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Background. Slow transit constipation (STC) is a clinical syndrome characterized by a decreased urge to defecate and delayed
colonic transit. Circular RNAs (circRNAs) are a recently discovered class of regulatory RNAs that have emerged as critical
biomarkers and regulators of various diseases. However, the expression profiles and mechanisms underlying circRNA
regulation in human STC tissues have not been explored. Methods. High-throughput RNA sequencing technology was used to
compare the differences in circRNA expression profiles in colon samples taken from patients with STC or controls.
Bioinformatics analyses were performed on the host genes of the differentially expressed circRNAs (DE-circRNAs), a
competing endogenous RNA network was constructed, and the expression levels of some DE-circRNAs were verified using
quantitative real-time polymerase chain reactions (qRT-PCR). Results. There were 190 DE-circRNAs identified in the STC
group. Bioinformatics analysis predicted that the DE-circRNAs were enriched in the relaxation of smooth muscle, actin
binding, actin cytoskeleton organization, dilated cardiomyopathy, and cardiac muscle contraction. These results suggest that
muscle diseases may be related to the pathogenesis of STC. The expression levels of the 12 most differentially expressed
circRNAs were verified using qRT-PCR. In addition, circRNA–microRNA–mRNA regulatory networks were constructed using
the 8 most significant circRNAs. Some mRNAs predicted to be closely related to smooth muscle function were found in these
networks. Conclusions. This study provides a helpful blueprint for researchers to select candidate circRNAs for further study of
the pathogenesis of STC and screen potential biomarkers or targets for use in the diagnosis and treatment of STC.

1. Introduction

Functional constipation (FC) is a common digestive tract
disorder [1]. A recent study showed that the incidence of
FC was 8.73% in the Japanese population between the ages
of 20 and 69 years [2]. Slow transit constipation (STC) is a
typical type of functional constipation characterized by pro-
longed colonic transmission and a decreased frequency of

defecation [3]. Patients with STC suffer from both physical
and psychological burdens that seriously affect their quality
of life.

Many hypotheses about the pathophysiology of STC
have been proposed, including degenerative neuromuscular
processes, interstitial cell dysfunction, dysbacteriosis, and
autoimmune disorder [4–6]. However, the pathogenesis of
STC remains unclear. Recently, the changes and functions
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in noncoding RNAs (ncRNAs) in the colon tissue of STC
patients have been explored, enriching the research direc-
tions on the pathogenesis of STC [7–10].

Circular RNAs (circRNAs) are a special class of ncRNAs
that have a stable circular structure [11]. These RNAs play
important roles in a variety of digestive diseases (e.g.,
Hirschsprung’s disease and colitis) and physiological pro-
cesses (e.g., the self-renewal of intestinal stem cells)
[12–14]. However, the expression profiles of circRNAs in
human STC tissues have yet to be explored.

In the present study, we performed whole-
transcriptome sequencing of RNA samples from the colon
tissues of STC patients and controls to identify differen-
tially expressed circRNAs. Furthermore, the expression of
potentially functional circRNAs was validated using
reverse transcription quantitative real-time polymerase
chain reactions (qRT-PCR). Bioinformatics analyses were
also performed to explore the possible regulatory mecha-
nisms of selected circRNAs. This study provides a basis
for further research on the pathogenesis of STC, innova-
tive diagnostic methods for STC, and new insights into
STC gene therapy.

2. Materials and Methods

2.1. Tissue Samples and Cell Culture. There were 42 patients
included in this study: 21 patients with STC undergoing sub-
total colectomy and 21 controls undergoing radical surgery
for colon cancer. The inclusion and exclusion criteria were
based on those of our previous study [15]. Briefly, all
included patients had a history of STC for more than five
years, failed to respond to nonsurgical regimens, and had a
strong desire for surgery. Patients with obstructed defecation
syndrome, severe psychiatric disease, small bowel dysmoti-
lity, or megacolon/megarectum were excluded from this
study. Tissue samples of these patients were collected during
surgical treatment at the Department of Colorectal and Anal
Surgery, Zhongnan Hospital of Wuhan University. All sam-
ples were obtained from the same region of the colon des-
cendens in the STC and tumor-free control groups. Tissues
were immediately frozen in liquid nitrogen for 15min and
stored at −80°C until use. This study was approved by the
Ethics Committee of Zhongnan Hospital (ethical application
ref: 2022061), and written informed consent was obtained
from each participant.

Human HEK 293T cells were purchased from the China
Center for Type Culture Collection and cultured in DMEM
(Dulbecco’s modified Eagle’s medium) with 10% fetal bovine
serum (Gibco, USA), 1% penicillin/streptomycin, in a
humidified incubator with 5% CO2 at 37

°C.

2.2. circRNA Sequencing and Identification. We randomly
selected 12 tissues (6 STC and 6 controls) from 42 samples
for circRNA screening by Shanghai Majorbio Bio-Pharm
Biotechnology Co., Ltd. (Shanghai, China). The remaining
15 pairs of samples were used to verify circRNA expres-
sion (Table 1). The sequencing library was prepared using
the TruSeq total RNA kit (Illumina; San Diego, CA, USA).
First, ribosomal RNA was depleted and fragmented. Next,
cDNA was synthesized using random hexamer primers.
The RNA template was then removed, and a replacement
strand was synthesized incorporating dUTP instead of
dTTP to generate double-stranded (ds) cDNA. AMPure
XP beads were used to separate the ds-cDNA from the
second-strand reaction mix. A single ‘A’ nucleotide was
added to the 3′ ends of these blunt fragments. Finally,
multiple indexing adapters were ligated to the ends of
the ds-cDNA. Libraries were size-selected for cDNA target
fragments of 200–300 base pairs on 2% Low Range Ultra
Agarose, followed by PCR amplification using Phusion
DNA polymerase (NEB). After quantification using
TBS380, the library was sequenced using an Illumina
HiSeq Xten system (Illumina; San Diego, CA, USA). Cir-
cRNA Identifier (CIRI) tools were used to identify the cir-
cRNAs. The level of each circRNA was calculated using
the spliced reads per billion mapping (SRPBM) method.
Significantly differentially expressed circRNAs (DE-cir-
cRNAs) were defined as jlog2FCj > 1 and p < 0:001.

2.3. Quantitative Real-Time PCR (qRT-PCR). Total RNA
was extracted from tissues using TRIzol reagent (Invitro-
gen; USA). RNA (1μg) was reverse-transcribed into cDNA
using HiScript II Reverse Transcriptase (Vazyme Biotech
Co., Ltd., China). An Applied Biosystems 7500 Real-
Time PCR System (ThermoFisher Scientific; USA) was
used to perform qRT-PCR in a 10μl reaction, including
5μl SYBR Mix (Vazyme Biotech Co., Ltd., China), 1μl
cDNA, 3.6μl ddH2O, and 0.2μl each of the forward and
reverse primers. The qRT-PCR amplification conditions
included an initial denaturation step (95°C for 2 min)
followed by 40 cycles of denaturation at 95°C for 15 s
and annealing at 60°C for 1min. GAPDH was used as a
normalization standard. The relative RNA levels were cal-
culated using the 2−ΔΔCt method. The experiments were
repeated three times for each sample. The primers are
listed in Supplementary Table S1.

2.4. Functional Enrichment Analysis of Host Genes of the
circRNAs. The host genes of the significant DE-circRNAs
were subjected to functional enrichment analysis using the
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) databases. The analyses of GO terms

Table 1: Demographic information of STC and control.

Characteristics
STC for circRNA screening

(n = 6)
Control for circRNA screening

(n = 6)
STC for verification

(n = 15)
Control for verification

(n = 15)
Age (y) 62:3 ± 7:0 60:8 ± 10:1 57:3 ± 8:4 60:7 ± 10:6
Male/female 2/4 2/4 4/11 5/10

STC: slow transit constipation.
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and KEGG pathways were performed using Goatools
(https://github.com/tanghaibao/Goatools) and KOBAS
(http://kobas.cbi.pku.edu.cn/home.do).

2.5. Construction of circRNA–microRNA–mRNA Network.
The target microRNAs (miRNAs) of the circRNAs were pre-

dicted using starBase (https://starbase.sysu.edu.cn/) and cir-
cBank (http://www.circbank.cn/index.html). The target
mRNAs of the miRNAs were predicted using TargetScan
(https://www.targetscan.org/), miRDB (http://mirdb.org/),
miRWalk (http://mirwalk.umm.uni-heidelberg.de/), and
TarBase (http://microrna.gr/tarbase/). Next, circRNA–
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Figure 1: Analysis of the circRNA expression profile in STC. (a) Scatter plot of circRNA expression in the STC and control groups. (b) The
circRNAs are classified by distribution. (c) A volcano plot represents the STC DE-circRNAs. Red dots and blue dots indicate the upregulated
and downregulated DE-circRNAs, respectively. (d) Hierarchically clustered heatmap analysis of the circRNA expression profiles.
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miRNA–mRNA interaction networks were constructed and
displayed using Cytoscape v3.8.2 [16].

2.6. Statistical Analysis. GraphPad Prism 8 was used for data
analysis. Two-tailed Student’s t-test was used to evaluate the
differences between the two groups. Data are presented as
the mean ± standard deviation. Statistical significance was
defined as p < 0:05.

3. Results

3.1. circRNA Expression Profiling in STC. CIRI analysis of the
high-throughput RNA sequencing results from the STC and
control colon tissues identified 31082 circRNAs (Figure 1
(a)). Among the circRNAs, 70.83% was derived from exons,
22.63% were from introns, and 6.54% were intergenic
(Figure 1(b)). There were 190 DE-circRNAs; 117 were
upregulated and 73 were downregulated. Figure 1(c) shows

a volcano plot of the DE-circRNAs. A hierarchically clus-
tered heatmap revealed distinct differences between the cir-
cRNA expression profiles of the two groups (Figure 1(d)).
The DE-circRNAs are listed in Supplementary Table S2.

3.2. Functional Enrichment Analysis of Host Genes. GO
enrichment analysis of the host genes of the DE-circRNA
transcripts revealed that they were enriched in 555 terms,
comprising 413 biological processes (BP) terms, 64 cellular
component (CC) terms, and 78 molecular function (MF)
terms. The majority of BP host genes were enriched in actin
filament–based processes (GO:0030029), the relaxation of
smooth muscle (GO:0044557), cytoskeleton organization
(GO:0007010), and actin cytoskeletal organization
(GO:0030036). The most enriched MF terms were for cyto-
skeletal protein binding (GO:0008092), heparin sulfate bind-
ing (GO:1904399), and actin binding (GO:0003779). Among
the CC terms, the host genes were associated primarily with
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Figure 2: Functional enrichment analysis. (a) Top 10 GO enrichment terms in biological processes (BP), molecular functions (MF), and
cellular component (CC) functions. (b) KEGG signaling pathways with p < 0:05.
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secretory dimeric IgA immunoglobulin complexes
(GO:0071752), dimeric IgA immunoglobulin complexes
(GO:0071750), and the cytoskeleton (GO:0005856)
(Figure 2(a)). In the KEGG signaling pathway analysis, the

host genes were significantly enriched in 16 terms; dilated
cardiomyopathy (map05414), thermogenesis (map04714),
the PPAR signaling pathway (map03320), and oxidative
phosphorylation (map00190) were the most significant
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Figure 3: Presence of the selected circRNAs. (a) Detailed information on the circRNAs in circPrimer 2.0. (b) The circRNAs are amplified
from cDNA of HEK 293T cells using divergent primers.

Table 2: Top six up-/downregulated circRNAs.

circRNA ID circBase ID Log2FC P value Regulate

8_101558419_101558812 hsa_circ_0085173 5.80 1:44192E − 05 Up

8_39221610_39257343 hsa_circ_0084055 5.60 7:49084E − 05 Up

14_58318542_58330169 hsa_circ_0000542 5.52 0.000132928 Up

13_98409338_98424650 hsa_circ_0030694 5.45 0.000237855 Up

7_92343024_92352642 hsa_circ_0009112 5.36 0.000400085 Up

22_44802077_44825593 hsa_circ_0063716 5.28 0.000688839 Up

3_197866112_197871462 hsa_circ_0002319 -5.42 3:5989E − 05 Down

15_44328685_44380976 hsa_circ_0035052 -5.12 0.000370208 Down

1_203710877_203722689 hsa_circ_0016094 -5.12 0.000370208 Down

4_168890922_168916027 hsa_circ_0071410 -3.58 8:67005E − 05 Down

22_50125392_50128507 hsa_circ_0063878 -3.58 8:67005E − 05 Down

11_94799390_94800311 hsa_circ_0004214 -2.67 8:83338E − 07 Down
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(Figure 2(b)). The detailed data are provided in Supplemen-
tary Tables S3 and S4.

3.3. Validation of DE-circRNAs. Further analysis of the DE-
circRNAs using circBase identified 61 overlapping cir-
cRNAs and 129 novel circRNAs [17]. The top 6 DE-
circRNAs that were derived from exons were selected for
subsequent experiments (Figure 3(a), Table 2). First, diver-
gent primers were designed to amplify the circRNAs from
cDNA, and their presence was confirmed using agarose gel
electrophoresis (Figure 3(b)). The expression of these DE-

circRNAs was verified in 15 pairs of STC and non-STC
tissues using qRT-PCR (15 vs. 15 samples). The results
revealed that the candidate circRNAs were differentially
expressed in the STC samples, which is consistent with
the circRNA sequencing results. In the STC tissues, the
levels of hsa_circ_0085173, hsa_circ_000542, hsa_circ_
0030694, and hsa_circ_0063716 were significantly
increased, whereas the levels of hsa_circ_0016094, hsa_
circ_0071410, hsa_circ_0063878, and hsa_circ_0004214
were significantly decreased, compared with the control
samples (Figures 4(a) and 4(b)).
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Figure 4: Validation of the expression of the selected circRNAs in STC tissues. (a, b) qRT-PCR analysis of the top 6 up-/downregulated
circRNAs in the STC and control groups (n = 15 each). All data are means ± SD.
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3.4. Construction of the circRNA–miRNA–mRNA Interaction
Network in STC. circRNAs can act as miRNA sponges to reg-
ulate miRNA activities and influence downstream mRNA
expression. Thus, we constructed a circRNA–miRNA–mRNA
interaction network to investigate the role of circRNAs in
STC. The starBase and circBank databases were used to predict
the target miRNAs of the selected circRNAs. TargetScan,
miRDB, miRWalk, and TarBase were used to predict the down-
stream genes of the identified miRNAs. Because thousands of
interaction pairs were predicted for the DE-circRNAs, we estab-
lished and visualized competing endogenous RNA (ceRNA)
networks for the validated circRNAs. Using the regulatory net-
workmap, we identified the top 6miRNAs that potentially bind
to the circRNAs and the 6 most likely target genes for each
miRNA (Figures 5(a) and 5(b), Supplementary Table S5).
This might provide a foundation for understanding the
biological functions of circRNAs in STC.

4. Discussion

STC is a primary functional disease characterized by
impaired colonic function and decreased motility. Surgery
may be the definitive therapy for patients with refractory

STC who fail to respond to medical treatment [18]. To date,
the detailed mechanisms of STC have not been fully eluci-
dated. In recent years, ncRNAs have been confirmed to par-
ticipate in the occurrence and development of various
diseases by directly or indirectly regulating gene expression
[19]. Exploring the changes in ncRNAs in STC patients will
help enrich our understanding of the pathogenesis and
potential therapeutic targets of STC. Using human speci-
mens, we compared circRNA expression patterns between
STC and control colon tissues via whole-transcriptome
sequencing.

This study identified 190 circRNAs as being significantly
differentially expressed in patients with STC compared with
controls. GO and KEGG enrichment analyses showed that
the host genes of these circRNAs were enriched in the relax-
ation of smooth muscle, actin binding, dilated cardiomyop-
athy, and cardiac muscle contraction. These results suggest
that STC pathogenesis may be related to myopathy. Smooth
muscle cells are the final effectors of gastrointestinal motility
[20]. Studies have shown that colonic smooth muscle cells
are impaired in patients with STC [21]. Our previous study
demonstrated thinning of the intestinal smooth muscle layer
in chronically constipated mice [22]. However, whether

(b)

Figure 5: The ceRNA regulatory network. (a) The upregulated ceRNA network. (b) The downregulated ceRNA network.
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injury of smooth muscle cells is a primary pathological pro-
cess of STC or a secondary result of fecal deposition of
denervation remains to be further studied. The results of
the present study suggest that abnormal expression of cir-
cRNAs may be involved in the regulation of smooth muscle
injury in patients with STC.

The 12 circRNAs with the most significant abnormal
expression were verified via qRT-PCR using 15 paired colon tis-
sues from STC and controls. The results were consistent with
the sequencing data. Among the identified circRNAs, four were
significantly overexpressed in STC tissues, and four others were
significantly downregulated compared with the controls. Since
ceRNA mechanisms are important pathophysiological path-
ways of ncRNAs and ceRNA networks that are out of balance
can disrupt life activities and cause disease [23], we constructed
circRNA–miRNA–mRNA interaction networks for the top 8
circRNAs that were differentially expressed in both the whole-
transcriptome sequencing and qRT-PCR tests.

Interestingly, some mRNAs predicted to be closely related
to smooth muscle function were found in these networks. For
example, it has been suggested that there may be a ceRNA
relationship between hsa_circ_0004214, hsa-miR-526b-5p,
and tropomyosin 4 (TPM4). TPM4 is a major F-actin–
binding protein that plays important roles inmodulatingmus-
cle contraction [24]. Common binding sites were predicted
among hsa_circ_0071410, hsa-miR-149-5p, and synaptotag-
min 2 (SYT2), thus constituting a potential ceRNA network.
SYT2 is a key protein in the neuromuscular junction and is
essential for fast synaptic vesicle exocytosis. Studies have
shown that SYT2 is one of the disease genes responsible for
congenital myasthenic syndromes [25]. Neuromuscular junc-
tion disorders may also play crucial roles in STC; this provides
ideas for further understanding of the pathogenesis of the dis-
ease. Moreover, hsa_circ_0004214 and hsa-miR-193a-5p
shared binding sites with COL1A1, which is the major compo-
nent of type 1 collagen, suggesting that they may participate in
the pathogenesis of STC through ceRNA mechanisms.
Although collagen is not a direct component of smooth mus-
cle cell contraction elements, the extracellular matrix com-
posed of collagen plays an important role in regulating
muscle contraction [26]. Smooth muscle has been shown to
mediate extracellular matrix remodeling, which indirectly reg-
ulates overall muscle tissue contractility [27].

Although the ability to bind to miRNAs is the best
described mechanism of circRNAs, other functions of cir-
cRNAs should not be ignored, including participation as
RNA-binding proteins [28], transcriptional regulators [29],
and the ability to directly translate proteins [30]. Compre-
hensive exploration and innovative research on the differen-
tially expressed circRNAs identified in the current study may
contribute to further understanding the pathogenesis of STC
and provide potential targets for its treatment.

5. Conclusions

This is the first study to summarize the differential expres-
sion of circRNAs in human STC colon tissues. Bioinformat-
ics methods were used to identify the GO and KEGG
pathways of these DE-circRNAs to understand their poten-

tial mechanisms of action. Moreover, 12 circRNAs with the
most differentially expressed genes were verified using
qRT-PCR, and their predicted ceRNA networks were con-
structed. Taken together, the findings of this study provide
a helpful blueprint for researchers to select circRNAs for fur-
ther study of their corresponding mechanisms. Moreover, it
is hoped that our findings will highlight the role of circRNAs
in STC and stimulate the exploration and development of
new therapeutic targets.
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