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Bone metastatic pain is thought to be a severe type of cancer pain that has refractory characteristics and a long duration. This
study is aimed at exploring the brain functional connectivity (FC) pattern in lung cancer patients with bone metastatic pain. In
this study, 27 lung cancer patients with bone metastatic pain (CP+), 27 matched lung cancer patients without pain-related
complaints (CP−), and 27 matched healthy controls (HC) were recruited. All participants underwent fMRI data acquisition
and clinical assessments. One-way ANOVA or a Mann–Whitney U test was applied to compare clinical data according to data
distribution. Seventeen hypothesis-driven pain-related brain regions were selected as regions of interest (ROIs). FC values
among pain-related brain regions across the three groups were computed by using ROI–ROI functional connectivity analysis.
ANCOVA with a post hoc test was applied to compare FC differences among the three groups. p < 0:05 indicated statistical
significance. Correlation analysis was conducted to explore the potential relationship between the FC values and clinical
characteristics. Except for years of education, no significant differences were revealed among the three groups in age, gender, or
neuropsychological assessment. In the CP+ group, FC alterations were mainly concentrated in the dorsal lateral prefrontal
cortex (DLPFC), anterior cingulate cortex (ACC), secondary somatosensory cortex (SII), and amygdala compared to the CP−
group. Among these brain regions with statistical differences, FC between the right DLPFC and the right ACC showed a
positive correlation with the duration of cancer pain in the CP+ group. In addition, in the CP− group, altered FC was found in
the bilateral SII, ACC, and thalamus compared to the HC group. Altered FC in pain-related brain regions may be a brain
pattern of bone metastatic pain and may be associated with the long duration of cancer pain.

1. Introduction

Pain is a common symptom in cancer patients. Approxi-
mately 64% of cancer patients with advanced cancer or
metastases report cancer pain [1]. Bone metastatic pain is
thought to be a severe type of cancer pain that has refractory
characteristics with a long duration [2]. Therefore, exploring
themechanism of bonemetastatic pain is of great significance
for early prevention and intervention.

The pathophysiological mechanisms of bone metastatic
pain have begun to be elucidated. Nociceptors are activated
by bone metastasis itself or secreted pain-inducing mediators
[3]. In addition, acid-sensitive ion channels of nociceptors
are activated by acids produced during bone remodeling [4].
Beyond that, peripheral and central sensitization increases
the sensitivity of pain [5]. The above pathological abnormali-
ties eventually manifest as pain perceptions and unpleasant
emotions, which can be generated and regulated by the brain.
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The functionandstructureof thebrainchangecanaccordingly
be detected by magnetic resonance imaging (MRI).

Neuroimaging studies of patientswithpainhave suggested
that pain is closely related to alterations in brain function and
structure [6, 7]. Brain regions processing pain-related infor-
mationwere considered as a “painmatrix” as follows.The thal-
amus, posterior insula, andprimary somatosensory cortex (SI)
can receive nociceptive afferent information and then encode
pain intensity. The anterior cingulate gyrus (ACC), anterior
insula, and secondary somatosensory cortex (SII) canmanage

unpleasant pain-related emotions. Midbrain periaqueductal
gray matter (PAG) is an important hub for pain regulation
[8]. Moreover, the amygdala and prefrontal cortex participate
in processing pain-related emotion, memory, and fear [9]. A
large number of studies have explored the abnormal brain
function within the pain matrix in various types of chronic
pain. In general, stronger functional connectivity of the pain-
related brain areas was demonstrated in patients with pain
compared to controls in most instances [10–14]. Functional
connectivity manifests differently in different pain conditions

Table 1: Templates of the pain-related brain regions.

Templates Brain region Abbreviation Hemisphere

Anatomical Automatic Labeling

Thalamus THA
L

R

Insula INS
L

R

Amygdala AMY
L

R

Anterior cingulate cortex ACC
L

R

Juelich Histological Atlas

Primary somatosensory cortex SI
L

R

Secondary somatosensory cortex SII
L

R

Brainnetome Atlas

Dorsolateral prefrontal cortex DLPFC
L

R

Medial prefrontal cortex mPFC
L

R

Harvard Ascending Arousal Network Atlas Periaqueductal gray PAG /

Abbreviations: MNI: Montreal Neurological Institute; R: right; L: left.
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Figure 1: The pain-related brain region masks. DLPFC: dorsal lateral prefrontal cortex; mPFC: medial prefrontal cortex; SI: primary
somatosensory cortex; SII; secondary somatosensory cortex; ACC: anterior cingulate cortex; INS: insula; THA: thalamus; AMY:
amygdala; PAG: periaqueductal gray.
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and has a potential to assist in diagnostic classification [15].
However, neuroimaging studies on pain have mainly focused
on noncancer chronic pain and have paid little attention to
cancer pain.

The prevalence of chronic pain among adult cancer survi-
vors is nearly double that of adults without a cancer diagnosis
[16]. Previous studieshave explored the cerebral structure [17]
and functional connectivity [18] of chronic neuropathic pain
after surgery in breast cancer patients with or without psycho-
logical interventions.Theabove studies found thathigher frac-
tional anisotropy (FA) values in the left subcortical regions
[17] and greater posterior cingulate connectivity with medial
prefrontal regions [18] are both associated with a reduction
in pain perception after psychological interventions. Previous
studies on brain function in bone metastatic pain have been
carried out using animal models. In studies of a mouse model
with chronic pain from bone metastasis, abnormalities in
functional connectivity were found in the PAG, amygdala,
thalamus, and somatosensory cortex [19]. In mice with bone
metastatic pain, the prefrontal cortex, cingulate cortex, and
ventral striatum are regarded as central regions participating
in pain-related network remodeling [20]. To our knowledge,

functional connectivity abnormalities in patients with bone
metastatic pain have not yet been reported.

Due to the long duration and the special pathophysiologi-
cal mechanisms of bone metastatic pain, it is necessary to
explore its neuroimagingmechanism.As far asweknow, func-
tional connectivity analysis has been reported in a mouse
model of metastatic bone cancer, however, not in the human
population. This study provides a first attempt to explore the
functional connectivity within pain-related brain regions in
lung cancer patients with bone metastasis suffering from can-
cer pain by using region of interest- (ROI-) ROI functional
connectivity analyses. We hypothesized that abnormalities in
functional connectivity within pain-related brain regions
may occur in lung cancer patients with bone metastatic pain
and that altered functional connectivity may correlate with
pain-related clinical characteristics.

2. Methods

2.1. Participants. Participants were lung cancer patients with
bonemetastases suffering fromcancerpain (CP+), lungcancer
patients without pain-related complaints (CP−), and healthy

Table 2: Demographic and clinical characteristics.

CP+ (n = 27) CP− (n = 27) HC (n = 27) p value

Demographics

Age (years) 60:11 ± 8:45 (45–76) 59:96 ± 7:05 (48–73) 59:00 ± 8:18 (44–74) 0.855

Gender (man : female) 18: 9 18: 9 18: 9 1.000

Education (years) 8:19 ± 3:60 (0–16) 7:59 ± 2:39 (4–12) 11:00 ± 4:24 (0–20) 0.001

Anxiety SAS 36:15 ± 10:06 (25–62) 31:37 ± 4:58 (25–42) 34:15 ± 7:66 (25–47) 0.069

Depression SDS 34:42 ± 10:93 (25–70) 29:70 ± 4:45 (25–43) 33:56 ± 9:40 (25–62) 0.111

Clinical characteristics

Cancer stage, No. (%)

I 0 3 (11.11%) NA NA

II 0 1 (3.70%) NA NA

III 0 6 (22.22%) NA NA

IV 27 (100%) 17 (62.92%) NA NA

Subtype, No. (%) NA NA

Adenocarcinoma 16 (59.26%) 15 (55.56%) NA NA

Squama cancer 9 (33.33%) 10 (37.04%) NA NA

Sarcomatoid carcinoma 0 1 (3.70%) NA NA

Small cell cancer 2 (7.41%) 1 (3.70%) NA NA

Therapeutic regimen, No. (%) NA NA

Chemotherapy 21 (43.75%) 16 (53.33%) NA NA

Radiotherapy 10 (20.83%) 4 (13.33%) NA NA

Targeted therapy 10 (20.83%) 5 (16.67%) NA NA

Surgery 3 (6.25%) 5 (16.67%) NA NA

Immunotherapy 1 (2.08%) 0 NA NA

Chinese medicinal therapy 3 (6.25%) 0 NA NA

NRS 2:33 ± 1:66 (1–7) 0 0 NA

Duration of cancer pain (days) 265:93 ± 430:36 (20–2095) NA NA NA

Note: values shown are mean ± SD (MIN–MAX) unless noted otherwise. Abbreviation: CP+: lung cancer patients with bone metastases suffering from cancer
pain; CP−: lung cancer patients without pain-related complaints; HC: health controls; SD: standard deviation; MIN: minimum; MAX: maximum; BMI: body
mass index; SAS: Self-Rating Anxiety Scale; SDS: Self-Rating Depression Scale; NA: not applicable.
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controls (HC). The above three groups were matched by age
and gender. All participantswere recruited atChongqingUni-
versityCancerHospital fromAugust 2020 to January 2022.All
patients (bothCP+andCP−)werepathologically confirmedto
have lung cancer. On the basis of pathologically diagnosed
lung cancer, patients with bone metastasis were diagnosed
when meeting one of two conditions: (a) the results of bone
lesion biopsy showed lung cancer metastasis and (b) typical
imaging manifestations of bone metastasis. Pain perception
was assessed by theNumeric Rating Scale (NRS) for all partic-
ipants. The CP+ group should meet NRS ≥ 1, while the CP−
andHCgroupneed tomeetNRS = 0.AllCP+patients received
regular analgesic therapy. Exclusion criteria were as follows:
(a) intracranialmetastases, encephalatrophy, trauma, or a his-
tory of brain surgery; (b) a history of psychiatric disorders; (c)
extensive headmotion (amaximumrotation greater than 3°or
a maximum displacement greater than 3mm); and (d) claus-
trophobia. This study was approved by the Research Ethical
Committee of Chongqing University Cancer Hospital (IRB:
CZLS2021042). Signed informed consent was obtained from
all participants.

Of the 40 lung cancer patients with bone metastatic pain
who were initially recruited for this study, seven patients had
brainmetastasis, fourpatientswerediagnosedwith encephala-
trophy, and two patients had head motion displacement
greater than 3mm. Of the 35 recruited lung cancer patients
without cancer pain, four patients had brain metastases, one
patient had a history of cerebral hemorrhage, and three
patients had head motion displacement greater than 3mm.
Of the recruited healthy volunteers, 27 matched volunteers
were selected for this study. Therefore, 27 lung cancer patients
with bone metastatic pain, 27 lung cancer patients without
cancer pain, and 27 healthy volunteers were included in this
study.

2.2. Clinical Assessments. Clinical pain, depression, and anxi-
ety assessments and MRI scans for each participant were
acquired on the same day. NRS was adopted to evaluate pain
intensity. The NRS includes 11 numbers, and 0 represents
“no pain” to 10 represents “the worst pain imaginable.” The
participants scored the pain intensity under the guidance of
an experienced physician. The duration of cancer pain in the
CP+ group was calculated according to the medical record.
Anxiety and depression statuses were assessed by the Self-
Rating Anxiety Scale (SAS) and Self-Rating Depression Scale
(SDS), respectively. Demographic information of all partici-
pants was obtained by the self-report questionnaire.

2.3. Resting-State Functional MR Data Acquisition. Acquisi-
tion MRI scans were examined on a 3.0 T scanner (Mag-
netom Prisma; Siemens Healthcare, Erlangen, Germany)
equipped with a 64-channel head-neck coil. Participants were
instructed to remain motionless, close their eyes, stay awake,
and avoid thinking about any topics. Earplugs were used to
alleviate the influence of noise, and cushions were used to
restrict head motion. Three sequences were collected as
follows. First, the structural informationwas acquired to guide
subsequent functional imaging with a T1-weighted three-
dimensional magnetization prepared rapid gradient echo

(MPRAGE) sequence: repetition time ðTRÞ = 2100
milliseconds (ms), echo time ðTEÞ = 2:26ms, flip angle = 8°,
field of view ðFOVÞ = 256 × 256mm2, matrix = 256 × 256,
slice thickness = 1mm with no slice gap, and slices = 192.
The total scanning time was 4 minutes and 53 seconds.
Second, rapid gradient echo-planar pulse imaging (EPI) was
used to acquire the resting-state blood oxygenation level-
dependent (BOLD) signal: TR = 2000ms, TE = 30ms, flip
angle = 70°, FOV = 240 × 240mm2, slices = 36 (interleaved),
matrix = 80 × 80, and voxel size = 3 × 3 × 3mm3. From each
participant, 240 volumes were acquired over 8 minutes and 8
seconds. Additionally, routine axial T2-weighted images were
obtained to exclude subjects with intracranial metastases or
other lesions, as demonstrated by the exclusion criteria above.

2.4. Brain Region Masks. Based on functional connectivity
analysis results from previous pain-related studies, 17
hypothesis-driven pain-related brain regions were selected as
ROIs in the current fMRI study. The selected brain regions
included the bilateral thalamus, bilateral insula, bilateral
amygdala, bilateral ACC, bilateral SI, bilateral SII, bilateral
dorsal lateral prefrontal cortex (DLPFC), bilateral medial pre-
frontal cortex (mPFC), and PAG. Detailed information on
these pain-related brain regions is shown in Table 1. Masks
formost pain-related regions were selected from the Anatom-
ical Automatic Labeling (AAL) Atlas, including the bilateral
thalamus, insula, amygdala, and ACC. In addition, the masks
for bilateral SI and SII were chosen from the Juelich Histolog-
icalAtlas [21],whichwasdistributedwith theFMRIBSoftware
Library (FSL) tool. In addition, the bilateralDLPFCandmPFC
were selected from the Brainnetome Atlas [22]. Finally, the
PAG mask was chosen from the Harvard Ascending Arousal
Network Atlas [23]. The selected brain region masks are
shown in Figure 1.

2.5. Processing of Resting-State fMRI Data. The preprocess-
ingof theBOLDdatawascarriedoutusing theDataProcessing
Assistant for Resting-State fMRI (DPARSF, http://rfmri.org/
DPARSF) based on MATLAB R2020a. All process followed a
standard procedure as described in previous studies [24].
Briefly, we first converted all DICOM files into NifTI files.
Then, the first 10 volumes of each participant were removed
to reach signal equilibration. A correction was made for time
differences between slices, and then, the scans were realigned
to the middle point to account for head motion. The head
motion parameters of all participants were then assessed, and
participants with a maximum rotation greater than 3° or a
maximum displacement greater than 3mm were excluded.
The head motion parameter, mean framewise displacement
by Jenkinson, of the remaining subjects was extracted for the
subsequent step. We performed nuisance regression sepa-
rately on white matter and cerebrospinal fluid. The motion-
corrected BOLD images were spatially normalized and then
resampledwith a voxel size of 3 × 3 × 3mm3.To reduce spatial
noise, the imageswere spatially smoothedwith aGaussian ker-
nel of 6mmfullwidth at halfmaximum(FWHM).Abandpass
filter was set as 0:01Hz < f < 0:10Hz to remove the influence
of low-frequencyphysiological drift andhigh-frequencynoise.
After these steps, a 4-dimensional residual time series dataset
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was created in the standardMNI space. Intragroup functional
connectivity ROI-ROI analysis was conducted among the 17
pain-related brain regions using RESTplus V1.22 (http://
www.restfmri.net). For each ROI, the mean time series was
calculated and then correlated with the other ROIs for each
subject. By using Fisher’s r-to-z transformation, Pearson
correlationcoefficientswereconverted tonormallydistributed
scores.

2.6. Statistical Analysis. All data were analyzed using the
statistical program SPSS 25.0. For intergroup comparisons of
demographicdataandneuropsychological test scores, theSha-
piro–Wilktestwasused toverify thenormalityof thedata.Sub-
ject characteristics were compared among three groups using
ANOVAor theMann–WhitneyU test dependingon their dis-

tributions.Thegenderproportionwasexaminedusingthechi–
square test. p < 0:05 indicated statistical significance.

For intergroup comparisons of functional connectivity,
the normally distributed z scores of functional connectivity
between two ROIs were analyzed using one-way ANCOVA
among the three groups. Age [25, 26] and gender [24, 27]
were regarded as important factors in pain perception. Edu-
cation in years was different among three groups in this study.
And diversity in fMRI results was thought to covary with sub-
ject movements [28]. Because of the above reasons, age, gen-
der, education in years, and head motion parameters were set
as covariates. The post hoc LSD test was used to identify the
relationship between each group pairing. The Kruskal–Wallis
ANCOVA (with covariates controlled) and a post hoc
Manne–Whitney U tests were used to analyze z scores with
nonnormal distributions. The above ANCOVA tests were
also controlled for multiple comparisons with a Bonferroni
correction of p < 0:003 (resulting from p = 0:05/17 functional
connectivity measures).

A partial correlation was conducted on the CP+ group to
evaluate the association between the transformed z scores of
functional connectivity and clinical characteristics (pain
intensity, duration of cancer pain, and scores on the SAS
and SDS). Age, gender, education in years, and head motion
parameters were set as covariates. p < 0:05 was considered as
statistically significant.

3. Results

3.1. Demographic Data. The demographic and clinical char-
acteristics of the participants are detailed in Table 2. No sig-
nificant differences were revealed among the three groups in
regard to age, gender, or neuropsychological assessment.
Years of education among the three groups showed statisti-
cal significance.

3.2. Functional Connectivity in the Three Groups. Functional
connectivity matrices of the three groups are shown in

Table 3: Functional connectivity differences of the pain-related
brain regions in three groups.

ANCOVA Post hoc test
Brain region F (H) value p value t (μ) value p value

DLPFC (R)—ACC (R) 3.297 0.043 −2.400a 0.019a

ACC (L)—AMY (L) 7.394∗ 0.025∗ 2.661∗b 0.023∗b

SII (L)—SII (R) 5.769 0.005
2.003b 0.049b

−3.377c 0.001c

ACC (L)—ACC (R) 6.446 0.003 −3.594c 0.001c

THA (L)—THA (R) 4.493 0.014 −2.980c 0.004c

∗ means results of nonparametric test; aCP + <CP − ; bCP + >CP − ;
cCP − <HC. Abbreviations: CP+: lung cancer patients with bone
metastases suffering from cancer pain; CP−: lung cancer patients without
pain-related complaints; HC: health controls; ANCOVA: analysis of
covariance; DLPFC: dorsolateral prefrontal cortex; ACC: anterior cingulate
gyrus; AMY: amygdala; SII: secondary somatosensory cortex; THA:
thalamus; R: right; L: left.
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Figure 2: Functional connectivity matrices of the three groups. Colormap shows z values of functional connectivity. CP+: lung cancer
patients with bone metastases suffering from cancer pain; CP−: lung cancer patients without pain-related complaints; HC: health
controls; DLPFC: dorsal lateral prefrontal cortex; mPFC: medial prefrontal cortex; SI: primary somatosensory cortex; SII: secondary
somatosensory cortex; ACC: anterior cingulate cortex; INS: insula; THA: thalamus; AMY: amygdala; PAG: periaqueductal gray; R: right;
L: left.
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Figure 2. Statistically differences in functional connectivity are
shown in this exploratory study of pain-related brain regions
among the three groups (Table 3 and Figure 3). Compared to
the CP− group, the CP+ group showed significantly decreased
FCbetween the rightDLPFCandthe rightACC.Moreover, the
CP+ group showed significantly increased FC between the left
ACC and the left amygdala, as well as between the bilateral SII.
Compared to the HC group, the CP− group showed signifi-
cantly decreased FC between the bilateral SII, between the
bilateral ACC, and between the bilateral thalamus. No signifi-
cant differences were found between the CP+ andHC groups.
Unfortunately, the ANCOVA results of functional connectiv-
ity could not bear the multiple comparisons correction
(p > 0:05/17).

3.3. Correlations in the CP+ Group. As shown in Figure 4, in
the CP+ group, FC between the right DLPFC and the right
ACC was positively correlated with the duration of cancer
pain (r = 0:451, p = 0:035). No significant correlations were
found between the FC values and pain intensity.

4. Discussion

We report alterations in functional connectivity in pain-
related brain regions in lung cancer patients with bonemetas-
tasis suffering from cancer pain compared to the control
groups and correlations between altered functional connectiv-
ity and thedurationof cancer pain. The results showed that the
altered functional connectivitywasmainly concentrated in the
DLPFC, ACC, SII, and amygdala in the CP+ group compared
to theCP− group. Among these brain regions that showed sta-
tistical differences, functional connectivity between the right
DLPFC and the right ACC showed a positive correlation with
the duration of cancer pain in the CP+ group. In addition,
altered functional connectivity was found in the bilateral SII,
ACC, and thalamusbetween theCP−groupand theHCgroup.

We found weaker functional connectivity between the
right DLPFC and the right ACC in the CP+ group compared
to the CP− group, and this functional connectivity showed a
positive correlation with the duration of cancer pain. The

DLPFC andACCare twomajor cognitive-emotional modula-
tion areas that are known to receive nociceptive input from the
periphery and control pain perception by top-down modula-
tion[29].Apreviousstudydemonstratedthatafter takinganal-
gesics, patients with chronic radicular neuropathic pain were
relieved with a reduction in network connectivity between
the DLPFC and ACC [11]. Similarly, we found weaker func-
tional connectivity between the right DLPFC and the right
ACC in theCP+group (all CP+patients had experienced anal-
gesics).With the longdurationof cancerpain thathadnotbeen
cured, this functional connectivity gradually recovered. We
speculate that the DLPFC and ACC may be critical brain
regions that cause cancer pain to be refractory. Moreover,
DLPFC stimulation by repetitive transcranialmagnetic stimu-
lation (rTMS) has a potential analgesic effect on chronic pain
[30, 31]. This provides a possibility for future studies on the
analgesia of cancer pain.

In addition, we found stronger functional connectivity
between the left ACC and the left amygdala in the CP+ group
compared to theCP− group. The amygdala is a crucial subcor-
tical region thought to contribute to emotional components of
pain [32]. Hyperexcitability of the pathway between the baso-
lateral amygdalaandtheACCwas found inmousemodelswith
neuropathic pain, and inhibiting basolateral amygdala inputs
can elicit pain-related aversion [33]. Effective connections
were found between the ACC and amygdala in adults during
the experience of pain while also experiencing sadness [34]. It
is plausible to suggest that stronger functional connectivity
between the ACC and amygdala in patients with cancer pain
may result from a cerebral response to pain-related aversion.

Moreover, we found stronger functional connectivity
between the left SII and the right SII in the CP+ group com-
pared to the CP− group. To our knowledge, SII generally
presented stronger functional connectivity with the other
pain-related brain regions in patients under pain conditions
[12, 35]. Surprisingly, in lung cancer patientswith bonemetas-
tatic pain, stronger functional connectivity between the SII in
both cerebral hemispheres was found. SII is responsible for
spatial, tactile, and motor memory associated with sensory
experiences [36]. Our finding suggests that somatosensory

SIIRSIIL
AMYL

ACCL ACCR

DLPFCR

CP+>CP–
CP+<CP–

(a)

SIIRSIIL THARTHAL

ACCL ACCR

CP–<HC

(b)

Figure 3: Statistical differences of functional connectivity in intergroup comparisons. (a) Shows the comparison between CP+ and CP−. (b)
Shows comparison between CP− and HC. CP+: lung cancer patients with bone metastases suffering from cancer pain; CP−: lung cancer
patients without pain-related complaints; HC: health controls; DLPFC: dorsal lateral prefrontal cortex; SII: secondary somatosensory
cortex; ACC: anterior cingulate cortex; THA: thalamus; AMY: amygdala; L: left; R: right.
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perception coding between the two hemispheres increased
during bone metastatic pain.

In addition, in the CP− group, weaker functional connec-
tivity was found in bilateral SII, ACC, and thalamus compared
to the HC group, due to the complexity of lung cancer, brain
function susceptible to cancer treatment, psychological fac-
tors, and the lung cancer itself [37]. Researchers found
that lung cancer patients both with and without chemo-
therapy had cognitive impairment [38]. Connectivity dif-
ferences in the default mode network, predominantly in the
anterior temporal network and cerebellum network, were
found in lung cancer patients versus healthy controls. Accord-
ing to these studies, to eliminate the physiological and psycho-
logical effects of lung cancer on brain function in the present
study, we used lung cancer patients without pain-related com-
plaints as a control group. Finally, we found no significant dif-
ferences between the CP+ group andHC group.We supposed
that too many confounding factors were present to directly
compare the results. The results suggest that the different
effects on the brain function may not have simply appeared
successively but rathermutually influenced one another, lead-
ing to countermeasures. Actually, these results need to be
interpreted with caution. Another possible reason is the bias
caused by the small sample size.

The limitations of this study should be mentioned. First,
our results couldnot bear themultiple comparisons correction
in this exploratory study. However, a previous study found a
high false-positive rate when using a stringent threshold for
multiple comparison correction and revealed that small p
values may not yield robust findings [39]. Because of the
exploratory nature of this study, multiple comparison correc-
tionwas not used in the comparisonswithin the 17 × 17 corre-
lation matrix. Second, we also did not use seed-based global
functional connectivity analysis. Instead, we restricted our
analysis to a priori selected ROIs. Third, the relatively small
sample size of this study may limit its generalizability. How-
ever, the sample size here was larger than that reported in pre-
vious neuroimaging studies of cancer pain (ranging between
10 and 13 participants) [17, 18]. Last, due to the cross-
sectional design of the present study, the direction of causality

underlying theobservedassociations remainsunknown.Thus,
longitudinal studies will be important in the future.

5. Conclusion

These data were the first to show altered brain functional
connectivity within pain-related brain regions in lung cancer
patients with bonemetastatic pain and to reveal its correlation
with pain duration. This study may provide a better under-
standing of bone metastatic pain.
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