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Aim. Alternative splicing (AS) has been widely demonstrated in the occurrence and progression of many cancers. Nevertheless,
the involvement of cancer-associated splicing factors in the development of esophageal carcinoma (ESCA) remains to be
explored. Method. RNA-Seq data and the corresponding clinical information of the ESCA cohort were downloaded from The
Cancer Genome Atlas database. Bioinformatics methods were used to further analyzed the differently expressed AS (DEAS)
events and their splicing network. Kaplan–Meier, Cox regression, and unsupervised cluster analyses were used to assess the
association between AS events and clinical characteristics of ESCA patients. The splicing factors screened out were verified
in vitro at the cellular level. Results. A total of 50,342 AS events were identified, of which 3,988 were DEAS events and 46 of
these were associated with overall survival (OS) of ESCA patients, with a 5-year OS rate of 0.941. By constructing a network of
AS events with survival-related splicing factors, the AS factors related to prognosis can be further identified. In vitro
experiments and database analysis confirmed that the high expression of hnRNP G in ESCA is related to the high invasion
ability of ESCA cells and the poor prognosis of ESCA patients. In contrast, the low expression of fox-2 in esophageal cancer is
related to a better prognosis. Conclusion. ESCA-associated AS factors hnRNP G and Fox-2 are of great value in deciphering
the underlying mechanisms of AS in ESCA and providing clues for therapeutic goals for further validation.

1. Introduction

According to the 2020 global cancer epidemiology report,
esophageal cancer (ESCA) has the 7th highest incidence. It
is the 6th leading cause of mortality, while ESCA mortality
in developing countries rises [1]. Although the efficiency of
ESCA’s advanced diagnosis and multidisciplinary therapy
has demonstrated a notable improvement recently, data
from the last decade showed that the 5-year overall survival
(OS) rates in the US, China, and Europe are 22.0%, 20.9%,
and 12.6%, respectively. 70% of patients have missed the

opportunity of undergoing radical surgery on the first diag-
nosis because of their late disease stage [2–5]. Related studies
have shown that immunotherapy significantly prolongs the
survival of advanced gastric or gastroesophageal junction can-
cer patients (8.2 months: 7.1 months, hazard ratio ðHRÞ =
0:78, 95% confidence interval (CI: 0.63–0.96, P = 0:0095),
but in all patients with ESCA, the effective rate is only 13.1%
(41/314) [6]. Similarly, a phase III trial of epidermal growth
factor receptor (EGFR) inhibitors has revealed no difference
in OS between the two treatment groups (median gefitinib
3.73 months, 95% CI 3.23-4.50, placebo group 3.67 months,
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95% CI 2.97-4.37; hazard ratio [HR] 0.90, 95% CI 0.74-1.09,
P = 0:29) [7]. It is worth noting that accurate medicines and
new biomarkers relying on genomic data provide new
methods for the prevention, diagnosis, and therapy, which is
an advancing area of research.

In recent years, the emergence of comprehensive studies
on the genomics of ESCA, including whole-exome sequenc-
ing, gene mutation analysis, DNA methylation profiling, and
deregulated pathways, has contributed to a deeper under-
standing of ESCA [8]. Developments in diversified clinical
databases and high-throughput genomic technologies have
made exploring cancer pathogenesis at the molecular level
easier. Based on this situation, we explored the possible
influencing factors of ESCA at the RNA level to identify
more effective therapeutic targets, which are valuable to pre-
dict treatment response and prognosis.

Many precursor mRNAs are processed to produce only
one mature mRNA, which is translated into a corresponding
polypeptide, and some can be spliced into mRNAs with dif-
ferent structures. This phenomenon is called alternative
splicing (AS). AS increases the use of a limited number of
genes and is one of the mechanisms for increasing the diver-
sity of biological proteins in multicellular eukaryotes [9]. In
the extensive process from yeast meiosis to Drosophila circa-
dian rhythm and mammalian neuronal differentiation, alter-
native splicing has shown the importance of regulating the
expression of genes of different subtypes during growth
and differentiation [10, 11]. AS plays a crucial role in biolog-
ical processes, molecular functions, signal pathways, and cel-
lular components. The disruption of AS likely results in
abnormal cell differentiation even in cancer and other dis-
eases [12]. AS occurs differently in different tissues; approx-
imately 30% of AS is tissue-specific because the exon of
genes is expressed difference tissues, and changes in AS will
occur with the adaption of cancer progression [13, 14]
Increasing evidence has shown that widespread splicing dis-
orders result in the mutation of targeted genes and promote
the progression of tumors [15, 16]. Therefore, a study of AS
will identify potential biomarkers for cancer therapy.

2. Materials and Methods

2.1. ESCA Cell Line Culture. Human esophageal epithelial
cell lines Het-1A and the ESCA cell lines (TE-1, KYSE-150,
and EC-109) were all purchased from Shanghai cell
Resource Center Academy of Sciences. Cells were cultured
in a complete medium containing 90% DMEM (4mM gluta-
mine and 1% penicillin-streptomycin) and 10% fetal bovine
serum at 37°C in a CO2 cell culture incubator. Cells were
passaged at intervals of 2 to 3 days, and logarithmic growth
phase cells were selected for the experiment.

2.2. RNA Isolation, Reverse Transcription, and Quantitative
RT-PCR. Total RNA was extracted using TRIzol Reagent
(American life Technologies) and detected the absorbance
of RNA at 260nm-280 nm with a spectrophotometer to
obtain concentration value. Then, the total RNA extracted
was reverse-transcribed into first-strand cDNA using a
reverse transcription kit from Takara Corporation of Japan.

Shanghai Biological Engineering Co., Ltd. synthesized the
PCR primer, and more details can be found in Table 1.
Using GAPDH mRNA as an internal reference and the 2
−ΔΔCT method was employed to calculate the relative
expression levels of the molecules. Reaction conditions were
as follows: 95°C predenatured for 30 s, 95°C for 5 s, 60°C for
34 s, 95°C for 15 s, and 60°C for 60 s, a total of 40 cycles.

2.3. siRNA Transfection. EC-109 and KYSE-150 cells plated
in 6-well plates (invasion assay) and 35mm petri dish
(transfection efficiency measurement) were transfected with
different sequences of siRNAs (Table 2) targeting hnRNP
G, FOX2, and IAH1 using reagent when 60% confluent.
Add 0.6 μg of plasmid and 4 μl jetPRIME reagent from
Polyplus (850 bd Sébastien Brant-67400 Illkirch-France) to
200 μl jetPRIME buffer, spin down and incubate at room
temperature for 10 minutes, and then add to 6-well plates
(invasion assay) and 35mm petri dish. The total RNA of
the cells in the 35mm petri dish was collected to verify the
transfection results 48 hours after transfection, and the cells
in 6-well plates were subjected to a wound healing test 24
hours after transfection.

2.4. Generation of Overexpressing Cell Lines. For LV IAH1/
hnRNP G/FOX2-GFP-KYSE-150/EC109 cells, the target
sequences were cloned into vectors PCDH-CMV-MCS-
EF1-copGFP-T3A-Puro (Tsingke Biotechnology Co., Ltd.)
and pLV-C-GFPSpark® (SinoBiological, HG25922-ACGLN)
and transfected into 293 T cells. The medium was changed
the following day, and the viral containing supernatant was
collected 48 h after transfection, filtered through a 0.45μm
filter (Millipore, SLHV033RB) and subsequently used to
infect cells with polybrene (8μg/ml; Sigma, TR-1003-G).
KYSE-150 and EC109 cells were infected by incubation with
lentivirus-containing supernatant for 48 h. Transduced cells
were purified by puromycin (Gibco, A1113803) selection.
The transfection effect was observed under a fluorescence
microscope. qPCR was performed to analyze the efficiency
of IAH1/hnRNP G/FOX2 overexpression.

2.5. Cell Migration Assay. The transfected cells (5 × 105 per
well) were seeded onto six-well plates and incubated at
37°C in a 5% CO2 humidified incubator for 24 hours. Use
a sterile tip pipette tip to make a smooth scratch on the cells
perpendicular to the well plate, wash the exfoliated cell
debris and take a picture under an inverted microscope,
and record it as the result of 0 hours. Place the cells in a
serum-free DMEM medium. The same marked field of view
was photographed under the microscope at 24 and 48 hours.
According to the cell scratch healing area, calculate the
scratch healing rate of each group of cells.

2.6. AS Events from The Cancer Genome Atlas RNA
Sequences. RNA sequence expression data are available at
The Cancer Genome Atlas (TCGA) database. We obtained
data on the AS events related to ESCA. We analyzed it using
SpliceSeq, a java program that provides a comprehensive
view of AS patterns and highlights their biological conse-
quences [17]. AS events are sorted into seven patterns: exon
skip (ES), mutually exclusive exons (ME), retained intron
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(RI), alternate promoter (AP), alternate terminator (AT),
alternate donor site (AD), and alternate acceptor site (AA).
The percent splicing in (PSI) value, ranging from 0 to 1,
summarizes the rate of splicing a specific exon into the tran-
script population of a gene. The score of PSI indicated the
AS events for specific exons without the need to know the
comprehensive synthetic of full-length transcripts [18].

2.7. Analysis of Differential Variable Splicing Events. On
analysis of the AS spectrum from ESCA and adjacent tissue
samples, the AS events were required to fulfill the condition
that a t-test yielded a P value of <0.05 and fold change
ðFCÞ > 1:5 or FC < 2/3.

2.8. Survival Analysis. Download the data of patients with
complete clinical data and OS greater than 30 days from
the TCGA database. To explore the effect of AS on the OS

in ESCA patients, we divided the patients into two groups
based on the median PSI. In order to remove any genes that
may not be independent predictors of prognosis, LASSO
Cox regression was used for further analysis of variable shear
events associated with survival in seven types. ClusterProfiler
analysis was used to conduct Gene Ontology (GO) enrich-
ment analysis to identify the effects of survival-related AS
events on biological processes, cellular components, and
molecular functions. Multivariable Cox regression was con-
ducted to analyze the difference between the seven patterns
of AS events and OS. It then eliminated the genes that had
no relevance with survival and confirmed the prognostic pre-
dictor. In addition, we plotted the accuracy of the receiver-
operating characteristic (ROC) curves to compare the predic-
tive models for each type of AS.

The online database UALCAN (http://ualcan.path.uab
.edu/index.html), as a newly developed interactive web
server, enables gene expression data of 184 ESCA from
the TCGA database to be analyzed through standard pro-
cessing [19].

2.9. Splicing-Related Network Construction. Through data-
base filtering, a list of 67 human splicing factors was created
[20]. The splicing factor gene expression in the mRNA splic-
ing pathway was derived from grade 3 mRNA-seq data in
TCGA. Survival analysis was performed to identify
survival-related shear factors. The correlation between
survival-related splicing factor gene expression and
survival-related AS PSI values was analyzed using the Spear-
man test. P < 0:05 was defined as significantly correlated.
The final interaction network of variable shear events and
shear factors was constructed using Cytoscape (3.6.0).

2.10. Identifying the Effects of AS on the Prognosis of Patients
with Different ESCA Subtypes. The unsupervised consensus
method analyzed the association between ESCA subtypes
and OS based on Consensus Cluster Plus.

3. Results

3.1. AS Events in ESCA. Overall, 50342 AS events of 10765
genes were identified in patients with ESCA: 4144 AA events
in 2870 genes, 2589 AD events in 2463 genes, 10033 AP
events in 4046 genes, 8848 AT events in 3690 genes, 20842
ES events in 7173 genes, 245 MT events in 237 genes, and
3038 RI events in 2001 genes (Figure 1). These results indi-
cated that a gene may have several types of mRNA splicing
events, and a gene may have up to four types of variable
splicing. ES was the highest in number, accounting for
one-third of the AS events, followed by AP, AT, AA, AD,
RI, and ME in succession (Figure 1(a)).

3.2. Differently Expressed AS in ESCA. There were 3988 dif-
ferently expressed AS (DEAS) events in 2818 genes of
patients with ESCA (2758 upregulated AS events and 1230
downregulated AS events, Figure 1(b)). Interestingly, the
number of AS events and involved genes was nonmatched,
implying that one gene underwent more than one type of
splicing event. Some genes had up to four variable types on
DEAS. The UpSet plot (Figure 1(c)) was used to visualize

Table 1: Primer sequences used for qRT-PCR.

FOX2
F: TACAGTGACGGTTATGGCAGG

R: CCTCGGTATAAACTCGCCACA

hnRNP G
F: CCATCAAGAGGCTATGGCGAT

R: CCCTCGTGTAAGTGGAGCA

IAH1
F: AGCCGTCAGACTGCTACAG

R: AAAAGACTCGCCAAGTCATTGT

PRELID1
F: CAATGTTGCTCACTCGGTGTA

R: GGTGAAGGTAGTCATGGTCTGA

SNAI1
F: TCGGAAGCCTAACTACAGCGA

R: AGATGAGCATTGGCAGCGAG

SNAI2
F: CGAACTGGACACACATACAGTG

R: CTGAGGATCTCTGGTTGTGGT

TWIST1
F: GGACAAGCTGAGCAAGATTCA

R: CGGAGAAGGCGTAGCTGAG

GAPDH
F: GACCACAGTCCATGCCATCAC

R: GTCCACCACCCTGTTGCTGTA

Table 2: Primer sequences for transfection.

si-FOX2-1
F: CCGGUGAGCAUAACCUGACACUCUA

R: UAGAGUGUCAGGUUAUGCUCACCGG

si-FOX2-2
F: GCAAAUGGUUGGAAAUUAAGC

R: UUAAUUUCCAACCAUUUGCAU

si-hnRNP G-1
F: GAUUUGUACCAUUCUUCUGTT

R: CAGAAGAAUGGUACAAAUCCA

si-hnRNP G-2
F: CGUGAUGACUAUCCAUCAAGA

R: UUGAUGGAUAGUCAUCACGUG

si-IAH1-1
F: CUGCGAACCUAAAGAGCAUTT

R: AUGCUCUUUAGGUUCGCAGTT

si-IAH1-2
F: GCGAAGAACAGUGCAUCAUTT

R: AUGAUGCACUGUUCUUCCCTT
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the overlapping different AS events among genes. In the dif-
ferential expression analysis, 5269 differentially expressed
genes were identified in ESCA (2711 upregulated differen-
tially expressed genes and 2558 downregulated differentially
expressed genes).

3.3. Survival-Associated Differential Genes in ESCA. To
illustrate the relationship between the OS in patients with
ESCA-related AS events, we assessed the predictive value
of AS events in patients with ESCA using univariate Cox

regression analysis in patients with intact clinical survival
information. We detected a total of 217 survival-related AS
events (P < 0:05) among all AS events that occurred in
ESCA. A forest map of the differential gene expression in
the six types of AS events was plotted based on the top 15
survival-related AS events (Figures 2(a)–2(f)). The AS events
included AA, AD, AP, AT, ES, and RI, except ME, in which
there was only one splicing event associated with survival
(ZFP2, HR = 0:56, 95% CI: 0.35–0.91). Most of these
survival-related AS events were adverse prognostic factors.
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Figure 1: Differently expressed AS events in ESCA. (a) Each AS events type and its number of genes involved in ESCA. (b) Draw a volcano
graph of differential variable splicing events. The red nodes represent the upregulated AS events, and the blue nodes represent the
downregulated AS events; (c) The UpSet intersection diagram shows seven types of survival associated DEAS events.
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Figure 2: Continued.
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For instance, RI events showed a negative association with
the survival of patients with ESCA (HR > 1). The forest
maps revealed the genes participating in ESCA carcinogene-
sis. The EIF4B in AA of splicing events predicted poor
survival of patients with ESCA. Other studies have experi-
mentally validated that the EIF4B results in poor prognosis
of tumor patients, increasing the credibility of our data [21,
22]. RPS21 and MYL6B in RI were associated with poor
prognosis of patients with ESCA; they have been validated
as oncoproteins in prostate tumor and hepatocellular carci-
noma, respectively [23, 24]. We conducted GO functional
enrichment analysis on 206 genes involved in AS events in
ESCA further to explore the underlying molecular mecha-
nism among the survival-associated events. The GO catego-
ries showed that the genes in survival-associated AS events
were significantly enriched in different biological processes,
such as translational initiation, mRNA catabolic processes,
and cellular responses to external stimuli, among others
(Figure 2(g)).

3.4. Prognostic Predictors for Patients with ESCA. Consider-
ing the interaction between AS events and the prognosis
of patients with ESCA, we attempted to verify if the six
types of AS events could serve as the predictive element
of ESCA by choosing the highly correlated AS events as
the candidates to analyze the predictive factors in ESCA.
AA and RI each have one prognostic factor, AD has three

prognostic factors, AP has 22 prognostic factors, the inde-
pendent prognostic factors were associated with the AT 6,
and ES has 13 prognostic factors and did not identify the
independent prognostic factors related to ME. According
to our data, each splicing type performed well in predict-
ing the prognosis of patients with ESCA (all adjusted P
< 0:05, Figures 3(a)–3(f)). The ROC was applied in the
prognostic models to confirm better the validity of AS
events in forecasting the prognosis of patients with ESCA.
In ESCA, the AS events, including AA, AD, AP, AT, ES,
and RI, all demonstrated areas under the curve (AUCs)
of the ROC curves of greater than 0.6, indicating powerful
efficiency in distinguishing the prognosis of patients. ES
showed the best performance in predicting the survival
of ESCA patients (Figure 3(h)). In addition, variable shear
events associated with survival were derived to construct
final prognostic predictors. Notably, the final prognostic
model showed the best performance in predicting outcomes
(P < 0:05, ROC = 0:843), as shown in Figures 3(h) and 3(g)
(Supplemental materials.1). Meanwhile, we compared ROC
curves of 3, 5, and 7 years of the final prognosis model, and
it can be seen that the model has good predictive ability
(Figure 3(i)).

3.5. Network of Survival-Associated AS Events and Splicing
Factors. To determine the specific splicing factors in the
AS events associated with the survival of patients with
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Figure 2: Differential spliced genes associated with ESCA survival in each AS type and their functional enrichment analysis results. (a)–(f)
Survival-related top 15 AS events forest map in each AS type. (g) Functional enrichment analysis results of differentially spliced genes in
ESCA from GO analysis.
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ESCA, we conducted survival analysis based on gene
expression of the splicing factors. Five splicing factors
(hnRNP J, hnRNP A3, hnRNP G, FMRP, and Fox-2)
showed a significant correlation with OS in patients with
ESCA. The representative splicing factors and survival-
associated AS events are shown in Figure 4(c). The
Spearman test was also used to study the correlation
between the PSI of AS events and splicing factors associ-
ated with survival. The correlation network indicated that
a total of 27 survival-associated AS events were highly
correlated with five splicing factors (green points), with
16 positive (red points), and 11 negative (green points)
AS events (Figure 4(c)). Splicing factors such as Fox-2
and hnRNP G were involved in 17 and 13 AS events,
respectively. Among these survival-associated splicing
factors, some were associated with poor prognosis,
whereas others were linked with favorable prognosis
(Figures 4(a) and 4(b)). AS events (IAH1, NSUN4,
SERAC1, and TRIM4) were correlated with up to four
splicing factors. Among them, IAH1 was a gene that is
related to hnRNP G (positive correlation, Figure 4(d))
and Fox-2 (negative correlation, Figure 4(e)), and its high
expression can cause poor prognosis of patients with
ESCA (Figure 4(f)). Downregulation of the hnRNP G
expression and upregulation of the FOX2 expression in
esophageal cancer cells were found by silencing IAH1
(Supplementary Figure 1A-1C). Furthermore, knockdown
of hnRNP G resulted in upregulation of IAH1, while
knockdown of FOX2 resulted in downregulation of
IAH1 (Supplementary Figure 1D, 1E). Stable cell lines
overexpressing IAH1, hnRNP G, and FOX2 were
constructed, respectively (Supplementary Figure 1F), and
it was found that the overexpression of IAH1 resulted
in upregulation of hnRNP G and downregulation of
FOX2 (Supplementary Figure 1G). The overexpression of
hnRNP G led to the upregulation of IAH1, while the
overexpression of FOX2 led to the downregulation of IAH1
(Supplementary Figure 1H, 1I).

3.6. Expression of Splicing Factors Related to Prognosis of
ESCA Cell Lines Is Involved in ESCA Progression and
Affects Its Prognosis. Next, we examined the expression levels
of the splicing factors Fox-2 and hnRNP G in the ESCA cell
lines and normal esophageal epithelial cells. qRT-PCR
results showed that the expression of Fox-2 in ESCA cell
lines KYSE-150, EC-109, and TE-1 was significantly lower
than that of normal esophageal epithelial cell line HET-1A
(Figure 5(a)). In comparison, the expression of hnRNP G
in ESCA cell lines KYSE-150, EC-109, and TE-1 was signif-
icantly higher than that of normal esophageal epithelial cell
line HET-1A (Figure 5(a)). The consistency between the
results of RT-PCR and the above survival analysis demon-
strated that our results were reliable. The siRNAs sequences
were transfected into ESCA cell lines to establish Fox-2 and
hnRNP G gene knockout models to analyze the effects of
splicing factors Fox-2 and hnRNP G on tumor behavior.
qPCR experiment detects the transfection effect (Figure 5(b)).
The migration and invasion ability of si-hnRNP G cells was
not as good as the control, and the difference has statistically
significant (EC-109, P = 0:0312; KYSE0-150, P = 0:0135). The
migration and invasion ability of si-FOX2 cells was higher than
that of the control, and the difference was statistically signifi-
cant (∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001) (Figures 5(c) and
5(d)). Then, by verifying the mRNA levels of epithelial-
mesenchymal transition- (EMT-) related genes, we found that
the expression levels of EMT-related genes were downregulated
in si-hnRNP G cells. At the same time, they were upregulated
in si-FOX2 cells (Figure 5(e)), which was consistent with the
consequence of the previous wound-healing experiment. The
same experiment was performed on another sequence of
siRNA, and the results of the wound healing assay (Supplemen-
tary Figure 2A, 2B) and the expression level of EMT-related
RNA (Supplementary Figure 2C) were consistent with those
of the other sequence.

The analysis of ESCA patients in the TCGA database
found that the splicing factors both hnRNP G and Fox-2
are highly expressed in ESCA patients (Figure 6(a)). Still,
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the splicing factor hnRNP G was negatively correlated with
the OS of ESCA patients. The difference is statistically signif-
icant (P = 0:044), while the splicing factor Fox-2 was posi-
tively correlated with the OS of ESCA patients, and the
difference was not statistically significant (P = 0:16)
(Figure 6(b)). Through further analysis of different grades
of esophageal cancer, it was found that hnRNP G concen-
trated in patients with grade 2 ESCA. Regardless of the high
expression group or the low expression group, the OS was
significantly shorter than early ESCA patients (P = 0:032)
(Figure 6(c)). There were more patients with low Fox-2
expression than those with high expression. Among patients
with ESCA of the same stage, patients with low expression of
FOX-2 have a longer survival time, and the difference was
not statistically significant (P = 0:23) (Figure 6(c)).

3.7. Molecular Subtype Clustering. The occurrence of vari-
able splicing events differs greatly at the individual level.
To obtain a robust classification, we use the unsupervised
consensus method implemented by Consensus Cluster Plus
to identify the molecular subtypes of esophageal cancer.
We identified different AS types according to 46 survival-
related AS events by performing unsupervised analysis on
all samples. Here, we introduced the functional heat map,
which revealed the hidden trends driven by different AS
types and reduced manual labor in discovering and compar-
ing different patterns [25]. Using the Elbow method to
determine the optimal number of clusters, and based on
the distribution of the consensus values ranging from 0
(white, no samples aggregation) to 1 (blue, sample always
aggregation), we finally determined four sets of samples:
C1 (n = 36, 20.7%), C2 (n = 73, 42.0%), C3 (n = 46, 26.3%),
and C4 (n=19, 11.0%) (Figures 7(a) and 7(b)). Kaplan–
Meier analysis was then used to explore the correlation
between these clusters and the survival rate of patients with

ESCA, indicating that the clusters were significantly associ-
ated with the outcome of survival (Figure 7(c)). Therefore,
we can acquire molecular subtype clusters associated with
prognosis through a small number of AS events.

4. Discussion

More than 95% of precursor messenger RNA (pre-mRNA)
are processed to multiple mRNAs through AS events [26].
Growing evidence has demonstrated that AS plays a crucial
role in physiological processes and cell development pro-
grams and the differentiation of cells, leading to the develop-
ment of tumors and other diseases [12, 27]. AS events
related to abnormal pre-mRNA precursors have been widely
demonstrated in tumor occurrence, increased aggressive-
ness, drug resistance, and other aspects of tumor progres-
sion. These events include changes in splicing types and
mutations in splicing factors and regulatory signals [28]. In
the past several years, growing evidence has indicated that
AS events promise to recapitulate cancer epigenetics [29,
30]. For example, the key regulator of AS events in lung can-
cer, RNA-binding protein QKI, is significantly associated
with poor prognosis when downregulated [31].

Similarly, changes in AS events in lung cancer will also
affect the transcripts of VEGFA, MACF1, APP, and NUMB
genes, thereby promoting the process of tumorigenesis [32].
Mutations of SF3B1-encoding proteins involved in RNA
splicing may be a driving factor and novel therapeutic target
in breast cancers [33]. Similarly, breast tumors adopt AS
events to remove deleterious germline BRCA1 mutations
by removing exon 11 to contribute to retaining activity and
drug resistance [34]. Therefore, mutations in splicing factors
and regulatory pathways in AS events can lead to abnormal
splicing types and different results, including tumor develop-
ment, invasion, replacement, and transformation. Therefore,
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the primary functional study of AS events and mechanisms
of tumorigenesis and development can facilitate the discov-
ery of novel biomarkers.

In this study, we identified AS events and profiles of regu-
latory splicing factors and established the interrelation between
them in ESCA through an analysis of the TCGA program. A
total of 50342 AS events of 10765 genes were detected in sam-
ples of tumors with seven splicing types (AA, AD, AP, AT, ES,
ME, and RI), of which ES was the most common splicing type.
It seems that AS event is an ordinary process in ESCA, and that
most splicing patterns are active. There are 3988 DEAS events
between ESCA and nontumor tissues: 2758 upregulated AS
events and 1230 downregulated AS events involving 2818
genes. Then, we found that 217 AS events among those DEAS
events were significantly associated with the survival rate of
patients with ESCA. Most of these AS events showed a critical
influence on tumor biology. The top 15 splicing events of RI in
DEAS events lead to the poor survival of patients with ESCA,
which is consistent with some findings regarding AS events
and tumor prognosis [35]. In addition, GO functional enrich-
ment and KEGG pathway analysis provided insights into the
enrichment of many DEAS events in many biological adhe-
sions, cell organizations, and many other essential biological
processes. Several genes (EIF4B, RPS21, MYL6B) have been
demonstrated to make ESCA patients which have poor sur-
vival, and further investigation concerning their potential
impact on ESCA is still required.

Moreover, we established a prognostic model for each
splicing type using multivariate Cox regression analysis.
Each type of AS event performed reasonably well in showing
a positive or negative prognosis. The six survival-associated
types (AA, AD, AP, AT, ES, and RI) of AS events showed
different AUCs of ROC curves, and ES showed the maxi-
mum efficiency in predicting the survival of ESCA patients
with the best AUC value: 0.793. The integrated predictive

model with six types together showed a high correlation with
survival. Further specific functional experiments to deter-
mine how alternative splicing modulates tumor prognosis
are needed. Given that certain genes and splicing factors
may exhibit extensive” spliceosome mutations,” leading to
cancer-specific mis-splicing, we therefore focused on the
correlation network of splicing factors and survival-
associated AS events [36]. Five splicing factors (hnRNP A3,
hnRNP J, hnRNP G, FMRP, Fox-2) with four AS events
(IAH1, NSUN4, SERAC1, and TRIM4) showed a strong cor-
relation with prognosis.

The immunohistochemistry staining of heterogeneous
nuclear ribonucleoprotein G (hnRNP G) is more prominent
in the normal oral cavity than in premalignant and malig-
nant human oral tissue. hnRNP G exhibited tumor suppres-
sor activity, including inhibition of cell proliferation, cell
capacity, and enhancement of DNA repair capabilities in
human oral squamous cell carcinoma (HOSCC) [37].
Another research showed a similar result that the hnRNP
G protein nuclear expression was found higher in earlier
endometrial cancer (EC) and patients without distant
organs, and the high expression of hnRNP G in mRNA
and protein levels indicated a favorable outcome for EC
patients [38]. It is consistent with our findings that the
expression of hnRNP G in ESCA cells is higher than that
in normal esophageal epithelial cells, and several public
datasets confirmed that the high expression of hnRNP G
forebode poor prognosis for ESCA patients. The difference
of exon sequence determined both the cell reactiveness and
protein specificity. hnRNP G works in the regulation of
Tra2-dependent splicing under the interaction of the splic-
ing activator protein hTra2β, and differences in the radio
of hnRNP G/Tra2β mRNA have been found in different tis-
sues of the human body, which may indicate that hnRNP G
possesses the cellular splicing preferences [39].
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Figure 5: The effect of hnRNP G and FOX2 on the biological behavior of ESCA cell lines in vitro. (a) The expression of hnRNP G and FOX2
in ESCA cell lines (TE-1, KYSE-150, EC-109) and normal esophageal epithelial cell line HET-1A was detected by qRT-PCR. ∗P < 0:05,
∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001. (b) The qRT-PCR analysis confirmed that the expression of hnRNP G and FOX2 in EC-
109 and KYSE-150 cells was reduced compared with cells transfected with control siRNA sequences. (c, d) Invasion ability was measured
in EC-109, and KYSE-150 transfected with Ctrl, FOX2, and hnRNP G sequences by wound healing test. ∗P < 0:05 vs. cells transfected
with control siRNA. (e) The bar graphs represent the mRNA expression level of EMT-related genes in EC-109 and KYSE-150 cell lines
as determined by real-time PCR. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001. All data were representative of at least three independent
experiments (n = 3; error bar, SD).
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Castle et al. found that the AS events are tightly con-
trolled in mammalian, while are exceptionally variable to
genetic and environmental variability (such as the tumor),
using the quantitative reverse transcription-PCR amplifica-
tion [40]. Venables et al. used custom-built whole-
transcript microarrays to establish a compendium of
human AS events, including 24,426 AS events in 48
diverse human samples. The result showed the enrichment
of Fox-2 across most tissues and cell lines [41]. Consistent
with the consequence preceding, Das et al. conducted an
immunohistochemical and qPCR analysis of breast and
ovarian cancer tissues and found that AS events associated
with cancer are driven by the expression level of Fox-2
[42]. Data analysis of human exon microarrays showed
that no matter which forms of AS events, it will affect
the expression of FOX-regulated ASE encoding, myosin,
kinesin, and microtubule machinery and transporter-
related proteins, which indicated the potential of FOX in
regulating the plasticity and motility of cells and may be
related to tumor metastasis and increased aggressiveness
[43]. Consistent with the findings of other investigations,
the splicing factors hnRNP A3 [44], FMRP [45], and
Fox-2 [36] may be related to the development of tumors.
The increased expression of NSUN4 and SERAC1 has
been described in breast cancer [46]. The differential
expression of TRIM4 makes cells sensitive to H2O2-
induced death, which is common in tumor cell lines
[47]. There is no evidence that IAH1 plays a key role in
tumor development, but IAH1 (a homolog of isoamyl ace-

tate hydrolytic esterase) has been shown to regulate the
expression of genes involved in cholesterol synthesis,
thereby affecting lipid metabolism [48]. According to our
results, the IAH1 expression was positively correlated with
the splicing factor hnRNP G and negatively correlated
with the splicing factor FOX2 and was associated with
poor prognosis. How IAH1 affects the progression of
esophageal cancer may be an emerging target for future
treatment of esophageal cancer.

To this end, we verified the expression of splicing factors
related to prognosis in esophageal cells. The results showed
that splicing factors hnRNP G negatively correlated with
prognosis were highly expressed in ESCA cell lines. In con-
trast, the expression of splicing factors Fox-2 positively asso-
ciated with prognosis in ESCA cell lines was significantly
lower than that of normal esophageal epithelial cells. By
transfecting siRNAs sequences to construct knockdown
cell lines, Fox-2 deletion was shown to increase the inva-
siveness of ESCA cells. Correspondingly, this study also
proved that the absence of hnRNP G can significantly
reduce the invasion ability of ESCA cells; this trend can
be seen from the images of the cell wounding healing test.
In addition, TCGA database analysis showed that hnRNP
G and FOX-2 were highly expressed in ESCA patients.
In addition, all ESCA patients with high hnRNP G expres-
sion had a shorter median survival time, while patients
with high FOX-2 expression had a longer median survival
time. In the analysis of hnRNP G and tumor grade on
ESCA patient survival, the higher expression of hnRNP
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G in the same grade has the worse survival. On the con-
trary, both the high and low Fox-2 expression groups were
concentrated in grade 2 of ESCA, and the higher Fox-2
expression was, the better the prognosis was. In the future,
the sample size can be expanded to confirm its impact on
the overall survival and progression-free survival of ESCA
patients, and the mechanism of action can be explored
through basic experiments.

5. Conclusion

In summary, this was a comprehensive and up-to-date pro-
file of AS events between ESCA and its corresponding non-
tumor tissues, uncovering the interevent correlations in
splicing factors and prognostic signatures in ESCA. The
interaction network of splicing factors and prophetic AS
events highlights AS events’ value and ESCA’s tumorigenesis

Delta area

2 43 5

k

6 7 8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Re
la

tiv
e c

ha
ng

e i
n

ar
ea

 u
nd

er
 C

D
F 

cu
rv

e

(a)

Consensus matrix 𝜅 = 4

Cluster4Cluster2Cluster3Cluster1

(b)

1.00

0.75

0.00

0.50

0.25Su
rv

iv
al

 p
ro

ba
bi

lit
y 

0 1000

p = 0.0077

2000 3000 4000

Cluster = 1
Cluster = 2

Cluster = 3
Cluster = 4

Time

(c)

Figure 7: Molecular subtype clusters associated with prognosis obtained by AS events. (a) Statistical analysis of elbows for different numbers
of clusters (k = 2 to 8). (b) The consensus matrix heat maps and consensus values ranging from 0 (white, no samples aggregation) to 1 (blue,
sample always aggregation). (c) Survival analysis in the identified four clusters.

15Disease Markers



at the genome level. This analysis of survival-associated
splicing factors and tumor-specific AS events also points
out that new underlying clinical biomarkers still need to be
validated in future mechanistic research and clinical trials.
These splicing factors and genes can serve as potential prog-
nostic biomarkers to guide the clinical treatment for ESCA
patients and expound a novel etiology of ESCA in the future.
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Supplementary Materials

Supplementary Figure 1: expression level of IAH1, hnRNPG,
and FOX2 in ESCA. (a) The qRT-PCR analysis confirmed
that the expression of IAH1 in EC-109 and KYSE-150 cells
was reduced compared with cells transfected with control
siRNA sequences. (b) The RNA expression of hnRNPG in
si-IAH1-1 transfected cells. KYSE-150 cells were signifi-
cantly downregulated compared with the control group,

and EC109 cells were also downregulated, but there was no
statistical difference. (c) The expression level of fox2 RNA
was detected in siIAH1 transfected cells. KYSE150 cells and
EC109 cells were significantly up-regulated. (d) IAH1 was sig-
nificantly downregulated by si-hnRNPG transfection in
KYSE150 cells and EC109 cells. (e) IAH1 was significantly
upregulated by si-hnRNPG transfection in KYSE150 cells
and EC109 cells. (f) Cell lines stably overexpressing IAH1,
hnRNPG, and FOX2 were constructed, and the green fluores-
cence could be observed under the microscope after successful
transfection of the plasmid. (g) The hnRNPG expression was
upregulated, and the FOX2 expression was downregulated in
IAH1 overexpressing cell lines. (h) Upregulation of IAH1
was found in cell lines overexpressing hnRNPG. (i) Downreg-
ulation of IAH1 was found in cell lines overexpressing FOX2.
All data were representative of at least three independent
experiments (n = 3; error bar, SD). Supplementary Figure 2:
the effect of hnRNP G and FOX2 on the biological behavior
of ESCA cell lines in vitro. (a) Invasion ability was measured
in EC-109, and KYSE-150 transfected with another FOX2
and hnRNP G sequences by wound healing test. ∗P < 0:05
vs. cells transfected with control siRNA. (e) The bar graphs
represent the mRNA expression level of EMT-related
genes in EC-109 and KYSE-150 cell lines after transfected
with another FOX2 and hnRNP G sequences. ∗P < 0:05,
∗∗P < 0:01, ∗∗∗P < 0:001. All data were representative of
at least three independent experiments (n = 3; error bar, SD).
(Supplementary Materials)
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