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Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and has a poor prognosis. Cuproptosis
is a novel mode of cell death that has only recently been discovered. Considering the critical role of lncRNAs in liver cancer
development, the aim of this study was to construct a prognostic signature based on cuproptosis-related lncRNAs
(CRlncRNAs). We downloaded RNA-sequencing data and corresponding clinical information of patients with HCC from The
Cancer Genome Atlas (TCGA) database. To verify the robustness of the model, we added an external validation set obtained
from the Gene Expression Omnibus (GEO): GSE40144. In addition, we identified the cuproptosis-related genes (CRGs) based
on previous reports. Pearson correlation analysis, univariate Cox regression, and least absolute shrinkage and selection
operator (LASSO) Cox regression analysis were utilized to screen for genes associated with prognosis. On this basis,
multivariate Cox regression and stepAIC were used to further construct and optimize the prognostic model. The simplified
signature with the lowest Akaike information criterion (AIC) value was considered the prognostic signature. Seven different
algorithms were used to perform immune infiltration analysis. The single-sample Gene Set Enrichment Analysis (ssGSEA)
algorithm was utilized to find the difference in immune function between the high- and low-risk groups. Finally, in vitro
experiments were performed by quantitative real-time PCR (qRT–PCR) analysis using HCC cell lines to validate the expression
of prognostic genes. We identified 3 lncRNAs (CYTOR, LINC00205, and LINC01184) as independent risk factors for HCC.
The receiver operating characteristic (ROC) curves calculated that the AUC at 1, 3, and 5 years reached 0.717, 0.633, and
0.607, respectively. The expression levels of 41 immune checkpoints differed significantly between the high- and low-risk
groups, and there were significant differences in sensitivity to immunotherapy between the high- and low-risk groups. The risk
model could also serve as a promising predictor of immunotherapeutic response, which has been verified by the TIDE
algorithm (p < 0:001). Overall, we propose a signature related to CRlncRNAs that can be used to predict the prognosis of HCC
patients, which was validated in external cohort and in vitro experiments.

1. Introduction

A recent study proposed a novel mode of cell death, cuprop-
tosis, which occurs by combining copper directly with the
lipid components of the tricarboxylic acid (TCA) cycle,
resulting in aggregation of lipid proteins and subsequent loss

of iron-sulfur cluster proteins, triggering protein toxicity
stress, and eventually leading to cell death [1]. Copper plays
an important role in many life processes in eukaryotes, such
as energy metabolism, reactive oxygen species detoxification,
iron absorption, and signal transduction [2]. Previous stud-
ies have shown that the toxicity originating from the over
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intake of copper is an important cause of oxidative damage
when copper homeostasis is destroyed [3]. The potent redox
activity of copper enables copper to play a unique role as a
key regulator of cellular signaling pathways [4]. Increasing
evidence shows that serum copper levels are inseparable
from HCC proliferation and metastasis, making it an impor-
tant biomarker of liver cancer [5].

Long noncoding RNAs (lncRNAs), which are defined as
transcripts longer than 200 nucleotides with no protein cod-
ing potential, many of which are distinctively expressed in
specific tissue or cancer types, play an important role in
the development of cancer [6, 7]. The remodeling of the
tumor microenvironment and tumor immune escape is
inseparable from the changes in metabolic activities medi-
ated by lncRNAs [8]. A large number of cancer-associated
lncRNAs have been implicated in the regulation of cancer
invasion and metastasis [9, 10]. LOXL1-AS1 drives HCC cell
proliferation and migration by regulating the miR-377-3p/
NFIB axis [11]. High expression of NKILA advances liver
cancer cell proliferation, invasion, and EMT by targeting
miR-485-5p [12]. The miR-326/hnRNPA2B1 axis is regu-
lated by PCAT6 to promote cancer cell proliferation and
increase its invasiveness [13]. On the other hand, lncRNAs
can also silence cancer cells [14, 15].

HCC is a malignant tumor with poor prognosis and is
one of the leading causes of cancer-related deaths worldwide
[16]. Viral hepatitis, smoking, obesity, fatty liver disease, etc.
are considered risk factors for HCC [17]. The scope of
surgical resection is only suitable for early-stage patients,
while the proportion is less than 15% [18]. Against the
backdrop of major advances in medical management, the
prognosis for HCC patients remains poor, posing significant
conundrums for clinical therapists [19], and the discovery of
new and effective prognostic biomarkers for HCC is
particularly important.

2. Materials and Methods

2.1. Data Sources. The RNA-seq transcriptome data derived
from 374 tumor samples and 50 adjacent normal tissues and
corresponding clinical data of patients with LIHC were
downloaded from TCGA (https://portal.gdc.cancer.gov/)
database and normalized by transcripts per million (TPM).
A list of CRGs (FDX1, CDKN2A, DLD, DLAT, LIAS, GLS,
LIPT1, MTF1, PDHA1, and PDHB) was retrieved from
Tsvetkov’s publication [1]. To verify the robustness of the
signature, we collected 59 patients’ information from the
GEO (GSE40144, https://www.ncbi.nlm.nih.gov/geo/). Sam-
ples without complete survival data were excluded.
Coexpression analysis of CRGs and lncRNAs was performed
using Pearson’s correlation, and the association was
considered significant if the correlation coefficient jR2j > 0
at p < 0:001. The basic information of the TCGA-LIHC
and GSE40144 was summarized in Table 1.

2.2. Construction and Validation of a CRlncRNAs Prognostic
Signature. Univariate Cox regression analysis was performed
to screen CRlncRNAs significantly associated with overall
survival (OS) in the TCGA-LIHC dataset. The TCGA-

LIHC dataset was randomly divided into a training set
(n = 185) and a testing set (n = 185). We performed LASSO
Cox regression analysis in the training set, and the R package
“glmnet” was used to identify prognosis-related genes by
1000-fold cross validation. The obtained genes were
included in multivariate Cox regression analysis to establish
the prognostic signature based on the lowest AIC value in
the training set, while testing set and total set were used to
validate the signature. The risk score for each patient was
calculated using the following formula:

Risk Score = 〠
n

i=1
Expi ∗ Coeið Þ: ð1Þ

Patients were divided into high- and low-risk groups
based on the median value of the risk score. Currently,
ROC curves are widely used for the validation of prediction
models in biological and medical related fields [20–22]. In
this study, ROC curve was drawn using the “timeROC”
package. Moreover, Kaplan–Meier survival analysis was then
conducted to display the prognostic performance of the
signature, which was performed using the “survival” and
“survminer” packages.

2.3. Nomogram. We applied the “rms” package to construct
the nomogram, aiming to predict the 1-, 3-, and 5-year OS
rates of HCC patients by using the patient’s risk score and
clinical characteristic information. Calibration plots were
used to test the predictive power of the nomogram.

2.4. Immunity Landscape Assessment. Seven algorithms
(TIMER, CIBERSORT, CIBERSORT—ABS, QUANTISEQ,
MCPCOUNTER, XCELL, and EPIC) were utilized to
analyze the immune microenvironment of tumors. ssGSEA
was used to further quantify the enrichment levels of
immune cells and immune function with the aim of evaluat-
ing immunological signatures between the high- and low-
risk groups. Meanwhile, to validate the predictive power of
the signature on anti-PD1 and anti-CTLA4 response, we
downloaded data from TIDE (http://tide.dfci.harvard.edu/),
and we visualized the results using the “ggpubr” package.

2.5. Analysis of Tumor Mutational Burden in Different Risk
Groups. Tumor mutational burden (TMB), defined as non-
synonymous somatic mutations per megabase in the coding
region, was counted by the total number of mutations [23].
We used the read.maf function to read the MAF file, and
the TMB levels of each patient in the MAF file was calculated
using the “maftools” package. The top 15 genes with the
highest mutation frequency in TCGA-LIHC cohort were
analyzed in both high- and low-risk groups.

2.6. Statistical Analysis. All statistical analyses in the study
were performed using R software (version 4.1.3). Principal
component analysis (PCA) was used to explore whether
the high- and low-risk groups were distributed in the dis-
crete direction, and the results were visualized using the
“scatterplot3D” package in R software. The package “pec”
was applied to C-Index analysis. We utilized “corrplot” to
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perform gene correlation analysis. Gene Set Enrichment
Analysis was performed using “http://org.Hs.eg.db”,
“DOSE”, “clusterProfiler” and “enrichplot” packages. Stu-
dent’s t test was used for clinical correlation analysis. The
statistical significance threshold was set at p < 0:05 unless
otherwise stated.

2.7. Cell Culture. Human HCC cell lines (HepG2) and
human hepatic epithelial cells (LO2) were purchased from
the National Certified Cell Culture Collection Center
(Shanghai, China) and cultured in high-glucose DMEM
containing 10% fetal bovine serum (DMEM, Gibco, China).
Cell culture was performed in a cell incubator at 37°C and
5% carbon dioxide.

2.8. RNA Extraction and qRT–PCR. Total cellular RNA was
extracted using TRIzol reagent (YISHAN Bio, Shanghai,
RN001) according to the manufacturer’s protocol. cDNA
synthesis was reverse transcribed using the PrimeScript RT
kit (BeyoRTII, China). Data were collected during each
extension phase of PCR and analyzed using a StepOnePlus
Real-Time PCR instrument (Applied Biosystems, USA).
Human GAPDH was selected as an endogenous control
(Sangon, Shanghai, B661104-0001). We repeated the process
three times for each sample, and the relative quantification
of lncRNAs was calculated using the 2-ΔΔCT method.

GraphPad Prism (version 8.0) was used to draw graphs.
The sequences of all primers used in this study were pro-
vided in Table 2.

3. Result

3.1. Identification of CRlncRNAs. We evaluated the prognos-
tic relationship between CRlncRNAs expression and OS in
the TCGA-LIHC cohort by univariate Cox regression and
found 16 CRlncRNAs (p < 0:05, Figure 1(a)). To avoid over-
fitting, we incorporated the above 16 prognosis-related
CRlncRNAs into the LASSO regression and obtained 9
candidates lncRNAs (Figures 1(b) and 1(c)).

Table 2: Primer sequences for qRT–PCR.

Gene Primer sequence (5′-3′)

CYTOR
Forward: CAGGTATCAGGCACAGCATCT

Reverse: CAGGAAGCGTGAGGACAGAA

LINC00205
Forward: TTGAGACGGGAGTGTTCAGC

Reverse: TCACTGGAGAGGGAGACGAG

LINC01184
Forward: GCAAGCGGTCTTCTCTGTCT

Reverse: GTCTCCTGTTCGTGTCAGCA

Table 1: Clinical characteristics of GEO database and three data sets randomly generated from the TCGA database.

Characteristics
TCGA-LIHC cohort

GSE40144 cohortTraining set Testing set Total set
n = 185 n = 185 n = 370

Age

< = 65 122(66.0) 110(59.5) 232(62.7) 50 (84.7)

> 65 63(34.1) 75(40.5) 138(37.3) 9(15.3)

Gender

Female 53(28.7) 68(36.8) 121(32.7) 12(20.3)

Male 127(71.4) 117(63.2) 249(67.3) 47(79.7)

AJCC stage

I 81(43.8) 90(48.7) 171(46.2) 29(49.2)

II 40(21.6) 45(24.3) 85(23) 21(35.6)

III 43(23.2) 42(22.7) 85(23) 9(15.3)

IV 3(1.6) 2(1.1) 5(1.4) 0

T

T1 88(47.6) 93(50.3) 181(48.9) NA

T2 48(26.0) 45(24.3) 93(25.1) NA

T3 41(22.2) 39(21.1) 80(21.6) NA

T4 6(3.2) 7(3.8) 13(3.5) NA

M

M0 122(66.0) 144(77.8) 266(71.9) NA

M1 2(1.1) 2(1.1) 4(1.1) NA

N

N0 116(62.7) 136(73.5) 252(68.1) NA

N1 3(1.6) 1(0.5) 4(1.1) NA
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ATP1A1-AS1
CASC15
CYTOR
DLEU1
FBXL19-AS1
LINC00205
LINC00294
LINC00909
LINC01184
MAPKAPK5-AS1
MIR4435-2HG
SNHG12
SNHG20
SNHG3
SNHG4
WDFY3-AS2

0.007
0.019
0.003
0.006
0.002
0.005
0.006
0.004
0.001
0.002

<0.001
0.007
0.002
<0.001
<0.001
0.043

2.018 (1.215–3.352)
Hazard ratioP value

2.265 (1.141–4.495)
1.522 (1.150–2.014)
3.158 (1.385–7.201)
1.876 (1.264–2.783)
1.604 (1.157–2.222)
1.716 (1.167–2.524)
1.785 (1.202–2.652)
2.215 (1.356–3.617)
1.714 (1.224–2.400)
2.365 (1.526–3.665)
1.543 (1.128–2.109)
1.982 (1.299–3.024)
1.501 (1.210–1.862)
1.717 (1.341–2.199)
2.024 (1.023–4.005)

1 2.51188643150958 10
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Figure 1: Continued.
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3.2. Establishment and Evaluation of Prognostic Signature.
Next, we conducted an in-depth analysis of the prognosis-
related lncRNAs using multivariate Cox regression and
found 3 lncRNAs (CYTOR, LINC00205, and LINC01184)
that were strongly associated with the prognosis of HCC
patients. Based on the expression levels of the 3 lncRNAs
and the corresponding weighted coefficients, we constructed
a prognostic signature for HCC patients: Risk Score = 0:2989
× Exp ðCYTORÞ + 0:5550 × Exp ðLINC00205Þ + 0:4254
× Exp ðLINC01184Þ.

We substituted the expression information of related
genes of HCC patients into the above prognostic formula
to calculate the risk score. The division of high- and low-
risk groups for the testing set and total set was based on
the median risk value of the training set. We performed a
differential analysis of clinical traits between the three data
sets. Using Kaplan–Meier analysis, we found that in all three
data sets, the high-risk group had significantly lower OS
than the low-risk group (p < 0:001) (Figures 2(a)–2(c)).
ROC curve was used to evaluate the accuracy of the prog-
nostic signature, demonstrating that CRlncRNAs have excel-
lent and robust predictive ability in the training set
(1 − year AUC = 0:719, 3 − year AUC = 0:695, 5 − year AUC
= 0:638; Figure 2(d)), testing set (1 − year AUC = 0:721, 3
− year AUC = 0:600, 5 − year AUC = 0:593; Figure 2(e))
and total set (1 − year AUC = 0:717, 3 − year AUC = 0:633,
5 − year AUC = 0:607; Figure 2(f)).

We also established a patient risk-survival status plot
(Figures 2(g)–2(i)). Univariate and multivariate Cox

analyses revealed that age and risk score were independent
prognostic factors for HCC patients (Figures 3(a) and
3(b)). PCA indicated that HCC patients in different risk
groups were distributed in two directions and the lncRNAs
involved in signature construction had the best discrimina-
tion (Figures 3(c)–3(f)). The C-index curve (Figure 3(g))
and ROC curve (Figure 3(h)) showed that the prognostic
signature had the best predictive ability (AUC = 0:717) com-
pared with age, sex, grade, and AJCC stage. We also carried
out signature validation of clinical grouping for four indica-
tors of interest (age, AJCC stage, and grade), and the results
showed that the signature was suitable for different ages
(Figure 4(a)), sexes (Figure 4(b)), grades (Figure 4(c)), and
AJCC stages (Figure 4(d)).

3.3. Clinical Correlation Analysis. We further explored the
difference in clinicopathological features (Figure 4(e))
between subgroups, marking the indicators with significant
differences. The heat map (Figure 4(f)) suggested that the dis-
tribution of AJCC stage, grade, and T stage differed between
the high- and low-risk groups and that the three lncRNAs
were significantly upregulated in the high-risk patients.

3.4. Nomogram. The nomogram was constructed based on
clinical features and prognosis-related CRlncRNAs, and the
calibration curve was close to the diagonal line, suggesting
that the OS predicted by the nomogram was stable and accu-
rate (Figures 5(a) and 5(b)).
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Figure 1: Identification of prognosis-related CRlncRNAs in TCGA cohort. (a) Forest plot of univariate Cox regression identified 16
CRlncRNAs significantly correlated with OS of HCC patients. (b, c) LASSO regression screened of cuproptosis-related lncRNAs at the
minimum point of cross-validation.
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3.5. Gene Set Enrichment Analysis. The annotated gene sets
(“c2.cp.kegg.v7.4.symbols.gmt”) were downloaded from the
Molecular Signatures Database (MSigDB, https://www
.gsea-msigdb.org/gsea/msigdb). We extracted 5 signaling
pathways from each of the two groups according to the p
value ranking. The results showed that dilated cardiomyop-
athy, cytokine–cytokine receptor interactions, ECM-
receptor interactions, neuroactive ligand–receptor interac-
tions and hematopoietic cells were mainly enriched in the

high-risk groups (Figure 5(c)). Butanoate metabolism, pri-
mary bile acid biosynthesis, glycine, serine and threonine
metabolism, propanoate metabolism, and tryptophan
metabolism were mainly enriched in the low-risk groups
(Figure 5(d)).

3.6. Different Immune Landscapes and Gene Correlation
Analysis in High- and Low-Risk Groups of HCC. The
immune heat map was drawn based on seven algorithms
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Figure 2: Development and validation of the 3-gene signature in TCGA cohort. (a–c) K-M survival analysis of training set, testing set and
total set. (d–f) ROC curves predicted 1-, 3-, and 5-year OS for training set, testing set, and total set. (g–i) Risk scores and survival status plots
of training set, testing set, and total set.
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Pvalue Hazard ratio

Age 0.170 1.010 (0.996–1.025)

Gender 0.180 0.772 (0.529–1.127)

Grade 0.342 1.130 (0.878–1.453)
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Figure 3: Continued.
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including TIMER, CIBERSORT, CIBERSORT-ABS, QUAN-
TISEQ, MCPCOUNTER, XCELL, and EPIC, and the rela-
tionship between prognosis and immunity in HCC patients
was further evaluated (Figure 6(a)). The ssGSEA quantita-
tive assessment of HCC showed that APC costimulation,
CCR, cytolytic activity, MHC class I, Type I IFN response,
and Type II IFN response were significantly different
between the high- and low-risk groups (Figure 6(b)). Prior
studies have shown that immune checkpoint blockade
through epigenetic mechanisms is promising in HCC treat-
ment and may determine prognosis. We evaluated the
expression levels of immune checkpoint genes between the
high- and low-risk groups (Figure 6(c)). Interestingly, in
addition to IDO2, other immune checkpoints were highly
expressed in the high-risk group. The TIDE algorithm
revealed that patients in the low-risk group had a greater
potential for immune escape (Figure 6(d)).

3.7. Tumor Mutational Burden. The importance of TMB in
predicting the immune checkpoint blockade (ICB) response
has been increasingly recognized, and tumors with a higher
TMB tend to be more sensitive to ICB therapy [24]. The
waterfall diagram demonstrated that for most genes, the
mutation frequency was higher in the high-risk group than
in the low-risk group. In addition, a waterfall diagram
showed that the five most frequent somatic mutations in
both the high-risk and low-risk groups were those in TP53,
CTNNB1, TTN, MUC16, and PCLO (Figures 6(e) and 6(f
)). Kaplan–Meier survival analysis revealed significant worse
prognosis in the H-TMB and/or high-risk groups
(Figures 6(g) and 6(h)). In addition, we showed the top 15
genes with the highest mutation counts in the TCGA cohort
(Table 3). Furthermore, the risk scores between the wild type
and the mutation type of TP53 were compared. We found

that the risk scores in the mutation types of TP53 were sig-
nificantly higher than that in the wild types (Figure 6(i)).

3.8. Externally Validation. In the externally validated cohort,
Kaplan–Meier analysis based on the median risk score of the
TCGA cohort showed that the high-risk group had signifi-
cantly lower OS than the low-risk group (p < 0:05), and
ROC analysis showed that the signature when applied
to the GEO cohort had higher predictive power
(1 − year AUC = 0:773, 2 − year AUC = 0:617, and 3 − year
AUC = 0:793; Figures 7(a) and 7(b)).

3.9. Validation of Expression Levels of Candidate Genes. We
further validated the differential expression of 3 prognostic
genes (CYTOR, LINC00205, LINC01184) between HCC cell
lines and normal liver tissue samples. The qRT–PCR results
showed that the expression levels of CYTOR, LINC00205,
and LINC01184 were significantly upregulated in HepG2
cells compared to in LO2 cells (p < 0:0001), and the expres-
sion levels of these prognostic genes were consistent with the
results of the bioinformatics analysis (Figure 8(a)–8(c)).

4. Discussion

In the past few decades, many copper enzymes, copper
transporters, and copper chaperones have been discovered
[25] as well as their biological functions. Elevated copper
levels have been linked to a variety of cancers [26], including
colorectal cancer [27], prostate cancer [28], breast cancer
[29], pancreatic cancer [30], and cervical cancer [31]. The
concept of cuproptosis was recently proposed and the mech-
anism of copper-induced cell death is protein lipidation,
with the FDX1 and lipoic acid genes being critical mediators
[1]. This discovery will provide new ideas for cancer treat-
ment. Copper ionophores tend to overcome the limitations
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of traditional anticancer drugs by selectively inducing cop-
per downregulation [32]. Inhibiting metabolic reprogram-
ming on which cancer cells depend may be an effective
way of limiting copper bioavailability.

In this study, we first identified 44 pairs of lncRNA-CRG
coexpression relationships using Pearson correlation. Then
we performed LASSO Cox regression analysis, obtained 3
prognosis-related lncRNAs, CYTOR, LINC00205, and
LINC01184, and constructed a prognostic signature. The
AUC values of this signature in the total set indicate that this
signature has predictive ability. The reliability of the signature
was verified by K-M, PCA, and C-index analysis, and it was
demonstrated that these lncRNAs are potential prognostic

markers and therapeutic targets for liver cancer. Previous
studies have shown that CYTOR can promote liver cancer
progression through regulation of the miRNA-125a-5p/
LASP1 axis [33] and miR-125b/SEMA4C axis [34]. In addi-
tion, CYTORwas found to be a poor prognostic factor for gas-
tric cancer, non-small-cell lung cancer, breast cancers, and
nasopharyngeal carcinoma [35–38]. LINC00205 has been
repeatedly proven to be involved in the progression of liver
cancer through mutual regulation with miRNA and can be
used as a biomarker for prognosis assessment and a potential
target for disease diagnosis and treatment [39]. As in previous
studies, LINC01184 effectively predicted the prognosis of
HCC patients and promoted the progression of HCC [40].
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Mutations in the TP53 tumor suppressor gene are
among the most common genetic alterations in many
human malignancies including liver cancer. In this study,
missense mutations were the most common type of muta-
tion, and TP53 mutations were the most frequently mutated
gene, which can be identified in 96 HCC samples. It was
found that the majority of TP53 mutations was missense
and abundantly reported to be associated with poor progno-
sis in a variety of cancers [41].

Currently, immunotherapy plays an important role in
the treatment of HCC as a promising new therapeutic
strategy [42]. Notably, most immune checkpoint genes,
including the well-known CTLA4 and PDCD1 (PD-1),
were significantly upregulated in the high-risk group, sug-
gesting the potential therapeutic targets for ICB applica-
tions. TIDE scores can predict patient response to
immunotherapy, as they can reflect the potential capacity
for the tumor’s immune evasion. In our study, patients
in the high-risk group had lower TIDE scores, which
mean that they will benefit more from immunotherapy.
By comparing tumor and normal liver tissue, we found
that genes enriched in the following functional categories,
including myeloid dendritic cells, memory B cells, CD4+
T cells, Tregs, T-cell follicular helper, neutrophils, M0
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Figure 6: Immune landscape and tumor mutation burden (TMB) in TCGA cohort. (a) Analysis of immune infiltration based seven
algorithms. Differential analysis of (b) immune function, (c) immune checkpoints and (d) TIDE scores. Waterfall diagram of the top 15
genes with the highest mutation frequency in (e) high- and (f) low-risk groups. (g) K-M survival analysis of the high- and low-risk
group. (h) K-M survival analysis of combined TMB and risk scores. (i) Differential analysis of risk scores between the wild type and the
mutation type of TP53.

Table 3: Gene mutation counts of samples in the TCGA cohort
(Top 15).

Gene Count

TP53 96

CTNNB1 94

TTN 89

MUC16 59

PCLO 41

ALB 39

RYR2 33

APOB 31

CSMD3 29

LRP1B 29

XIRP2 29

ABCA13 27

OBSCN 27

HMCN1 26

FLG 26
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and M2 macrophages, resting/activated NKs, and resting
mast cells were differentially expressed between the high-
and low-risk groups. The infiltration of Tregs has been
considered an important regulatory mechanism of
immune system homeostasis and immune tolerance. Previ-

ous studies have shown that Tregs can secrete immuno-
suppressive cytokines, such as TGF-β, IL-10, and IL-35,
and inhibit the antigen presentation functions of dendritic
cells, which is an important reason for the upregulation of
Tregs in high-risk patients [43].
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5. Conclusion

A 3-CRlncRNA prognostic signature was constructed to
predict clinical prognosis of HCC patients. A series of vali-
dations confirmed that the signature was stable and reliable.
These results might be beneficial for individualized treat-
ment and medical decision-making during the management
of HCC patients. Although we have constructed a robust sig-
nature and validated it experimentally, the results still need
to be treated with caution and need to be further verified
in clinical practice.
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