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Objective. The mitochondrial energy metabolic pathway (MEMP) is the primary energy metabolism of tumor cells, and its
disruption may promote cancer emergence, spreading, and immune escape. However, there is a lack of studies to determine
the relationship between relevant functional mechanisms and lung adenocarcinoma (LUAD) prognosis. Methods. Gene set
enrichment analysis (GSEA) was employed to determine MEMP pathway-related genes. Then, a prognostic model was created
using the MEMP key genes that were found by LASSO-Cox regression analysis. The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) databases provided the training and validation sets. Furthermore, the infiltration of immune cells
was examined by ssGSEA. Finally, a screening of candidate therapeutic compounds for LUAD patients was performed using
DrugBank, Protein Data Bank (PDB), and AutoDock Vina databases. Results. First, 266 MEMP pathway-related genes that
exhibited aberrant activity in tumors were identified. Then, 19 MEMP key genes were used to build a prognostic model, which
can successfully predict the survival rates of LUAD patients after 1, 3, and 5 years, respectively. The Kaplan-Meier curve
showed that patients in the high-risk group had considerably lower survival outcomes than those in the low-risk group.
Furthermore, it was discovered that the high-risk group had the majority of activated T cells, while the low-risk group tended
to have more other activated immune cells. The majority of immunological checkpoints expressed themselves more strongly in
the high-risk group as well. Finally, 11 prospective medication small molecules were obtained from the projected potential
therapeutic drugs, with DB0980 being regarded as the most promising of them for the treatment of LUAD. Conclusion. This
current study developed reliable prognostic signature, called MEMP score, which provides new guidance for prognostic
assessment, immunotherapy, and drug development in LUAD. Thereby, DB0980 appears to be the most likely approach for
the treatment of LUAD.

1. Introduction

According to the most recent statistics on cancer, there will
be 28.4 million cases of the disease worldwide in 2040, and
lung cancer will account for the majority of related deaths,
outpacing all other cancer types by a wide margin. The
major cause of death from cancer is still lung cancer [1].
The most common form of lung cancer, accounting for
about 40% of cases, is lung adenocarcinoma (LUAD) [2].
LUAD incidence rates increase every year, especially among
women and young people. The five-year survival rate of

LUAD patients is less than 20% despite progress in diagnosis
and treatment [3]. It is challenging to enhance the therapeu-
tic effect due to a lack of knowledge of the underlying LUAD
mechanism. Consequently, a prognostic signature must be
created in order to increase the ability to correctly predict
the prognosis of LUAD [4].

The energy metabolic pathways that tumor cells depend
on for survival include glycolysis and mitochondrial oxida-
tive phosphorylation. Abnormal mitochondrial-related
pathways and metabolic disorders that affect gene expres-
sion can aid the genesis and progression of cancer, as well
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as the escape of immune system. Therefore, aberrant energy
production may result from mutations and altered expres-
sion of genes connected to the mitochondrial energy metab-
olism pathway (MEMP). Studies have revealed that UBE4B
can promote glycolysis, migration, and proliferation through
the PP2A/AKT signaling, which can help generate LUAD
[5]. Additionally, research has demonstrated that genes asso-
ciated with glycolysis can effectively predict prognosis and
reflect immunological status [6], revealing that genes associ-
ated with glycolysis play a crucial role in prognosis. The oxi-
dative phosphorylation-related gene MTFR2, which has
been proven in studies to influence prognosis in LUAD,
can be employed as a potential prognostic indicator and
therapeutic target for this disease [7]. Therefore, it is proba-
ble that the key genes involved in the mitochondrial energy
metabolism system will influence lung adenocarcinoma
prognosis and act as appropriate therapeutic targets.

This bioinformatics study was aimed at evaluating the
role of the MEMP key genes in LUAD, at developing the
MEMP signature as a new prognostic feature of LUAD,
and at distinguishing between low-risk and high-risk LUAD
patients to clarify the potential difference. Thereby, survival
and tumor microenvironment were relevant issues of
interest. In consequence, potential novel therapeutic drugs
should be predicted and evaluated on the basis of molecular
docking as a basis for future research.

2. Materials and Methods

2.1. Dataset Collection and Processing. The clinical informa-
tion and expression data of LUAD were acquired from The
Cancer Genome Atlas (TCGA, https://cancergenome.nih
.gov/).There were 510 primary cancer samples and 58 para-
cancerous samples in expression profile data, and then, 497
tumor samples with both expression and survival informa-
tion were retained for follow-up analysis. The clinical phe-
notypes of 497 patients with LUAD were rated, composed
of age, gender, tumor stages, EGFR mutation, and EML4-
ALK translocation (Table 1).

The validation set was collected using Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/), and
the GSE72094 and GSE42127 datasets were used for verifica-
tion of the prediction model. The Molecular Signatures Data-
base (MSigDB, http://www.gsea-msigdb.org/gsea/msigdb/)
was used to find gene sets relevant to mitochondrial energy
metabolism [8, 9]. The human gene transfer format (GTF) file
was provided by the GENCODE database (https://www
.gencodegenes.org/) [10]. The PDB database supplied the 3D
structural information for proteins (https://www.rcsb.org/)
and the DrugBank database (https://go.drugbank.com/) pro-
vided the information on chemical structures.

2.2. Gene Set Enrichment Analysis. Gene set enrichment
analysis is a calculation technique used to ascertain whether
a selected gene set has significant enrichment differences
between tumors and adjacent tumors. Initially, using gene
set enrichment analysis (GSEA), MEMP-related pathways
with significant enrichment differences (P value < 0.05) were
discovered in patients with tumor and paracancerous tissues.

The key genes in the significant gene set were identified and
aggregated as MEMP key genes for further study.

2.3. MEMP Key Gene Mutation Analysis. Based on the key
gene of MEMP, the overall mutation of the gene was
displayed through the mutation data of TCGA. The MAF-
formatted mutation data were displayed and annotated
using the R program maftools.

2.4. LASSO-Cox Regression Analysis and Construction of
Prognostic Risk Model. Based on the TCGA-LUAD expres-
sion data, the univariate Cox analysis with a threshold of
0.05 was used to investigate the key MEMP genes. Categor-
ical factors were used to specify the prognosis-related genes.
To reduce the possibility of overfitting, a prognostic model
was built using LASSO-Cox regression analysis. According
to the pathway genes’ expression levels and matching regres-
sion coefficients, the scores of the patients were determined:

Score = 〠
n

i=0
βi ∗ χi, ð1Þ

where βi is the weight coefficient of each gene and χi is the
expression of each gene.

LUAD patients were divided into high-risk and low-risk
groups based on a score derived from survival time, patient
status, and TCGA-LUAD expression data. Each model gene
was examined by the Kaplan-Meier survival analysis (R pack-
age survminer) based on log rank. Univariate and multivariate
analyses utilizing the Cox regression were combined with
other clinical variables to ascertain the independent predictive
value of scores. The predictive power of prognostic character-
istics was assessed using ROC curve analysis (R package
timeROC). A statistically significant P value was 0.05. In
addition, the GSE72094 and GSE42127 datasets were used
for verification.

Table 1: Clinical phenotype of TCGA-LUAD.

Phenotype Group No. (%)

Age Age < 60 136 (27.36%)

Age ≥ 60 351 (70.62%)

Unknown 10 (2.02%)

Gender Female 269 (54.12%)

Male 228 (45.88%)

Stage Stage I 267 (53.72%)

Stage II 118 (23.74%)

Stage III 80 (16.1%)

Stage IV 25 (5.03%)

Unknown 7 (1.41%)

EGFR mutation Mut 79 (15.9%)

Wd 190 (38.23%)

Unknown 228 (45.87%)

EML4-ALK translocation Yes 33 (6.64%)

No 206 (41.45%)

Unknown 258 (51.91%)
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Figure 1: Continued.
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2.5. Subgroup Analysis and Construction of Nomograph. The
patients were divided into subgroups according to different
clinicopathological features. In order to examine statistical
variances in risk ratings, the Wilcoxon test was utilized
between two groups, and the Kruskal-Wallis test was used
in multiple groups. All independent prognostic variables in
the multivariate Cox regression analysis were utilized to
generate a nomogram incorporating clinical characteristics
and risk scores using R-package RMS to combine the
outcomes of the risk-scoring model with clinical qualities.
Then, calibration curves were used to assess the precision
of nomograms in predicting 1-, 2-, and 3-year survival in
LUAD patients.

2.6. Correlation Analysis of Immune Cell Infiltration and
Evaluation of Immunotherapy Effect. The ssGSEA estimated
and visually interpreted the Pearson correlation between the
model gene and the immune cell infiltration score [11].
TCGA-LUAD transcriptome data and high-risk and low-
risk score groups were used to analyze the differences in
immune checkpoint expression [12] between high-risk and
low-risk score groups.

2.7. Screening of Potential Therapeutic Compounds for
LUAD. According to Lipinski’s criteria, the structural data
of the corresponding compounds downloaded from the
DrugBank database were screened. The spatial structure
information from the PDB database for the top six signature
genes of prognostic significance, ERO1A, FKBP4, PKP2,
PPIA, RPE, and VDAC1, was obtained, and the accompany-
ing PDB files, 3AHQ, 4LAX, 3TT9, 5TA2, 3OVR, and
5XDO, were downloaded. For docking with small molecules,
AutoDock Vina was utilized, and Pymol and Ligplus were
employed for interaction analysis.

3. Results

3.1. GSEA to Select the Key Genes of MEMP. Five gene sets
were found to be significantly activated (P value < 0.05) in
LUAD using GSEA analysis in 22 gene sets of mitochondrial
energy metabolism through MSigDB. These gene sets
included glycolysis (1), ATP electron transport chain (1),
and oxidative phosphorylation (3) (Figure 1(a)). The key
genes of MEMP were then combined as the key genes of
the five pathways, which comprised 266 genes in total
(Table 2). MEMP key genes were highly expressed in tumor
tissues, as shown by the heat map, which compared the
expression of each gene sets top 30 key genes in tumor tis-
sues to controls (Figure 1(b)). The majority of the key genes
in TCGA-LUAD showed significant differences in expres-
sion between stage I/II and III/IV (P value < 0.05), and they
were highly expressed in stage III/IV. The top two differen-
tially expressed genes in each gene set were significantly
expressed in tumor tissues and the P value was far below
0.05, indicating that MEMP was dysfunctional in LUAD
(Figure 1(c)).
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Figure 1: Key genes of MEMP. (a) Significant mitochondrial energy metabolism-related pathways. (b) The difference in key gene between
tumor and control. (c) Distribution of the expression of MEMP top 8 genes.

Table 2: Key genes of the mitochondrial energy metabolism
pathway.

Pathway No.

HALLMARK_GLYCOLYSIS 100

HALLMARK_OXIDATIVE_PHOSPHORYLATION 127

GOBP_OXIDATIVE_PHOSPHORYLATION 95

GOBP_ATP_SYNTHESIS_COUPLED_ELECTRON_
TRANSPORT

66

KEGG_OXIDATIVE_PHOSPHORYLATION 78
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Figure 2: SNV and CNV analysis based on MEMP key genes. (a) TCGA-LUAD patient waterfall plots showing the mutation landscapes of
MEMP key genes. (b) Comutation analysis of top25 with the highest mutation frequency in MEMP gene. (c) The majority of MEMP-related
genes were amplified in the TCGA-LUAD patients. (d) Boxplots indicating the copy number amplification and the normal had significant
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Figure 3: Signature filtering of the MEMP score prognostic model. (a) Change track of each independent variable, the horizontal axis
represents the log value of the independent variable lambda, and the vertical axis represents the coefficient of the independent variable.
(b) Confidence interval under each lambda. (c) Regression coefficient of the signature. (d) Signature gene of top 8 genes.
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Figure 4: Continued.
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3.2. Epigenetic Analysis of Key Genes of MEMP. The majority
of the mutations in the MEMP core gene were cytosine,
indicating that this nucleoside is extremely unstable and
may indeed be its amino group that was quickly oxidized
(Figure 2(a)). Likewise, the overall mutation rate of key
MEMP genes was not high. The highest mutation rate of
the remaining genes, except VCAN, was just 6%, while the
majority had mutation rates around 2%. For comutation
analysis, the top 25 MEMP genes with the highest mutation
frequency were selected. The results showed that there were
no significant cooccurrence and mutual exclusion between
MEMP genes with top25 mutations (Figure 2(b)). To display
the percentage of copy number amplified and deleted
samples in the total sample, the top 25 genes that were
significantly upregulated in the MEMP gene (Log2FC > 1,
P value < 0.05 after correction) were chosen (Figure 2(c)).
It can be seen that EFNA3, GPI, SLC25A10, and PC have
the most gain. The differences between the four genes in
copy number amplification, copy number deletion, and nor-
mal copy number were further compared (Figure 2(d)). The

outcomes demonstrated that the copy number amplifica-
tion and the normal had noticeable differences. In conclu-
sion, the MEMP key gene exhibited SNV and CNV
variations in normal and cancerous LUAD, further demon-
strating the potential association between the MEMP key
gene and LUAD.

3.3. Construction of MEMP Score Prognostic Model. 266
MEMP key genes were subjected to the univariate Cox
regression analysis, which demonstrated that 61 genes had
significant relationships with OS, of which 56 genes were
high-risk genes (HR > 1, P value < 0.05), and their high
expression would affect the prognosis of patients. Five genes
were low-risk genes (HR < 1, P value < 0.05), and their high
expression would lower the prognosis. The LASSO-Cox
modeling was performed with 61 prognosis-related genes.
The value selected 19 genes to constitute the signature and
established a prognostic model (Figures 3(a) and 3(b)). The
regression coefficients of 19 genes revealed that 15 of them
were high-risk genes with coefficients greater than 0, and 4
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Figure 4: Construction of the MEMP score prognostic model. (a) Score distribution, survival rates, and expression heat maps for high and
low score groups in TCGA, GSE72094, and GSE43127, respectively. (b) Score variation between groups with high and low scores as well as
the survival and mortality rates in three datasets. (c) Survival of the high and low score groups of TCGA, GSE72094, and GSE43127. (d)
Time-dependent ROC curves of TCGA, GSE72094, and GSE43127.
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Figure 5: Differences in scores among subgroups with different clinical characteristics. (a–f) Differences in MEMP scores between
subgroups with different clinical characteristics (age (a), gender (b), stage (I/II-III/IV) (c), stage (I-IV) (d), EGFR mutation (e), and
EML4-ALK translocation (f)), respectively.
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were low-risk genes with coefficients less than 0
(Figure 3(c)). The Kaplan-Meier curves were used to evalu-
ate the prognostic values of the top eight genes and showed
that the low expression of these eight genes indicated higher
survival probability (Figure 3(d)).

The present study used 19 signature genes to generate
the MEMP score for each patient, dividing the patients into
high- and low-risk groups, and assessed the differences in
gene expression, survival, and distribution between the two
groups (Figures 4(a) and 4(b)). The findings demonstrated
that there were distributional differences between high-
and low-risk groups. Additionally, K-M survival analysis
revealed that the high-risk groups’ survival probability was
much lower than that of the low-risk group (Figure 4(c)).
This suggested that for LUAD patients, the MEMP score
might be a significant predictive factor.

Utilizing ROC analysis, the survival rates of LUAD at 1, 3,
and 5 years were predicted, and the MEMP score was exam-
ined as a prognostic predictor. It is evident that the MEMP
score may be used to predict 1-, 3-, and 5-year survival rates
of LUAD patients (AUC1 year = 0:718, AUC3 year = 0:723,
and AUC5 year = 0:687) (Figure 4(d)). Furthermore, the
aforementioned findings were validated using GSE72094 and
GSE42127. The outcomes also demonstrated the predictive
value of MEMP score for LUAD patients, as well as its accu-
racy in predicting 1-, 3-, and 5-year survival rates.

To identify how MEMP scores vary by clinical features
in LUAD patients, the distribution of MEMP scores was
compared, including age, gender, stage (I/II-III/IV), stage
(I-IV), EGFR mutation, and EML4-ALK translocation
(Figures 5(a)–5(f)). It was discovered that there was a sub-
stantial difference in scores between patients with TNM
stage I/II and stage III/IV, indicating that patients with early
cancer and those with late cancer had different risk scores
(Figures 5(a)–5(f)). Afterwards, it was determined whether
the MEMP score was an independent prognostic factor for
LUAD patients by performing univariate and multivariate
Cox risk regression analyses (Figures 6(a)–6(c)). The MEMP
score and stage were predictive factors associated with
LUAD OS, according to a univariate Cox analysis, and they
remained significant after multivariate Cox correction.

3.4. Construction of Prognostic Nomograms. The MEMP
score and stage were additionally used to create a prediction
nomogram for forecasting the 1-, 2-, and 3-year OS survival
rates in order to establish a therapeutically useful, steady,
and reliable prediction model for patients with LUAD
(Figure 7(a)). The calibration curve suggested that the
nomogram was accurate in predicting the 1-year, 2-year,
and 3-year OS rates of patients with LUAD (Figure 7(b)).
Decision curve analysis (DCA) demonstrated that the
nomogram composite model had a better impact than any
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Figure 6: Independent prognostic validation of score in training and validation datasets. (a–c) MEMP scores were an independent
prognostic factor for LUAD patients in the TCGA-LUAD (a), GSE72094 dataset (b), and GSE42127 dataset (c).
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Figure 7: Continued.
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single independent predictive factor of stage and score
(Figure 7(c)). These results showed that the MEMP score
combined with the patient stage can accurately predict the
1-year, 2-year, and 3-year survival rates of patients with
LUAD and can provide a prediction model. Furthermore,
the prognostic significance of the nomogram, which was
observed to be strongly correlated with OS, DSS, and PFS
was validated, respectively (Figure 7(d)).

3.5. MEMP Score Associated Immune Infiltration and
Immunotherapy. Based on TCGA-LUAD transcriptome
data, the degree of immune infiltration across groups with
high and low MEMP scores was examined for further under-
standing of the potential mechanisms (Figure 8(a)). Accord-
ing to ssGSEA, immune infiltration level was higher in the
high-risk score group for activated CD4 T cells, Gamma
delta T cells, and type 2 T helper cells, while it was higher

in the low-risk group for eosinophils, mast cells, immature
B cells, and immature dendritic cells.

Since the immune checkpoint expression is a crucial
indicator of the individualized immunotherapy, the
differences between immune checkpoint expression in the
high and low-risk score groups were further analyzed
(Figure 8(b)). It was found that the expression levels of
ADORA2A, CD4, and TGFB1 were higher in the low-risk
population, but the expression levels of CD274, CD276,
IL1A, LAG3, PDCD1LG2, TNFRSF9, and TNFSF4 were
higher in the high-risk population. In the high-risk group,
there was a noticeably higher expression of the majority of
immunological checkpoints. This might be connected to
the benefits of immunotherapy for those with tumors. For
instance, CD274 (PD-L1), which is linked to immune system
suppression, was expressed at much higher levels in the
high-risk group.
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Figure 7: Nomogram construction. (a) Nomograms of LUAD patients. (b) Correction curves for 1-year, 2-year, and 3-year OS survival. (c)
DCA decision curve revealing the correlation of net benefits of the TNM stage, MEMP score, nomogram, and all three for OS survival at 1, 2,
and 3 years. (d) Survival of OS, DSS, and PFS in high- and low-risk groups of patients with lung adenocarcinoma.
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3.6. Prediction of Potential Therapeutic Drugs. The MEMP
score prognostic model had a strong predictive efficiency,
and the MEMP score significantly connected with the prog-
nosis of LUAD patients and immune cell infiltration in
TME. Therefore, molecular docking was employed to fur-
ther explore prospective therapeutic drugs for LUAD using
the MEMP signature genes. The related compound structure
data retrieved from the DrugBank database were screened
according to Lipinski’s criteria, and 5464 small molecule
compounds were ultimately obtained. As potential therapeu-
tic targets, the top six prognostic important genes, ERO1A,
FKBP4, PKP2, PPIA, RPE, and VDAC1, were chosen, whose
3D structures were acquired from the PDB database. Six
candidate genes were docked with small molecule com-
pounds using AutoDock Vina, the interaction forces were
examined by Pymol and Ligplus, and the top two small mol-
ecules with the highest interaction force scores were selected
for display (Figures 9(a)–9(f)). It can be seen that the six
MEMP signature proteins interacted strongly and closely
with the appropriate small molecule compounds, suggesting

that these compounds may be developed for the treatment of
LUAD. Among them, there were strong interactions existing
between DB09080 and FKBP4 and PPIA. The results of the
clinical trials demonstrated that the administration of
orkambi (lumacaftor/ivacaftor), a known mature medicine,
can improve lung function and reduce the likelihood of lung
deterioration. Therefore, it is likely that DB0980 will be used
as a medication to treat lung adenocarcinoma.

4. Discussion

It is crucial to discover effective treatment options for LUAD
due to the complex pathophysiology of the disease [13]. In
recent years, radiotherapy, chemotherapy, immunotherapy,
target medication therapy, and thoracic surgery have all
been used as LUAD therapeutic options [2, 14]. Although
there has been some improvement, the patient prognosis
remains challenging. This may be due to a lack of a compre-
hensive understanding of the underlying mechanisms of
LUAD. Additionally, MEMP processes like glycolysis and
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Figure 8: MEMP score associated immune infiltration and treatment. (a) Correlation of cell infiltration level in tumor microenvironment
between high and low by ssGSEA. (b) Differences of immune checkpoint expression in high-risk and low-risk groups.
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Figure 9: Protein molecular docking and interaction analysis. (a–f) Top 2 interaction conformation and interaction of 6 MEMP key
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oxidative phosphorylation play a significant role in the
development and occurrence of malignancies and may inde-
pendently affect the prognosis for LUAD patients [15–18].
Therefore, it is necessary and urgent to comprehend the
probable mechanisms of LUAD in MEMP-related functions,
investigate the elements that affect the prognosis of LUAD,
and create novel and powerful prognostic features.

In this study, TCGA-LUAD data, combined with the
gene set related to MEMP, were used to obtain five gene sets,
which were significantly related to LUAD by GSEA analysis.
These gene sets included one associated with glycolysis,
three associated with oxidative phosphorylation, and one
associated with the ATP electron transport chain. Addition-
ally, 266 key MEMP genes were further screened. A new pre-
dictive characteristic of LUAD called the MEMP score was
created using 19 key MEMP genes identified by LASSO-
Cox regression. As an accurate independent predictive factor
for LUAD, the MEMP score has been effectively replicated
in the validation set. It also has strong predictive efficacy
for LUAD patients. Based on LUAD TNM staging, it is also
possible to predict the 1-year, 2-year, and 3-year survival
rates of LUAD patients. To clarify the potential correlation,
the ssGSEA was used to calculate the abundance of distinct
immune cells in each LUAD sample. Activated CD4 T cell,
type 2 T helper cell, Gamma delta T cell, and other immune
cells have a better immune infiltration effect in the high-risk
group. However, eosinophil, mast cell, immaturity B cell,
and immaturity dendritic cell have better effect in the low-
risk group. High-risk individuals had more severely compro-
mised antitumor immunity. Moreover, the acquired features
give tumor cells the ability to activate immunological check-
point pathways that bypass immune surveillance and reduce
the immune response. Numerous diseases may develop or
worsen because of the aberrant expression of immunological
checkpoint markers. Immune checkpoint blockade has
recently achieved significant advancements and has estab-
lished itself as the gold standard for cancer treatment [19].
The majority of high-risk groups have notably higher immu-
nological checkpoint levels, suggesting that high-risk
patients have a greater capacity to evade immune surveil-
lance and suppress antitumor immunity. From this vantage
point, the prediction model might offer a useful means of
accelerating customized cancer immunotherapy.

Effective targeted drug therapy is one of the commonly
used methods in tumor therapy. Through molecular docking
analysis, 5464 small molecules interacting with signature
protein were found. These molecules may be used as poten-
tial therapeutic drugs, providing ideas and resources for
future research on targeted drugs for LUAD. Six signature
genes with the strongest correlation with the prognosis of
LUAD were selected, and the two small molecules with the
highest association of each gene were obtained through pro-
tein interaction. 11 small compounds that can simulta-
neously and closely bind to DB09080, FKBP4, and PPIA
were discovered. It is found in the DrugBank database that
three small molecules are related to drug research, including
DB09080 (lumacaftor), DB09280, and DB14773. DB09280
(lumacaftor) is a medication that is combined with ivacaftor
and may be used to treat cystic fibrosis (CF) in people six

years of age and older. DB14773 is being investigated for
the treatment of locally progressed or metastatic malignant
tumors (clinical trial: NCT03641586), while DB14918 is
being studied among patients with spinal muscular atrophy
(SMA) (clinical trial: NCT02268552) [20]. According to
the outcomes of DB09080 clinical trials, the use of orkambi
(lumacaftor/ivacaftor) can enhance lung health and reduce
the risk of lung deterioration [21]. DB0980 will therefore
probably be utilized as a drug to treat LUAD. Although
more experimental evidence is required for these medicinal
molecules, this study can increase the probability that drugs
will be developed successfully.

There are still certain restrictions on the current investi-
gation. The effect of independent prediction of LUAD prog-
nosis by the MEMP score is still limited. In order to predict
the prognosis of LUAD in conjunction with MEMP score in
the future, it is required to integrate further prognostic var-
iables. This could increase the prediction accuracy of the
model for LUAD patient prognosis. Further research is
required to confirm the link between the MEMP score and
the immunotherapy response. In this respect, the main lim-
itation of the current study is that it is restricted on a theo-
retical model, while no clinical validation of the results was
performed. In this context, all bioinformatics studies are
limited; however, they can provide a basis for subsequent
clinical research. Meanwhile, bioinformatics analysis is an
appropriate method do derive hypotheses from available
data as a basis for future translational research. Therefore,
also the current study’s findings must be interpreted as a
hypothesis, needing clinical validation.

5. Conclusions

This current study developed the MEMP score as a new
independent prognostic feature of LUAD to predict survival.
The findings underline the importance of mitochondrial
energy metabolism pathway in LUAD. The small molecule
DB0980 was considered to be the most likely drug for the
treatment of LUAD.
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