗p <
0:01, ∗∗∗p < 0:001.
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findings elucidated the critical role of novel prognostic
chemokine-related lncRNAs in prognosis, immune land-
scape, and drug therapy, thereby providing valuable insights
for prognosis assessment and personalized treatment strate-
gies for COAD patients.
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