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Background. A rising amount of data demonstrates that the epithelial-mesenchymal transition (EMT) in clear cell renal cell
carcinomas (ccRCC) is connected with the advancement of the cancer. In order to understand the role of EMT in ccRCC, it is
critical to integrate molecules involved in EMT into prognosis prediction. The objective of this project was to establish a
prognosis prediction model using genes associated with EMT in ccRCC. Methods. We acquired the mRNA expression profiles
and clinical information about ccRCC from TCGA database. In this study, we measured differentially expressed EMT-related
genes (DEEGs) by two comparison groups (tumor versus normal tissues; “stages I-II” versus “stages III-IV” tumor tissues).
Based on classification and regression random forest models, we identified the most important DEEGs in predicting prognosis.
Afterwards, a risk-score model was created using the identified important DEEGs. The prediction ability of the risk-score
model was calculated by the area under the curve (AUC). A nomogram for prognosis prediction was built using the risk-score
in combination with clinical factors. Results. Among the 72 DEEGs, the classification and regression random forest models
identified six hub genes (DKK1, DLX4, IL6, KCNN4, RPL22L1, and SPDEF), which exhibited the highest importance values in
both models. Through the expression of these six hub genes, a novel risk-score was developed for the prognosis prediction of
ccRCC. ROC curves showed the risk-score performed well in both the training (0.749) and testing (0.777) datasets. According
to the survival analysis, individuals who were separated into high/low-risk groups had statistically different outcomes in terms
of prognosis. Besides, the risk-score model also showed outstanding ability in assessing the progression of ccRCC after
treatment. In terms of nomogram, the concordance index (C-index) was 0.79. Additionally, we predicted the differences in
response to chemotherapy drugs among patients from low- and high-risk groups. Conclusion. Gene signatures related to EMT
could be useful in predicting ccRCC prognosis.

1. Introduction

RCC accounts for 2 to 3% of all cancers worldwide [1]. Almost
403,000 people are diagnosed with RCC each year, and 175,000
people die from it [2]. There is a range of histological classifica-
tion groups, but kidney renal clear cell carcinoma (KIRC,
ccRCC) is the most prevalent and contributes to the majority
of renal cancer-related deaths. KIRC can remain clinically
occult in the absence of significant clinical symptoms, and
patients are initially diagnosed when they are already at a late
stage of the TNM. In general, cases of late diagnosis are associ-
ated with lower survival rates, which results in a lower five-year

survival rate for KIRC patients. In stage I, the five-year disease-
specific survival for RCC patients ranges from 80 to 95 percent,
but it will drop to less than 10% for stage IV patients [3]. For
these RCC patients who had a lower survival rate and high risk,
more elaborate and customized treatment plans were neces-
sary. As a result, prognostic models that are capable of accu-
rately identifying patients at high risk are urgently needed.

The EMT process describes the transition of epithelial
cells to mesenchymal cells in a series of steps, and it is char-
acterized by a loss of polarity, a breakdown in the integrity
barrier, and an increase in invasion [4]. Many studies have
highlighted the significance of EMT in cancer metastasis

Hindawi
Disease Markers
Volume 2022, Article ID 3780391, 15 pages
https://doi.org/10.1155/2022/3780391

https://orcid.org/0000-0001-6704-4452
https://orcid.org/0000-0002-5278-2337
https://orcid.org/0000-0001-9011-3540
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3780391


and pharmaceutical resistance [5]. The abnormal EMT signa-
ture is associated with various acquired capabilities, such as
resistance to chemotherapy and immunotherapy, in addition
to migration and invasion [6]. Recently, an EMT signature
was shown to be linked to immune cell signaling, providing
novel insights into the link between EMT and immune activa-
tion [7]. There are potential therapeutic opportunities because
of the association between EMT and immune cells. Although
EMT-related signatures have been linked to ccRCC metastasis
and prognosis, limited studies have been conducted to deter-
mine if they can be employed as indicators for early detection
and prognosis assessment.

In the current study, random forest models were devel-
oped to identify the most important genes associated with
KIRC patient survival time and survival status. A prognostic
risk-score model for KIRC was developed by the expression
of six important genes. The AUC values and survival analysis
results demonstrated the feasibility and accuracy of the risk-
score model. A nomogram was constructed to predict overall
survival (OS) in KIRC after incorporating the risk-score and
clinical data parameters. Together, our findings demonstrate
the importance of risk-score and nomogram for the prediction
of survival for patients with KIRC.

2. Materials and Methods

2.1. Data Collection. Level three of mRNA sequencing data of
cancer patients with KIRC was collected from TCGA (https://
tcga-data.nci.nih.gov/tcga/). The expression data of 539 KIRC
and 72 normal kidney samples were chosen for further investi-
gation. The form of the downloaded gene expression data was
“fragments-per-kilobase-million” (FPKM). The original data
was then converted into “transcript-per-million” (TPM).
Among 539 KIRC samples, the numbers of stage I, stage II,
stage III, and stage IV were 268, 57, 123, and 83.

2.2. Identification of Differentially Expressed Genes (DEGs).
The R package “edgeR” was chosen to obtain DEGs between
KIRC and normal tissues [8]. The DEGs filtering criteria
were established at a p value of less than 0.05 and a jlog 2
FoldChangej greater than 0.5. Similarly, DEGs between early
stage (“stages I-II”) and advanced stage (“stage III-IV”)
tumor tissues were obtained by the same method and
screening criteria. We downloaded 1184 genes related to
EMT from the dbEMT online database [9], and then we
obtained the DEEGs by integrating the DEGs and EMT-
related genes through the R package “VennDiagram” [10].

2.3. Analysis of Pathways. Enrichr (https://maayanlab.cloud/
enrichr/enrich) [11] was performed to identify significantly
enriched pathways. Results from modules, including “GO_
Biological_Process_2021,” “GO_Molecular_Function_2021,”
“GO_Cellular_Component_2021,” “KEGG_2021_Human,”
and “MSigDB_Hallmark_2020” were downloaded and pre-
sented in this work. Pathways with a p value of less than 0.05
were recognized as significant pathways.

2.4. Selection of Biomarkers by Machine Learning. In order to
construct a model that has perfect prediction performance,
we used machine learning models to select the genes that are

significantly correlated with prognosis. The expression values
of DEEGs were normalized by the “log2ðx + 1Þ” and “min-
max” normalizationmethods. A classification and a regression
model were constructed by the random forest (RF) algorithm.
The classification RF (cRF) was built for the assessment of the
survival status of KIRC patients. The regression RF (rRF) was
built for the prediction of the survival time of KIRC patients.
The importance values of genes in twomodels were calculated,
and the six genes with the greatest importance values were
chosen for further study as hub genes.

2.5. Construction of the Risk Model. The expression profiles
of TCGA-KIRC were separated randomly into training
(70%) and testing (30%) datasets. In the training of KIRC
patients, univariate Cox analysis was performed to assess
the coefficients of genes. The risk-score was evaluated by
the equation: risk − score = ðcoefficient × expression of gene
1Þ + ðcoefficient × expression of gene 2Þ +⋯ + ðcoefficient ×
expression of geneXÞ. KIRC individuals were separated into
low and high groups by the median risk-score, respectively.
With the log-rank test, survival curves for low- and high-
risk individuals were compared, including OS and
progression-free interval events (PFI). The “survivalROC”
R package was selected to calculate the AUC value to evalu-
ate the predictive ability.

2.6. Stratification Analysis. TCGA-KIRC individuals were
stratified into subgroups by age (≥60 years vs. <60 years),
gender (female vs. male), and TNM stages (T1/T2 vs. T3/
T4, N0 vs. N1, and M0 vs. M1). The “Wilcoxon rank-sum”
test was selected to discover the risk-score distribution with
the R package “ggpubr.”

2.7. Nomogram Development. A nomogram including clini-
cal variables (age and stage) and the risk-score was designed
to estimate the likelihood of one, three, and five-year OS. C-
index values vary between 0.5 and 1.0, representing no dis-
criminating ability and excellent discriminating capacity,
respectively. The fit of the generated and reference lines indi-
cates the high accuracy of the nomogram model.

2.8. Chemotherapeutic Response Prediction. The responses to
chemotherapeutic drugs were predicted for samples by the R
package “pRRophetic” [12]. With a prediction model based
on Genomics of Drug Sensitivity in Cancer (GDSC) data
and expression profiles of TCGA-KIRC samples, the package
could predict the IC50 of each drug for each patient. The
IC50 refers to the dosage required for halving the number of
viable cells, and it is a measure of the drug’s therapeutic effec-
tiveness and can also be used for assessing the tolerance of
tumor cells to drugs.

2.9. Evaluation of the Tumor Microenvironment (TME). ESTI-
MATE [13] and CIBERSORT [14] were utilized in R to deter-
mine each KIRC sample’s TME status. For example,
ESTIMATE predicted the level of stromal, immune, and tumor
is scored based on the expression profiles of TCGA-KIRC sam-
ples. The relative levels of 22 tumor-infiltrating lymphocytes
(TILs) in KIRC samples were predicted by the CIBERSORT
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algorithm. To ensure the prediction results are credible, p value
< 0.05 was used as the selection criterion.

3. Results

3.1. Identification of DEEGs and Functional Enrichment
Analysis. A total of 8905 significantly DEGs were identified
between KIRC and normal kidney samples, of which 5660
were upregulated and 3245 were downregulated in KIRC
samples than in normal samples (Figures 1(a) and 1(b)).
Similarly, 2052 significantly DEGs were found between early
stage (“stages I-II”) and advanced stage (“stages III-IV”)
tumor tissues, of which 1453 were upregulated and 599 were
downregulated in the advanced stage than in early stage
KIRC samples (Figures 1(b) and 1(c)). After an intersection

of EMT-related genes and DEGs by Venn diagram, 72
DEEGs were found (Figure 2(a)).

Following that, functional enrichment analysis was used to
investigate the probable molecular processes behind DEEGs.
The enriched biological process (BP) terms were “inflamma-
tory_response” and “cytokine_mediated_signaling_pathway”
(Supplementary Table 1). The enriched molecular function
(MF) was the terms of “cytokine_activity” and “receptor_
ligand_activity” (Supplementary Table 2). The significant
cellular component (CC) terms were “collagen_containing_
extracellular_matrix” and “secretory_granule_lumen”
(Supplementary Table 3). Furthermore, the KEGG analysis
indicated that DEEGs were strongly linked to pathways in
“IL17_signaling” and “viral_protein_interaction_with_
cytokine_and_cytokine_receptor” (Supplementary Table 4).
Besides, the hallmark pathway analysis showed that
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Figure 1: Identification of DEGs in TCGA-KIRC cohort. (a) The volcano of DEGs between KIRC and normal kidney samples. (b) The
heatmap of DEGs between KIRC and normal kidney samples. (c) The volcano of DEGs between “stages I-II” and “stages III-IV” tumor
tissues. (d) The heatmap of DEGs between “stages I-II” and “stages III-IV” tumor tissues. In volcano plots, red dots indicate
downregulation genes in KIRC or “stages III-IV,” whereas blue dots indicate upregulation genes. In heatmap plots, red indicates high-
expression values, whereas blue indicates low-expression values.
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Figure 2: Continued.
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“epithelial_mesenchymal_transition” and “inflammatory_
response” (Supplementary Table 5).

3.2. Selection of EMT-Related Genes by Machine Learning
Models. We built a classification and a regression model to
identify the appropriate biomarkers. The classification ran-
dom forest (cRF) model was built to predict the survival sta-
tus (dead or alive) of KIRC patients. The importance values
of genes in the cRF are shown in Table 1. Similarly, a regres-
sion random forest (rRF) model was built to predict the sur-
vival time of KIRC patients. The importance values of genes
in two models were calculated (Table 1). The six genes with
the highest importance values were selected as hub genes for
further analysis. Among those 72 DEEGs, KCNN4, DKK1,
DLX4, SPDEF, IL6, and RPL22L1 were considered hub
genes since they have the highest importance values.

3.3. Construction of Risk-Score for KIRC. The datasets were then
separated into training (70%) and testing (30%) datasets. Based
on coefficients from the multivariate Cox analysis, we estab-
lished the risk-score by the expression of the 6 genes by the
equation: risk − score = ð2:57 × KCNN4Þ + ð0:14 × DKK1Þ +
ð1:27 × DLX4Þ + ð1:0 × SPDEFÞ + ð0:69 × IL6Þ + ð0:92 × RPL
22L1Þ. The risk-score distributions, survival status, survival
time, and transcriptomic levels of individuals were ordered
using the risk-score (Figures 2(b)–2(d)). KIRC patients were
classified as the high or low group, respectively. The AUC of

the risk-score was 0.749, suggesting a high prognostic predic-
tion ability (Figure 2(e)). According to the survival curve
(OS), there was a substantial difference in OS between groups
(p value < 0.001) (Figure 2(f)).

We then validated the 6 gene model in the testing dataset.
The risk-score distributions, survival status, survival time, and
transcriptomic levels of individuals were ordered using the
risk-score (Supplementary Figure 1A-C). 79 and 80 KIRC
individuals were classified as high or low-risk, and the AUC
value was 0.777 (Supplementary Figure 1D). According to the
survival curve (OS), there was a substantial difference in OS
between groups (p value = 0:0011) (Supplementary Figure 1E).

We then validated the 6 genes to predict the progression
of KIRC patients. The distributions of risk-scores, prognosis,
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Figure 2: Assessment and DEEGs signature in the training dataset. (a) Intersection of DEGs and EMT-related genes by the Venn plot. (b)
Risk-score distributions, (c) survival time/statuses, and (d) heatmap of the hub DEEGs expression in the training dataset. (e) The AUC value
of the risk-score in the training dataset. (f) Survival curves (OS) of risk-score groups in the training dataset.

Table 1: The selected hub differentially expressed EMT-related
genes (DEEGs) by importance values.

Gene Importance (cRF) Importance (rRF) Importance

KCNN4 57.1 80.5 137.6

DKK1 26.2 100 126.2

DLX4 73.3 52.5 125.8

SPDEF 100 18.2 118.2

IL6 49.5 65.4 114.9

RPL22L1 83.7 25.6 109.3
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and gene expression values of patients were ranked by risk-
scores (Supplementary Figure 2A-C). 254 and 255 KIRC
patients were labeled as high or low risk, respectively, and the
AUC was 0.722 (Supplementary Figure 2D). Discrepancies in
PFI were found between high and low groups (p value <
0.001) (Supplementary Figure 2E). These results suggest that
our risk-score model could be an accurate indicator for OS
and PFI prediction.

3.4. Relationship between Prognostic Signature and
Clinicopathological Features. A correlation between the prog-
nostic signature and clinical and pathological characteristics

was then examined. The results indicated a positive correla-
tion between the risk core and poor prognosis. For example,
risk-score was found in the advanced stages of KIRC, such as
stage IV (Figure 3(a)), T4 (Figure 3(b)), N1 (Figure 3(c)),
and M1 (Figure 3(d)). In contrast, the correlations of the
risk-score with age (Figure 3(e)) and laterality (Figure 3(f))
were not significant.

3.5. Stratification Analysis. In the groups of “stages I-II” and
“stages III-IV,” patients with higher risk had worse OS (Sup-
plementary Figure 3A-B). Similarly, we demonstrated that
risk-score could predict the OS of T1-T2 or T3-T4 patients
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Figure 3: Relationship between risk-score and clinical factors, including (a) stage IV, (b) T stage, (c) N stage, (d) M stage, (e) Age, and (f)
laterality.
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Figure 4: (a) The prognostic nomogram was constructed by age, stage, and risk-score. The calibration curve diagrams for (b) 1-year, (c) 3-
year, and (d) 5-year had good agreement between the predicted probability and the actual probability.
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(Supplementary Figure 3C-D), patients with TNM stage N0
(Supplementary Figure 3E), KIRC individuals with TNM
stage M0 and M1 (Supplementary Figure 3G-H), patients
with laterality of “left” and “right” (Supplementary Figure 3I-
J), and patients with “>60” and “<60” (Supplementary
Figure 3K-L). The difference in risk groups in patients with
TNM stage N1 was not significant since the number of
patients is low (Supplementary Figure 3F).

Afterward, we conducted the univariate/multivariate
Cox regression to validate the independent prognostic role
of risk-score. Univariate analysis calculated the p values of
age (p value < 0.01), laterality (p value = 0:994), stage (p
value < 0.01), and risk-score (p value < 0.01). Subsequent
multivariate analysis demonstrated that age (coefficients:
0.037, p value < 0.01), stage (coefficients: 0.52, p value <
0.01), and risk-score (coefficients: 0.76, p value < 0.01) were
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negatively correlated with OS. These findings suggest that
the risk-score is an independent predictor of survival in
KIRC patients.

3.6. Construction of a Predictive Nomogram. By combining the
risk-score and various clinical indicators, a nomogram was cre-
ated to assess the survival rate (Figure 4(a)). The nomogram
has a C-index of 0.79, and the risk-score clearly demonstrated
greater importance than age and stage did. The prediction
and reference calibration curves showed a great fit in predicting
one, three, and five years of OS (Figures 4(b)–4(d)), which
proves the prediction ability of the nomogram.

3.7. Difference in Sensitivity to Chemotherapies.The responsive
predictive values of the risk-score for chemotherapy drugs
(Figures 5(a)–5(h)) were calculated by IC50 values. Bortezo-
mib, cisplatin, sunitinib, temsirolimus, and vinblastine all
had lower IC50 values in the high-risk group, indicating that
patients with a higher risk-score were more responsive to these
medications. In the low-risk group, however, the IC50 value of
sorafenib was much lower, indicating that individuals with a
lower risk-score were more susceptible to it.

3.8. Correlation between the Risk-Score and TME. The
CIBERSORT method was used to determine the percentage
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Figure 6: (a) Differential analysis of 14 immune fractions (CIBERSORT algorithm) between risk-score groups. (b) Differential analysis of
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Figure 7: Continued.
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of 22 immune cells in each TCGA-KIRC sample. The cells
with low mean values were deleted, and 14 cells were selected
for the plot. A total of 423 samples were analyzed and found to
be statistically significant. Fractions of “follicular_helper_T”
and “Tregs” were higher among high-risk TCGA-KIRC sam-
ples (Figure 6(a)), while the values of “CD4_memory_T”
and “NK” cells were higher among low-risk TCGA-KIRC

samples (Figure 6(b)). Using the ESTIMATE technique, we
also examined the differences between risk categories in terms
of TME scores (Figure 6(b)). The Wilcoxon rank-sum test
suggested that the immune and stromal scores in TCGA-
KIRC samples were significantly higher, while the tumor
purity was higher in the lower risk-score TCGA-KIRC sam-
ples. Using the Kaplan-Meier method, the prognosis of
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Figure 7: Overall survival analyses of the identified genes, including (a) DKK1, (b) DLX4, (c) IL6, (d) KCNN4, (e) RPL22L1, and (f) SPDEF
in TCGA dataset. Red lines indicate patients with the high expression, whereas blue lines indicate patients with the low expression.
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patients with higher DKK1 (Figure 7(a)) or lower DLX4
(Figure 7(b)), IL6 (Figure 7(c)), KCNN4 (Figure 7(d)),
RPL22L1 (Figure 7(e)), and SPDEF (Figure 7(f)) was greatly
lower.

4. Discussion

KIRC is particularly prone to invasion and metastasis, which
may explain its poor prognosis. About 25-30% of KIRC
patients have metastases at the time of diagnosis [15], and
about 60% have metastases within the initial 2–3 years after
diagnosis [16]. EMT is critical for tumor invasion, tumor
metastasis, and tumor cell proliferation [17]. As a result,
we developed a prognostic risk model for six EMT-related
genes and evaluated its reliability and relationship with sur-
vival. Additionally, we checked the link between risk and
response to the pharmacological therapy.

Currently, Cox regression [18] and LASSO regression [19]
analyses are prevalent for identifying prognostic genes and
constructing prediction models. In our study, we used machine
learning models to identify the prognostic genes. Machine
learning has many advantages since it can achieve a higher
accuracy value with fewer genes, and it also gains the preva-
lence of inmultiple studies [20–22]. For example, in breast can-
cer, a machine learning model was provided to predict the
immune subtype of breast cancer [21]. The major obstacle to
using machine learning models on survival data is that it con-
tains two variables: survival status and time. Thus, we built a
classification model and a regression model for predicting the
survival status and time, respectively. The necessary data for
these two models were the expression values of DEEGs after
normalization. Based on the prediction results of these two
models, we could precisely plot the survival curve for each
patient. Through this method, we also successfully identified
themost important genes for predicting the prognosis of KIRC.

Through the EMT process, tumors including kidney cancer
could gain the potential for aggressiveness and metastasis. The
activation of the EMT process is complex, but our study found
that immune cells may make a significant contribution to EMT
in a variety of ways. For example, some kinds of immune cells
may secrete immunosuppressive molecules, hence promoting
cancer progression. In our study, we discovered that Tregs were
more abundant in high-risk than in low-risk samples. Tregs
have been shown to impair anticancer immunity by impairing
protective immunosurveillance and thwarting efficient antitu-
mor immune responses [23]. Among high-risk samples that
were linked to invasion and negative prognosis, we found that
immune and stromal cells were increased but tumor purity was
decreased. These results suggest that the number of immune
and stromal cells might exert crucial roles in tumor develop-
ment. Together, we suppose that the stromal cells and Tregs
among TME increase the migration of tumor cells, which leads
to a worse prognosis.

DKK1 is a Wnt signaling pathway suppressor, and its dys-
regulation has recently been identified as a possible biomarker
for cancer development and prognosis in a variety of malig-
nancies [24]. The amount of DKK1 expression is inversely
related to the number of CD8+ T cells. DLX4, often referred
to as BP1, may play a crucial role in tumor development by

supporting proliferation and EMT [25]. A previous study con-
firmed that DLX4 contributed to the proliferation and migra-
tion of KIRC [25]. In RCC patients, high levels of interleukin-6
(IL-6) are linked to a poor prognosis [26]. IL-6 is a key diver
that promotes EMT and enhances migration and invasion in
KIRC tissues [27]. KCNN4 expression is higher in KIRC than
in normal tissues, and its level is linked to the tumor stage and
grade [28]. RPL22L1 is a ribosomal protein, and previous
studies have confirmed that RPL22L1 expression is greater in
cancer tissue and is linked to a worse prognosis [29, 30].
SPDEF has a complex correlation with the prognosis of cancer
patients. For example, upregulation of SPDEF is associated
with poor prognosis in prostate cancer [31], but it could also
serve as a suppressor in colorectal cancer [32].

There are some strengths in this study. Firstly, DEEGs
were derived from two comparison groups (tumor versus nor-
mal tissues; “stages I-II” versus “stages III-IV” tumor tissues)
and EMT-related genes, which guarantee the clinical signifi-
cance of DEEGs. Secondly, machine learning models have
the ability to predict both survival time and status. Thirdly,
we selected the hub DEEGs by machine learning, which
increased the prediction ability of these DEEGs. For example,
ROC curves showed the risk-score performed well in both
the training (0.749) and testing (0.777) datasets. In terms of
nomogram, the concordance index (C-index) was 0.79.
Numerous limitations should be noted in our research as well.
To begin with, the risk-score and nomogram were constructed
using a publicly available dataset. More datasets that contain
the expression data and clinical information of KIRC samples
are needed to validate our results. Then, the underlying mech-
anisms between 6 DEEGs and KIRC progression should be
clarified. Prior to clinical usage, further laboratory experiments
on the six-gene signature are required.

5. Conclusion

In summary, EMT is critical for the advancement of cancer
and is linked with worse survival in individuals with KIRC.
We developed a risk-score model and a nomogram using
the EMT-related genes for predicting OS in KIRC, which
might enable tailored therapy and clinical decision-making
for KIRC patients.
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