
Research Article
Integrative Analysis of m6A RNA Methylation Regulators and the
Tumor Immune Microenvironment in Non-Small-Cell
Lung Cancer

Jiaqi Zhu ,1,2 Yun Jiang,2 Tianyi Wang,1,2 Anqi Wu,1,2 Tingting Zhou,1,2 Anping Zhang,1,2

Yijie Tang,1,2 Zihao Shen,1,2 Jinjie Wang,1,2 Hao Zhou,1,2 Jiahai Shi ,1,2 and Jianle Chen 2

1Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases and Research Institution of Translational Medicine
in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001 Jiangsu, China
2Department of Thoracic Surgery, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Nantong, 226001 Jiangsu, China

Correspondence should be addressed to Jiahai Shi; sjh@ntu.edu.cn and Jianle Chen; jsshcjl@163.com

Received 23 November 2021; Accepted 21 January 2022; Published 9 February 2022

Academic Editor: Ihtisham Bukhari

Copyright © 2022 Jiaqi Zhu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Non-small-cell lung cancer (NSCLC) is a major component of lung cancer and is significantly correlated with poor
prognosis. N6-methyladenosine (m6A) RNA methylation is closely related to the occurrence, progression, and prognosis of
cancer. The potential biological functions and mechanisms of m6A RNA methylation in the immune microenvironment are
still unclear. Methods. We assessed m6A RNA methylation modification patterns in 1326 NSCLC patient samples based on 20
m6A regulators, linking these clusters to the tumor microenvironment and immune cell infiltration. The m6Ascore was created
to quantify the m6A modification patterns of individual tumors. We then assessed the value of NSCLC patients in terms of
clinical prognosis and immunotherapy response. Results. According to different mRNA expression levels, two different m6A
clusters were identified. m6A aggregation was significantly associated with clinical prognostic characteristics, the tumor
microenvironment, and immune-related biological processes. Fifteen differential genes were screened based on these two m6A
clusters, and to further investigate the mechanisms of action of these differential genes, they were subjected to unsupervised
clustering analysis, which classified them into four different genomic isoforms. Prognostic analysis indicated that the survival
advantage of the m6A gene cluster A modification mode was significantly prominent. We continued to construct the
m6Ascore, which was used as a scoring tool to evaluate tumor typing, immunity, and prognosis. Patients with a low m6Ascore
showed a significant survival advantage, and the group with a low m6Ascore had a better prognosis predicted by
immunotherapy. The anti-PD-1/L1 immunotherapy cohort showed that a lower m6Ascore was associated with higher efficacy
of immunotherapy. Conclusions. The results suggest that m6A RNA methylation regulators make an important difference in
the tumor immune microenvironment of patients with NSCLC. m6A gene characterization and the construction of the
m6Ascore provide us with a richer understanding of m6A RNA methylation modification patterns in NSCLC patients and
help to predict clinical prognosis and immunotherapeutic response.

1. Introduction

Lung cancer is currently one of the most common malignant
tumors in the world. It has a very high mortality rate, and
the 5-year survival rate is only 16%. According to the latest
cancer statistics, it is estimated that in 2020 alone, there will
be nearly 20 million new cancer cases and 10 million tumor
deaths worldwide, with lung cancer patients topping the list

with a mortality rate of 18% [1, 2]. Lung cancer includes
NSCLC and small-cell lung cancer, among which NSCLC
accounts for the largest proportion of all lung cancer
patients, approximately 85-90% [3]. In recent decades, with
the continuous improvement of medical technology, a series
of therapies, such as surgery, chemotherapy, radiotherapy,
immunotherapy, and adjuvant Chinese medicine, have been
used to treat patients with NSCLC; however, because of
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imperfect screening programs and late clinical symptoms,
most patients are diagnosed with lung cancer at an advanced
stage with poor prognosis [4, 5]. Thus, NSCLC has become a
thorn in the side of oncologic diseases, and effective treat-
ment regimens are needed to improve the currently dismal
prospects for NSCLC outcomes.

Based on previous studies, m6A is the most frequently
distributed form of mRNA modification in eukaryotes [6,
7] and has become the focus of scientific research in the past
ten years. m6A methylation makes a large difference in can-
cer through multiple mechanisms [8] and is particularly
important in the prediction of tumor development, immu-
notherapy, and outcome [9, 10]. m6A modification is a pro-
tein-mediated, dynamic, and reversible process. m6A
regulators consist of three main protein types, namely,
m6A methyltransferase (also known as writer), m6A
demethylase (also known as eraser), and m6A binding pro-
tein (also known as reader) [11–14]. A variety of domestic
and foreign studies indicate that m6A regulatory factors play
an important role in a variety of biological functions and
mechanisms in vivo [15], can regulate the TME, and can
play a regulatory role in counteracting PD-L1 resistance
[16, 17]. Dysregulation of m6A modification is significantly
associated with malignant progression and abnormal
immune regulation [18]. For example, METTL3-mediated
m6A modification physiologically promotes activation of
dendritic cell (DC) and DC-based T cell responses [19],
and loss of YTHDF1 enhances CD8+ T cell tumor infiltra-
tion, making anti-PD-L1 therapy more effective [20]. To
date, the specific mechanisms of m6A modification involved
in NSCLC development and progression and the immune
response are not well understood.

In this paper, we first collected data through The Cancer
Genome Atlas (TCGA) database and Gene Expression
Omnibus (GEO) to integrate information on mRNA and
protein levels in NSCLC and assessed the impact of m6A
regulator imbalance on NSCLC development and progres-
sion, tumor microenvironment, immune response, and
prognosis. Then, we obtained two different methylation
modification patterns, which were found to have different
clinical characteristics, immune microenvironments, and
prognostic values. We also developed a scoring system,
called m6Ascore, to quantify the m6A modification patterns
of individual patients and to determine their value in pre-
dicting prognosis and treatment response in NSCLC
patients.

2. Materials and Methods

2.1. Data Acquisition. In this article, gene expression profil-
ing data of NSCLC patients and clinically relevant data were
obtained using TCGA [21] database, including FPKM values
of gene expression from 1037 NSCLC samples and 108 nor-
mal samples, followed by the conversion of FPKM values
into TPM values for data processing. Among further exam-
inations, we deleted samples with no survival information.
In addition, a study-eligible dataset (GSE50081) was col-
lected in the GEO database, which included gene sequencing
information and clinical information for 181 NSCLC case
samples, and a standardized matrix file was downloaded
for validation of TCGA data in the prognostic gene signature
of TCGA data. In addition, mutation data were downloaded
from TCGA database; m6A CNV data were obtained from

Table 1: Twenty m6A RNA methylation regulators were selected in this study.

Regulators Full name Type

METTL3 Methyltransferase like 3 Writers

METTL14 Methyltransferase like 14 Writers

WTAP WT1-associated protein Writers

ZC3H13 Zinc finger CCCH-type containing 13 Writers

RBM15 RNA-binding motif protein 15 Writers

RBM15B RNA-binding motif protein 15B Writers

YTHDC1 YTH domain containing 1 Readers

YTHDC2 YTH domain containing 2 Readers

YTHDF1 YTH N6-methyladenosine RNA-binding protein 1 Readers

YTHDF2 YTH N6-methyladenosine RNA-binding protein 2 Readers

YTHDF3 YTH N6-methyladenosine RNA-binding protein 3 Readers

HNRNPC Heterogeneous nuclear ribonucleoprotein C Readers

LRPPRC Leucine-rich pentatricopeptide repeat containing Readers

HNRNPA2B1 Heterogeneous nuclear ribonucleoprotein A2B1 Readers

IGF2BP2 IGF2 mRNA-binding protein 2 Readers

IGF2BP3 IGF2 mRNA-binding protein 3 Readers

EIF3A Eukaryotic translation initiation factor 3 subunit A Readers

EIF4E Eukaryotic translation initiation factor 4 subunit E Readers

FTO Fat mass and obesity-associated protein Erasers

ALKBH5 α-Ketoglutarate-dependent dioxygenase AlkB homolog 5 Erasers
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UCSC Xena. All data processing was analyzed using R (ver-
sion 4.0.4) and the R Bioconductor packages.

2.2. m6A Ribonucleic Acid Methylation Regulator Collection.
Referring to the existing studies in the past, we extracted
20 m6A regulators for further study of different m6A
modification patterns. These 20 m6A regulators included
6 writers (METTL3, METTL14, WTAP, ZC3H13,
RBM15, and RBM15B), 12 readers (YTHDC1, YTHDC2,

YTHDF1, YTHDF2, YTHDF3, HNRNPC, LRPPRC
HNRNPA2B1, IGF2BP2, IGF2BP3, EIF3A, and EIF4E),
and 2 erasers (FTO and ALKBH5) (Table 1) [11, 22]. A
consistent clustering algorithm was then used for further
analysis of patients [23]. To further explore the potential
biological functions of m6A regulation, we performed this
procedure using the R package “ConsensusClusterPlus,”
which guarantees stability with 1000 replicates and an
80% resampling rate [24].
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Figure 1: A flow chart summarizing the mechanisms of RNA methylation modification mediated by 20 m6A regulators and their biological
functions on RNA.

3Disease Markers



0

5

Gain
Loss

10

15

CN
V.

fre
qu

en
cy

 (%
)

20

25

30

IG
F2

BP
2

YT
H

D
C1

H
N

RN
PC

M
ET

TL
3

YT
H

D
F1

YT
H

D
F3

H
N

RN
PA

2B
1

EI
F3

A

W
TA

P

YT
H

D
F2

FT
O

A
LK

BH
5

ZC
3H

13

EI
F4

E

M
ET

TL
14

RB
M

15

YT
H

D
C2

RB
M

15
B

LR
PP

RC

IG
F2

BP
3

(a)

YTHDF1

2221

20
19

18

17

16

15

14

13

ALKBH5FTO

METTL3

HNRNPC

ZC3H13

12

11

10 9

EI
F3

A

YTH
D

F3

8

HNRNPA2B1

7

IGF2BP3

W
TAP

6

YTHDC2
5

METTL14
EIF4E 4YTHDC1

IGF2BP2
RBM15B

3LR
PP

RC

2

RB
M

15

1

YT
H

D
F2

YX

(b)

Figure 2: Continued.
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Figure 2: Landscape of genetic variation in m6A regulators in NSCLC. (a) The graph depicts the frequency of CNV alterations in 20 m6A
regulators in NSCLC, with loss (gain) frequencies marked with green (red) dots. (b) Mutation sites of m6A regulators on 23 chromosomes.
(c) Mutation frequency of m6A regulators in NSCLC, with each column representing an individual patient, the number and bar graph on
the right representing mutation frequency of each regulator, and the stacked bar graph below representing transformation of each sample.
(d) Regulation between m6A mRNA expression levels. Tumor, red; normal tissue, blue. The asterisk represents the P values (∗P < 0:05;
∗∗P < 0:01; ∗∗∗P < 0:001).
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Figure 3: Patterns of m6A modifications mediated by 20 m6A regulators in NSCLC. (a) Interactions of m6A regulators in NSCLC. The size
of each circle represents the survival impact of each m6A regulator. The line connecting the m6A regulator and regulator shows the
interaction between them. The thickness of the line represents the strength of the correlation between regulators. The P value was
calculated by log-rank test. (b) Consensus clustering of NSCLC patients for k = 2. (c) Consensus clustering CDF for k = 2‐9. (d) The CDF
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2.3. Gene Set Variance Analysis (GSVA). We used the
“GSVA,” “GSEABase,” and “Limma” R software packages
for GSVA enrichment to further study biological differences
in m6A modification patterns. We used GSVA, a GSE
method that estimates pathway changes in the total sample
size in an unsupervised manner [25]. C2. Cp. Kegg. V7.4.
Symbols. GMT is a set of specific gene files, and we down-
loaded it from the MSigDB database for further analysis.
An adjusted P value < 0.05 and FDR < 0:05 were considered
to be statistically significant, and pathway heatmaps were
plotted under this condition.

2.4. Inference of Tumor Microenvironment and Immune
Cells.We used the ssGSEA algorithm to calculate the relative
abundance of each immunoinfiltrating cell in NSCLC. We
used the “Ggpubr” package for data analysis and the ggplot2
package for boxplotting. There were 23 types of immune

cells evaluated by the ssGSEA algorithm, including activated
B cells, activated CD4 T cells, activated dendritic cells, mast
cells, eosinophils, natural killer cells, natural killer T cells,
and neutrophils.

2.5. Identification of Differentially Expressed Genes (DEGs).
The “Limma” R package was applied to calculate the differ-
ences between different clusters. This method proved to be
particularly beneficial in experiments with small sample
sizes, ensuring reliable and stable inference even with a small
number of replications [26]. When the adjusted P value of
DEGs < 0:001, log2 fold change > 1, it was considered to be
significant. We divided 20 m6A regulators into two different
clusters based on their mRNA expression levels. GO and
KEGG enrichment analyses were run using the “Clusterpro-
filer” R package to understand the pathways of action asso-
ciated with DEGs. We screened for fifteen differential
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Figure 4: Enrichment analysis of different m6A methylation modification patterns and immune cell infiltration. (a) NSCLC was divided
into two different methylation modification patterns using PCA. (b) Infiltration levels of 23 immune cell types in cluster 1/2 in NSCLC
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genes based on these two m6A clusters and further investi-
gated the mechanisms of action of these differential genes.
They were subjected to unsupervised clustering analysis,
which classified them into four different genomic isoforms.

2.6. Construction of m6Ascores.We established a scoring sys-
tem to assess m6A modification patterns in individual
NSCLC patients. We called it the m6Ascore. The m6A scor-
ing system was constructed in the following steps. First,
DEGs screened from two m6A clusters were homogenized
in all sample data to extract crossover genes. Then, univari-
ate Cox regression analysis was performed for each gene,

and the prognostic genes were extracted for further analysis.
The m6A-related gene markers were constructed by PCA.
PC1 and PC2 were selected as signature scores. The
m6Ascore was calculated using the following equation:

m6Ascore =〠 PC1i + PC2ið Þ, ð1Þ

where i is the expression value of each selected gene [27].

2.7. Statistical Analysis. All data processing was performed
in the R (4.0.5) statistical package. CNVs of 20 m6A regula-
tors on different chromosomes were plotted using the
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Figure 5: m6A gene signature subtypes and m6Ascore performance validation. (a–d) Consensus clustering of NSCLC patients for k = 2‐5.
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Kaplan–Meier curve plot with a P value < 0.001 shows that significant gene cluster A had significantly better overall survival than the others.
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“RCircos” R package. Student’s t-test was used to assess the
differences between two groups. The Kruskal–Wallis test was
used to determine more groups for comparison of differ-
ences. Kaplan–Meier survival curves were used to analyze
their prognostic value. The Wilcoxon test was performed
when comparing differences between groups. We calculated
risk ratios (HRs) for m6A regulators and associated genes in
different clusters of m6A by univariate Cox regression
models. The association between m6Ascores and age, sex,
and pathological stage was assessed using chi-square tests.
The “Maftools” R package was used to map the total muta-
tions of m6A regulators and subtypes in TCGA-NSCLC
cohort. All statistical values were bilateral, and P < 0:05
was considered to be statistically significant.

3. Results

3.1. Landscape of Genetic Variation in m6A Regulators in
NSCLC. In the current study, we identified 20 m6A regula-
tors based on previous research results, including 6 writers,
12 readers, and 2 erasers. The dynamic reversible processes
of m6A RNA methylation modification mechanisms medi-
ated by 20 m6A regulators and their potential biological
functions on RNA are summarized in Figure 1. First, we
integrated the somatic mutation and CNV data of 20 m6A
regulators in NSCLC and calculated their incidence for fur-

ther observation. We studied the CNV of the m6A regulator
and confirmed its universality, mainly focusing on the high
gain of varying frequency, such as YTHDC1, IGF2BP2,
METTL3, YTHDF1, and HNRNPC. YTHDF2, ZC3H13,
EIF4E, YTHDC2, ALKBH5 METTL14, and RBM15 showed
a loss of alteration frequency in CNV alterations
(Figure 2(a)). Mutation sites of the m6A regulatory factor
on chromosomes are shown in Figure 2(b). Then, we found
that the total mutation frequency of m6A regulators was
low, and 203 out of 1052 populations were mutated, with a
frequency of 19.3%. The highest mutation frequency was
found in ZC3H13, with 3%, while METTL3 and EIF4E
showed no mutations (Figure 2(c)). The expression levels
of m6A regulators in NSCLC tumor samples and normal tis-
sue samples were also studied, and it was found that 14 of
the 20 m6A regulators were significantly and differentially
expressed (Figure 2(d)). The above analysis indicated that
m6A regulator variants and genetic expression were highly
variable between NSCLC and normal tissues. These results
indicate that the expression imbalance of m6A regulators
plays a significant role in the occurrence and progression
of NSCLC.

3.2. Patterns of m6A Modifications Mediated by 20 m6A
Regulators in NSCLC. We found that the three categories
of m6A regulators, writers, erasers, and readers, not only
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Figure 6: (a) Expression of 20 m6A regulators in the 4 m6A gene clusters. (b) Differences in m6Ascores between the 4 m6A clusters. The
Kruskal–Wallis test was used for significant differences. (c) Differences in m6Ascore between the 4 m6A gene clusters (Kruskal–Wallis test,
P < 0:001). (d) Correlation of m6Ascore with known gene features in the database using Spearman’s calculus. Positive correlations are
marked in red, and negative correlations are marked in blue. (e) Sankey diagram showing the relationship between m6A cluster, gene
cluster, m6Ascore, and survival (0: alive; 1: dead).
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Figure 7: (a) Kaplan–Meier curves depicting survival differences between low and high m6Ascore patient groups. (b) Differential analysis of
tumor mutational load between high and low groups in TCGA-NSCLC cohort. (c) Differential analysis of tumor mutational load combined
with m6Ascore survival between the high and low groups in TCGA-NSCLC cohort. (d) Correlation analysis of m6Ascore with TBM for
different m6A gene clusters. (e) Box plots showing the differential analysis of tumor mutational load (TBM) in the high m6Ascore group
or low m6Ascore group. (f, g) Waterfall plots depict differences in the distribution of somatic mutational load in tumors with (f) low
m6Ascore and (g) high m6Ascore.
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had highly correlated expression patterns of the same type
but also maintained significant correlations with each other.
Therefore, we used the m6A regulator network loop diagram
to describe the interconnections and actions of m6A regula-
tors and their prognostic impact on NSCLC patients
(Figure 3(a)). In addition, we performed survival analysis
of the 20 m6A regulators by first selecting the best “cutoff”
by KM analysis to classify them into high and low groups.
When the P value was <0.05, it indicated that the m6A reg-
ulators were correlated with prognosis, as shown in the fig-
ure. We selected 8 m6A regulators from the 20 m6A
regulators, namely, METTL3, RBM15, HNRNPC, IGF2BP2,
IGF2BP3, EIF4E, RBM15B, and HNRNPA2B1, of which
METTL3 is a low-risk gene, and its survival with high
expression is better than that with low expression. The rest
were high-risk genes, and the higher the expression was,
the higher the risk (Figures 3(g)–3(n)). However, NSCLC
patients were classified according to the gene expression
level of m6A regulators, which was divided into two different
methylation modification modes (Figures 3(b)–3(e) and
Figure S1A-C). We refer to these pattern types as m6A
cluster A and m6A cluster B. The Kaplan–Meier plot
shows significant survival variability between the two m6A
modification patterns, with m6A cluster B having a
particularly significant survival advantage.

3.3. Enrichment Analysis of Different m6A Methylation
Modification Patterns and Immune Cell Infiltration. Based
on previous studies, we found that the m6A regulator often
makes a difference in multiple biological functions, and it
plays a large role in cancer, such as proliferation, migration,
and invasion [17]. m6A is also involved in cell fate determi-
nation, cell cycle regulation, and cell differentiation pro-

cesses [28]. We used PCA to separate them into two
different methylation modification patterns (Figure 4(a)).
Then, we used GSVA enrichment. As shown (Figure 4(d)
and Table S1), m6A cluster A was significantly enriched in
oncogenic pathways and the cell cycle, including the p53
signaling pathway, ubiquitin-mediated proteolytic pathway,
nucleotide excision repair, spliceosome, RNA degradation,
homologous recombination, DNA replication, mismatch
repair, progesterone-mediated oocyte maturation, cell
cycle, and oocyte meiosis. m6A cluster B presented
enriched pathways significantly associated with nucleotide
metabolic pathways, including histidine metabolism,
tryptophan metabolism, arachidonic acid metabolism,
alpha-linolenic acid metabolism, sulfur metabolism,
complement and coagulation systems, and primary
biological acid biosynthesis. Further ssGSEA showed that
m6A cluster B had a higher level of infiltration in immune
cells than m6A cluster A (Figure 4(b)). According to the
above analysis, we hypothesized that it has different
immune subtypes with different immune mechanisms and
utility, confirming the reliability of our study. In addition,
we also calculated the DEGs between clusters and
annotated them with GO and KEGG functions to further
investigate their biological functions (Figure 4(e) and
Figure S1D-E), and a significant correlation was found.

3.4. m6A Gene Signature Isoforms and m6Ascore
Performance Validation. Considering the mutations and
potential biological functions in NSCLC, we further explored
them. Differential analysis using the “Limma” R package
identified differentially expressed genes between two differ-
ent m6A clusters. Then, we selected genes with P < 0:001
in univariate Cox regression analysis, leaving 15 genes as
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Figure 8: Role of m6A modification patterns in IPS and anti-PD-1/L1 immunotherapy. (a) Wilcoxon test showed differences in PD-L1
expression between the two assessment subgroups. (b, c) Box plots and histograms showing prognostic analysis of survival in the high
m6Ascore group or low m6Ascore group (0: alive; 1: dead). (d–i) Kaplan–Meier graphs depict differences in clinical relevance between
the two assessment subgroups, including age and T and N stages. (j–m) Immunotherapy scoring for the low m6Ascore group and the
high m6Ascore group (po: positive; neg: negative).
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DEGs (Figure S2A and Table S2). To further investigate the
mechanism of action of these intersecting genes, we
performed unsupervised cluster analysis and classified
them into four different subtypes (Figures 5(a)–5(d) and
Figure S2B-D) and named them m6A gene clusters A-D,
where survival, age, sex, and tumor stage were used as
reference indicators. The same effect could be obtained for
verification using PCA (Figure 5(e)). The results showed
that cluster A had a significant survival advantage. The
worst results were obtained for cluster C (Figure 5(f)).
Unsupervised clustering was performed on the crossover
genes of two different m6A methylation modification
patterns, and the patients were divided into 4 subtypes.
Heatmaps were drawn using survival rate, age, sex, and
tumor stage as reference indices, and significant
significance was found (Figure 5(g)). There were significant
differences in m6A regulators among the four different
clusters (Figure 6(a)), and the results once again proved
that the m6A methylation pattern is closely related to the
occurrence and development of NSCLC.

Subsequently, we built a new evaluation method, which
we called m6Ascore. To better characterize the m6A gene
clusters, we analyzed the relevance between the m6Ascore
and some biological functions (Figure 6(d)). The variation
in the properties of individual NSCLC patients can be shown
by Sankey diagrams (Figure 6(e)). In addition, the Kruskal–
Wallis test proved that the m6Ascore was different in m6A
clusters and m6A gene clusters (Figures 6(b) and 6(c)).

Then, to better explore the prognostic value of NSCLC
patients, the “Survminer” R package was used to determine
the optimal threshold and divide the total sample amount
into high and low groups. Patients with high m6Ascores
showed significantly impaired survival (Figure 7(a)). We
divided the tumor mutation load in TCGA-NSCLC into
H-TBM and L-TBM groups. Differential analyses were per-
formed for the H-TBM and L-TBM groups alone and for
the H-TBM and L-TBM groups combined with m6Ascore
differential analysis. The picture proved that the survival
advantage of H-TBM was greater than that of L-TBM
(Figures 7(b) and 7(c)). Correlation analysis of m6Ascore
with TBM for different m6A gene clusters showed a signifi-
cant positive correlation (Figure 7(d)). The box plot shows
that the group with a higher m6Ascore had a higher TMB
(Figure 7(e)). We used the “Maftools” R package to draw a
waterfall diagram and analyze differences between somatic
mutations with low and high m6Ascore (Figures 7(f) and
7(g)). The high m6Ascore group had more extensive
expression.

3.5. Role of m6A Modification Patterns in IPS and Anti-PD-
1/L1 Immunotherapy. Anti-PD-1/PD-L1 therapies have
been a popular treatment option in oncology. First, the Wil-
coxon test was used to find that PD-L1 expression was dif-
ferent between the low m6Ascore group and the high
m6Ascore group, and the high m6Ascore group had higher
PD-L1 expression (Figure 8(a)). According to the survival
and prognosis analysis of the two groups, m6Ascore was
highly expressed in patients with high mortality
(Figure 8(b)). The survival rate was higher than the mortal-

ity rate in the low m6Ascore group (Figure 8(c)). In the clin-
ical correlation analysis, T and N stages and age were
selected as reference indices, and it was found that the low
m6Ascore group had a higher overall survival rate
(Figures 8(d)–8(i)). In the immunotherapy scoring, we
found significant differences between the high m6Ascore
group and the low m6Ascore group in all four immunother-
apy regimens, and it is worth mentioning that anti-PD-1(+)
is more effective in the low m6Ascore group in IPS. A low
m6Ascore score indicates a better therapeutic effect of anti-
PD-1/PD-L1 therapies (Figures 8(j)–8(m)). In summary,
m6A methylation modification patterns are associated with
anti-PD-1/L1 immunotherapy and will help to predict the
response to anti-PD-1/L1 immunotherapy.

4. Discussion

Lung cancer is currently one of the most common malignant
tumors around the world with a high mortality rate [29], and
NSCLC is a fatal malignant tumor that has poor prognosis,
accounting for 85-90% of the total incidence of lung cancer
[30–32]. With the continuous progress of medical technol-
ogy, great progress has been made in the diagnosis and treat-
ment of NSCLC. However, due to the imperfection of
screening tests and the late emergence of clinical symptoms,
effective diagnosis and prognosis treatment for NSCLC
patients to greatly improve the survival rate is still a huge
challenge [33]. Therefore, we need to further improve the
level of diagnosis and treatment of NSCLC.

Previous evidence suggests that m6A modification pat-
terns play an indispensable role in the tumor immune
microenvironment and antitumor therapy through interac-
tions with various m6A regulators [34, 35]. The m6A regu-
lators selected in this paper are shown in Table 1. Previous
studies have shown that m6A RNA methylation has a signif-
icant impact on the development and progression of NSCLC
and the tumor microenvironment [36]. For example,
YTHDF1 enhances the antitumor response of tumor-
infiltrating CD8+ T cells, thereby promoting tumorigenesis
and progression and leading to poor prognosis [11, 20].
FTO activates cell migration through m6A demethylation,
thereby promoting lung cancer cell progression [37].
METTL3 enhances mRNA translation through the interac-
tion of translation initiation machinery, thereby promoting
human lung cancer cell growth, survival, and invasion [38,
39]. Meanwhile, specific depletion of METTL3 or METTL14
enhanced the efficacy of anti-PD-L1 therapy [40]. IGF2BP3
regulates the interaction with miRNAs through a variety of
mechanisms, thereby affecting the expression of
malignancy-associated RNAs [41]. ALKBH5 is also an inde-
pendent prognostic indicator for multiple cancers, is signifi-
cantly upregulated in NSCLC tissues and cells, and
contributes to the malignant features of NSCLC cells by sup-
pressing TIMP3 mRNA stability dependent on m6A
demethylation modifications [42, 43]. Because most studies
have been limited to the m6A regulators themselves, we
explored the biological functions of the modification pat-
terns of m6A regulators in NSCLC in a holistic manner.
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In this text, we used consensus classification to divide
patients into two different m6A clusters based on the mRNA
expression levels of 20 m6A regulators. These two different
clusters have different clinical features, prognostic value,
and immune cell infiltration. Patients in the m6A cluster B
group had a better prognosis than those in the m6A cluster
A group. Considering that the high probability of prognosis
is related to the tumor immune microenvironment, we con-
tinued to analyze the difference in immune infiltration
between m6A cluster A and m6A cluster B and found higher
levels in m6A cluster B. The m6A cluster classification based
on immunophenotype is reliable. To further explore the
potential biological functions between the two clusters, we
selected fifteen DEGs and performed GO and KEGG enrich-
ment analysis to analyze their biological functions; notably,
the immune-related biological processes were significantly
associated with them. Meanwhile, we divided four m6A gene
clusters based on DEGs. The prognostic value and clinical
features showed that the m6A gene cluster was closely
related to the occurrence and development of NSCLC. Con-
sidering the heterogeneity of m6A modification, it is neces-
sary to quantify the m6A modification pattern of
individual tumors. Finally, we built a method to evaluate this
pattern, which we call the m6Ascore. The survival advantage
of the low m6Ascore group was significantly greater than
that of the high m6Ascore group. Meanwhile, the expression
level of TBM in the high m6Ascore group was higher than
that in the low m6Ascore group. There was a significant pos-
itive correlation between m6Ascore and TBM in different
m6A gene clusters. m6Ascore is closely associated with
immune cell infiltration and tumor mutational load and
can be used as a prognostic marker in NSCLC. To date,
some studies have confirmed that the m6Ascore is closely
related to tumor progression, the tumor microenvironment,
and immune cell infiltration. For example [27, 44], based on
m6A regulators expressed at the mRNA level in hepatocellu-
lar carcinoma and gastric cancer, they were classified into
three different isoforms, followed by assessment of clinical
features, immune cell infiltration, functional annotation,
and prognosis. The success of these studies can serve as a
reference. We continued to divide the 15 DEGs into four
subtypes to construct the m6Ascore and further analyzed
its clinical characteristics, prognosis, immunophenotype,
and immunotherapy response.

The discovery of anti-PD-1/L1 therapy has led to
improved outcomes in a variety of advanced cancers, includ-
ing NSCLC [45]. Notably, although it has many advantages
in clinical treatment, the outcome of immunotherapy shows
strong individual variability [46], and checkpoint inhibition
immune checkpoint therapy is the most clinically studied
and widely used tumor immunotherapy. It is a therapeutic
approach that inhibits tumor cell progression by synergisti-
cally activating or inhibiting T cell activity. We detected
the expression levels of PD-1/L1 and CTLA-4 in NSCLC.
The expression level of PD-L1 was higher in the high
m6Ascore group, and the difference in IPS among the three
groups was statistically significant. The results indicated a
significant correlation between m6Ascore and the efficacy
of immunotherapy. A low m6Ascore indicates a better ther-

apeutic effect of anti-PD-1/PD-L1 therapies. The m6Ascore
scoring mechanism has good predictive value in anti-PD-
L1 immunotherapy.

Overall, we classified m6A regulators into two distinct
subtypes based on their mRNA expression in NSCLC,
followed by a comprehensive assessment of clinical features,
immune cell infiltration, and prognostic value. The screened
differential genes were further classified into four subtypes,
and we further analyzed clinical features, immunophenotyp-
ing, and immunotherapy by constructing a m6Ascore. m6A
modification was related to the tumor microenvironment
and immune cell infiltration. Meanwhile, checkpoint inhibi-
tion immune checkpoint therapy has some efficacy in
NSCLC. However, this paper has some limitations that we
need to consider. Since our study was limited to public data-
bases, we need further experiments to confirm our results. In
addition, more studies should be applied to confirm the
exact mechanism of m6A regulators.

5. Conclusion

Studies have shown that m6A RNA methylation patterns
make a large difference in the tumor immune microenviron-
ment of NSCLC. Copy number variation, mRNA expression
levels, tumor microenvironment, immune cell infiltration,
potential biological functions, clinical prognostic value, and
immunotherapeutic response were comprehensively evalu-
ated. m6A modification was associated with the tumor
microenvironment, as well as immune cell infiltration. The
m6Ascore can predict the efficacy of anti-PD-L1 immuno-
therapy. A low m6Ascore indicates a better therapeutic effect
of anti-PD-1/PD-L1 therapies. Our findings provide new
strategies to promote individualized tumor immunotherapy
and potential therapeutic targets for NSCLC.
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