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Background. Ferroptosis, a type of cell death caused by phospholipid peroxidation, has lately been linked to the onset and
development of numerous illnesses. Numerous investigations have demonstrated the close relationship between lipid
peroxidation and carotid atherosclerosis. In order to get new knowledge for targeted therapy, bioinformatics analysis was
employed in this study to discover the probable ferroptosis-related genes of carotid atherosclerosis. Methods. The GSE43292
gene expression dataset was downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed
ferroptosis-related genes were screened by R software and then analyzed by protein-protein interaction (PPI) network,
differential gene correlation analysis, Kyoto Encyclopedia of Gene and Genome (KEGG) pathway, and Gene Ontology (GO)
terminology enrichment analysis to explore the functional role. Result. In samples of atherosclerosis, we found 33 ferroptosis
genes that were differentially expressed, including 21 upregulated genes and 12 downregulated genes. These differentially
elevated genes were mainly connected to the ferroptosis and glutathione metabolism pathways, according to GO and KEGG
enrichment analysis. We also discovered 10 hub genes and 2 important modules through the analysis of the PPI network and
the creation of key modules. Conclusion. The current findings imply that the carotid atherosclerosis phenomenon involves
ferroptosis, and 10 important genes associated to ferroptosis may play a role in the development of carotid atherosclerosis.
This study offered a novel approach to future research on the carotid atherosclerosis pathogenic processes and treatment targets.

1. Introduction

Carotid atherosclerosis is closely associated with an
increased risk of atherosclerotic cardiovascular disease and
ischemic strokes, the third largest cause of mortality and
the largest cause of disability [1, 2]. Studies have revealed
that plaque formation in coronary arteries and carotid arter-
ies has a similar pathological basis, and noninvasive exami-
nation of carotid artery-related indicators can effectively
predict the risk of coronary heart disease and intervene in
a timely manner, which is important for reducing the inci-
dence of cardiovascular events in patients with coronary
heart disease [3]. Meanwhile, 18-25% of thrombo-embolic
strokes are caused by carotid atherosclerosis [4]. Despite
the fact that carotid atherosclerosis can be treated with suc-
cessful carotid endarterectomy to prevent arterial stenosis

and lessen the risk of ischemic stroke, about 6% of patients
who have the procedure are still at risk for stroke, making
it the third leading cause of death and the main cause of dis-
ability [5]. Therefore, further research into the causes of
carotid atherosclerosis is needed to provide novel perspec-
tives on how to effectively treat it and stop it from progres-
sing. Previous research has demonstrated that a number of
variables, such as advanced age, gender, a history of long-
term smoking, hypertension, diabetes, and hyperlipidemia,
might impact carotid atherosclerosis [6–12]. Oxidative stress
is well acknowledged to have a significant part in the etiol-
ogy of carotid atherosclerosis, which involves complex path-
ways. Reactive oxygen species (ROS), including superoxide,
hydroxyl, and perhydroxyl radicals, can activate a lot of pro-
inflammatory genes, cause functional damage to many com-
ponents, and ultimately end in cell death [13, 14].
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Ferroptosis, a novel form of programmed cell death dis-
tinct from apoptosis and necrosis, is characterized by lethal
accumulation of lipid peroxides [15–18]. In the presence of
divalent iron or ester oxygenase, the major mechanism of fer-
roptosis is to catalyze the high production of unsaturated fatty
acids on the cell membrane, which results in lipid peroxidation
and causes cell death. And ferroptosis is characterized by a
decline in the glutathione system’s regulatory core enzyme glu-
tathione peroxidase 4 (GPX4), which is primarily mediated by
the system xc-/glutathione (GSH)/GPX4 axis. As a powerful
reductant and cofactor of GPX4, GSH is depleted as a result
of system xc- inhibition. Therefore, GSH inhibits the activity
of GPX4, which in turn encourages the generation of ROS
and results in ferroptosis [16, 19]. Recently, studies have shown
that ferroptosis is involved in the occurrence and development
of carotid atherosclerosis [20]. As an effective inducer of fer-
roptosis, erastin downregulates GPX4 and upregulates the

expression of acyl-coA synthetase long chain family member
4 (ACSL4) to promote ferroptosis in endothelial cells during
atherosclerosis, while miR-17-92 protects endothelial cells
from ferroptosis induced by erastin by targeting the A20-
ACSL4 axis [21]. Studies on atherosclerosis have discovered
that nontransferrin bound serum iron (NTBI) excess might
hasten the progression of atherosclerosis by triggering vascular
cell death, vascular endothelial cell activation, and a significant
increase in MCP-1-mediated monocyte recruitment [22]. A
HFD-fed ApoE−/- mice study showed that inhibition of fer-
roptosis could protect against lipid peroxidation and the aggra-
vation of atherosclerosis [23]. In addition, Zhou et al. found the
expression of Ptgs2 and ACSL4 was upregulated, while GPX4
was downregulated in the advanced stages of atherosclerosis
[24]. To provide novel perspectives on the prevention and
treatment, more potential target and ferroptosis-related genes
in carotid atherosclerosis should be further explored.

Table 1: The 33 differentially expressed ferroptosis-related genes in atheroma plaque samples compared to healthy samples.

Gene symbol log FC Changes P value Adj. P value Probe_id

DPP4 1.61087280 Up 2.326828e-07 1.221585e-05 8056222

PGD 0.94074198 Up 3.097850e-07 1.350161e-05 7897620

HMOX1 1.41950225 Up 4.756812e-07 1.591794e-05 8072678

IDH1 0.60008948 Up 7.253949e-07 2.077267e-05 8058552

CYBB 0.74255000 Up 1.817412e-06 3.982799e-05 8166730

NEDD4L 0.56223098 Up 1.853402e-06 3.982799e-05 8021376

FTL 0.55677195 Up 2.253216e-06 4.175076e-05 8030171

PLIN2 1.18298003 Up 4.299166e-06 7.127565e-05 8160297

MMD 0.58977195 Up 5.534257e-06 8.301386e-05 8016832

CTSB 0.63620946 Up 6.327060e-06 9.013363e-05 8149330

ALOX5 0.75010097 Up 8.742280e-06 9.874828e-05 7927215

TNFAIP3 0.59867530 Up 1.187496e-05 1.168942e-04 8122265

NCF2 0.8693150 Up 1.309790e-05 1.250254e-04 7922773

SLC2A3 0.78378788 Up 2.422898e-05 2.051461e-04 7960865

DDIT4 0.5718084 Up 3.214009e-05 2.410507e-04 7928308

SAT1 0.6848509 Up 3.925423e-05 2.747796e-04 8166469

CAPG 0.8185275 Up 4.568905e-05 3.128706e-04 8053417

IL1B 0.7802422 Up 6.628938e-04 2.677071e-03 8054722

SCD 0.7112506 Up 2.676245e-03 8.028735e-03 7929816

CXCL2 0.6020322 Up 2.964514e-03 8.809642e-03 8100994

TFRC 0.5205731 Up 3.996662e-03 1.144499e-02 8093053

NOX4 -0.8820391 Down 1.185850e-07 8.659491e-06 7950933

ZEB1 -0.6688309 Down 1.229041e-07 9.678699e-06 7926916

SLC2A1 -1.0074981 Down 1.944419e-07 1.221585e-05 8129666

GRIA3 -0.5621344 Down 3.428981e-07 1.350161e-05 8169717

CDO1 -0.6634081 Down 1.461069e-06 3.835305e-05 8113641

LURAP1L -0.5063125 Down 2.109848e-06 4.153763e-05 8154381

ANGPTL7 -0.6068484 Down 5.415842e-06 8.301386e-05 7897675

CAV1 -0.5424884 Down 6.581186e-06 9.013363e-05 8135594

FADS2 -0.5126222 Down 7.422816e-06 9.410893e-05 7940565

EGFR -0.5477747 Down 1.177876e-05 1.168942e-04 8132860

PRKAA2 -0.7962694 Down 2.401065e-05 2.051461e-04 7901720

LINC00472 -0.5123006 Down 1.344558e-04 7.430451e-04 8127502
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Figure 1: Continued.
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Our study used the Ferrdb Database (http://www
.zhounan.org/ferrdb/le(3)gacy/index.html) and analyzed the
microarray dataset GSE43292, which contains carotid ath-
erosclerotic plaques and normal tissue samples, created by
Bricca et al. First, we analyzed differentially expressed
ferroptosis-related genes in carotid atherosclerosis by the
“limma” package. Subsequently, we conducted correlation
analysis, GO and KEGG analysis, and protein-protein inter-
action (PPI) network analysis for these differentially
expressed ferroptosis-related genes and ultimately identified
10 key genes. In summary, our findings provide novel per-
spectives on the clinical diagnosis and management of
carotid atherosclerosis and contribute to our understanding
of the function of ferroptosis in carotid atherosclerosis.

2. Materials and Methods

2.1. Data Acquisition. The microarray expression profiling
dataset GSE43292 was downloaded from Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/), a plat-
form to collect high-throughput sequencing and microarray-
based sequencing data. GSE43292 is in GPL6244 platform
(Affymetrix Human Gene 1.0 ST Array), which included
32 carotid atherosclerotic plaque tissue samples and 32 con-
trol tissue samples. A total of 506 ferroptosis-related genes

were downloaded from the Ferrdb Database (http://www
.zhounan.org/ferrdb/legacy/index.html).

2.2. Differential Expression Analysis. The normalized expres-
sion matrix was obtained from the microarray expression
profile dataset GSE43292 by using R software (version
4.0.1). Then, the probe in the dataset was annotated by
annotation file. We obtained the differentially expressed
ferroptosis-related genes by using the “limma” package in
R software, and the threshold was set to adjusted P < 0:05
and log FC > 0:5.

2.3. Correlation Analysis of Differentially Expressed Genes
(DEGs). The “corrlot” package of R software was used to eval-
uate the ferroptosis-related differentially expressed genes and
reveal the connection between differentially expressed genes.

2.4. GO and KEGG Pathway Enrichment Analysis of
Differentially Expressed Ferroptosis-Related Genes. Enrich-
ment analysis of Gene Ontology (GO) terms and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
were analyzed by using “clusterProfiler” package in R soft-
ware. The GO analysis includes three categories: cell compo-
sition analysis (CC), biological process analysis (BP), and
molecular function analysis (MF).
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Figure 1: Differentially expressed ferroptosis-related genes in carotid atherosclerotic plaque tissue samples and control samples (normal).
(a) Heat map of the 33 differentially expressed ferroptosis-related genes in atheroma plaque samples and healthy samples. (b) Volcano
plot corresponding to the GSE43292 dataset. The red dots represent the significantly upregulated genes, and the blue dots indicate the
significantly downregulated genes.
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2.5. Protein-Protein Interaction (PPI) Network. PPI network
analysis was analyzed by STRING database (https://string-
db.org/), which can query and predict protein-protein inter-
actions. The visualization of the PPI network was con-
structed by the Cytoscape software (version 3.6.0).

3. Results

3.1. Identification of Differentially Expressed Ferroptosis-
Related Genes. The microarray expression profile dataset
GSE43292, which included 32 carotid atherosclerotic plaque
tissue samples and 32 control tissue samples, was downloaded
from GEO. Then, we analyzed the expression of 506
ferroptosis-related genes obtained from the Ferrdb Database
in the GSE43292 dataset. Then using the threshold of adjusted

P value <0.05 and log FC > 0:5, we obtained a total of 21
upregulated and 12 downregulated genes (Table 1). The 33
differentially expressed genes between carotid atherosclerosis
plaque and control group obtained above were processed by
R software and displayed in the form of heat map and volcano
plot (Figures 1(a) and 1(b)). Moreover, box plots showed 33
differentially expressed ferroptosis-related genes (Figure 2);
the top five upregulated genes were DPP4, PGD, HMOX1,
IDH1, and CYBB; and the top five downregulated genes were
NOX4, ZEB1, SLC2A1, GRIA3, and CDO1.

In Table 1, these 33 genes are differentially expressed
ferroptosis-related genes in carotid atherosclerosis analyzed
by R software, and among them, HMOX1, NCF2, ALOX5,
CYBB, IL1B, TFRC, NOX4, EGFR, and CAV1 have strong
relevance in the carotid atherosclerosis and ferroptosis.
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Figure 2: The boxplot of 33 differentially expressed ferroptosis-related genes in plaque tissue samples and normal samples.
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3.2. Correlation of Differentially Expressed Ferroptosis-
Related Genes. To explore the expression correlation of these
ferroptosis-related genes, we employed the correlation anal-
ysis, the results showed the correlation of the whole 33 dif-
ferentially expressed genes, and there existed a high
correlation between upregulated genes and the same
between downregulated genes (Figures 3(a) and 3(b)).

3.3. Functional and Pathway Enrichment of the Differentially
Expressed Ferroptosis-Related Genes. To investigate potential
biological functions of these differentially expressed
ferroptosis-related genes, we conducted Gene Ontology
(GO) enrichment analysis and KEGG pathway analysis by
using “clusterProfiler” package in R software (Table 2). The
results revealed that the most significant GO enriched terms
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Figure 3: Spearman correlation analysis of 33 differentially expressed ferroptosis-related genes.
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involved in oxidative stress, reactive oxygen species meta-
bolic process, NADPH oxidase complex, iron ion binding,
and others (Figures 4 and 5). Then, we analyzed 13 common
genes of the three most significant pathways, namely, IL1B,
DDIT4, CAV1, PRKAA2, EGFR, ANGPTL7, NOX4,
NCF2, TNFAIP3, ALOX5, CYBB, HMOX1, and IDH1
(Figure 6(a)). Besides, the heat map-like functional classifi-
cation map was used to show the enrichment of these genes
in the most significant 8 pathways (Figure 6(b)). In KEGG
enrichment analysis, the differentially expressed

ferroptosis-related genes are mainly involved in the process
of ferroptosis and glutathione metabolism (Table 2 and
Figure 7).

3.4. PPI Network Analysis and Hub Gene Identification. The
differentially expressed ferroptosis-related gene PPI network
was constructed by using the Search Tool for the Retrieval of
Interacting Genes (STRING) to determine the interactions
among them (Figure 8). And the top 10 hub genes therein
with the highest degree values were screened using
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Figure 4: Gene Ontology (GO) enrichment analysis of 33 differentially expressed ferroptosis-related genes. (a) Bar plot of enriched GO
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Cytoscape (v. 3.9.0) (Figure 9(a)). Two key modules
(Figures 9(b) and 9(c)) with six upregulated genes (HMOX1,
NCF2, ALOX5, CYBB, IL-1B, and TFRC) and three down-
regulated genes (NOX4, EGFR, and CAV1) were identified.

4. Discussion

Carotid atherosclerosis is a chronic arterial disease charac-
terized by the accumulation of lipid and fibrillar components
in the arterial intima, associated with oxidative (ox-LDL)

modification of LDL deposited into the intima, which is rel-
evant to the process of carotid stenosis, insufficient cerebral
blood supply, or local thrombosis [25]. These complications
play an important role in the development of ischemic
stroke [3, 26]. Ferroptosis is a way of regulated cell death
mediated by intracellular iron accumulation, lipid peroxides,
and the regulation of the system xc−/GSH/GPX4 axis [27].
The specific mechanism is that the cystine/glutamate anti-
porter system xc− increases intracellular glutamate and cys-
tine by transmembrane transport. Intracellular cystine is
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Figure 6: (a) Relationships between enriched pathways. (b) Heat map-like functional classification.
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reduced to cysteine and combines with glutamate to form
GSH, which is a potent reductant and a cofactor for GPX4.
As a member of the glutathione peroxidases, GPX4 reduces
toxic lipid hydroperoxides (lipid-OOH) in cell membranes
to nontoxic lipid alcohols (lipid-OH) by utilizing GSH as
the electron donor to inhibit lipid peroxidation. SLC7A11,
as a subunit of system xc−, can promote the generation of
GSH. Therefore, the inhibition of SLC7A11 can inactivate
GPX4 and lead to cell death [13, 17, 20, 28].

Recently, several studies have shown that ferroptosis, as
an important pathway of lipid peroxidation, may promote
the occurrence and development of carotid atherosclerosis.
Ferroptosis can lead to rapid lipid peroxidation of cells due
to lack of GPX4, resulting in vascular endothelial cell dam-
age and accelerating the occurrence of carotid atherosclero-
sis [29]. In addition, ferroptosis induces lipid peroxidation
of macrophages through NADPH oxidase4- (NOX4-)
ROS-P38-MAPK signal pathway, which induces the
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production of foam cells and cause atherosclerotic plaque
[30, 31]. The above studies can prove that ferroptosis plays
an important role in carotid atherosclerosis. However, the
mechanism through which ferroptosis initiates the develop-
ment and progression of carotid atherosclerosis has not been
clarified and need to be further explored.

In this study, we identified 33 differentially expressed
ferroptosis-related genes in carotid atherosclerosis by bioin-
formatics methods. Some of these ferroptosis-related genes
in the pathogenesis of carotid atherosclerosis has been previ-
ously studied [24, 32]. For example, TLR5-NOX4 signal cas-
cades can stimulate proinflammatory cytokine expression
through activation of NF-κB or regulate smooth muscle cell
migration through the TLR5-NOX4-RAC-JNK axis, which
leads to the formation of neointimal plaques in atherosclero-
sis [33]. In addition, HMOX1 has been identified as a key
ferroptosis-related gene in carotid atherosclerosis; however,
it has not been thoroughly investigated yet [34, 35]. In our
study, we will further investigate genes associated with fer-
roptosis in carotid atherosclerosis.

To explore the potential biological functions of these dif-
ferentially expressed ferroptosis-related genes, we performed
GO and KEGG enrichment analysis. The results showed that
these genes were enriched for several terms such as ferropto-

sis, glutathione metabolism, and oxidative stress response,
which were closely related to ferroptosis. Several studies
have confirmed that ferroptosis can affect the progress of
carotid atherosclerosis. A study has shown that ferrostatin-
1 (Fer-1), a ferroptosis inhibitor, increases the expression
of SLC7A11 and GPX4 by reducing the accumulation of iron
in cells, thus decreasing the accumulation of lipid ROS, elim-
inating lipid peroxidation and endothelial cell damage, and
inhibiting the development of carotid atherosclerosis [23].
We will further explore ferroptosis-related genes in carotid
atherosclerosis in our study.

Based on the results of bioinformatics analysis, we fur-
ther identified 10 most critical ferroptosis-related genes in
carotid atherosclerosis by PPI analysis including HMOX1,
IL1B, and NOX4. There is evidence suggested that some of
these genes played an important role in the occurrence and
development of ferroptosis and carotid atherosclerosis. For
example, a recent study showed that liver X receptor (LXR)
agonists selectively increased the expression of IL1B in ath-
eroma plaque homogenates-treated human macrophages,
revealing that cholesterol and oxysterols promote the occur-
rence and development of carotid atherosclerosis by induc-
ing IL1B to induce inflammation [33]. Another study
showed that ferric ammonium citrate (FAC) could induce
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Figure 9: (a) The top 10 key genes were screened through the PPI network map. The nodes represent genes, and the edges represent links
between genes. (b, c) Two key modules were identified by Cytoscape, which was used to identify network gene clustering.
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the decrease of foam cell activity, inhibit the expression of
GPX4 and SIRT1, and increase the level of lipid ROS and
the expression of IL-1B [36]. We suggest that ferroptosis of
cells increases the expression of the IL-1B gene by inhibiting
GPX4 and SIRT1, which activates the inflammatory
response, produces a large amount of ROS, and finally leads
to the occurrence of carotid atherosclerosis.

The present study has several limitations. First, although
we performed a rigorous bioinformatics analysis, we lacked
confirmation from experimental and clinical trials, which
we will further confirm in future studies to ensure the accu-
racy of the results. Second, the sample size we analyzed was
relatively small, and we need to continue to collect data to
expand the sample size to confirm our conclusions. Third,
we did not experimentally investigate the potential mecha-
nisms of these genes in carotid atherosclerosis, so further
studies are needed in the future.

5. Conclusion

In summary, by bioinformatics analysis of the GSE43292
dataset, we identified 33 potential ferroptosis-related genes
of carotid atherosclerosis. Moreover, by constructing the
PPI network and identifying key modules, 10 genes were
identified as key ferroptosis-related genes in carotid athero-
sclerosis. Among them, IL1B and HMOX1 are possible bio-
markers or targets of ferroptosis and carotid atherosclerosis.
This study provided some key clues for future research on
the molecular mechanism of carotid atherosclerosis and
deserves our further study.
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