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Melanoma is a malignant tumor that originates in melanocytes of the skin or mucous membrane, which has a high mortality rate
and worse prognosis. Therefore, perspective prognosis evaluation seems more important for patients’ treatment. Gene expression
profiles of melanoma were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
databases, respectively. 130 consistent differentially expressed genes (DEGs) were identified between melanoma and nevus
tissues from two GEO cohorts. Prognostic genes were identified by univariate analysis, and 20 of them were regarded to be
associated with the recurrence-free survival (RFS) of melanoma patients. Then, the LASSO Cox regression analysis chose seven
of them to establish a seven-DEG-based RFS predicting signature. We demonstrated that this model was more powerful to
predict RFS risk than other individual clinical features and was able to independently predict the RFS outcomes in different
subsets of patients. We attempted to search for the underlying mechanisms by analyzing the coexpression genes of the seven
candidates, and the pathway enrichment analyses indicated that immune response-related pathways might play a critical role
in melanoma progression. Finally, we establish a robust seven-DEG-based RFS predicting signature, which will facilitate the
personalized treatment of melanoma patients.

1. Introduction

Melanoma is caused by genetic mutations in melanocytes
[1]. There will be 106,110 new cases of invasive melanoma
in the United States in 2021, with 7,180 melanoma-related
deaths. According to GLOBOCAN, the global number of
melanoma cases in 2020 is 324,635, representing 1.7% of
all cancers and 0.6% of 57,043 melanoma deaths or cancer-
related mortality [2]. The classical prognostic factors which
had been considered to be effective indicators for patients
with melanoma are age and American Joint Committee on
Cancer (AJCC) stage [3–5]. Besides, melanoma-specific
indicators, such as Clark level [6], were also proved to pro-
vide prognostic information. Nevertheless, all the clinico-
pathological prognostic indicators are established basing on
cancer instead of its underlying molecular subclassifications.
That is why these indicators commonly are not useful in pre-
dicting clinical outcomes. Researchers tried to identify bio-

markers at diverse biological levels to better predict the
prognosis of melanoma patients; for instance, high expres-
sion of HIF stimulates the migration of melanoma cells
and it also is relating to an unfavorable prognosis [7]. Based
on OS and recurrence-free survival (RFS) rates, studies had
shown that methylation of TNFRSF10D can predict the clin-
ical outcome of melanoma patients [8]. Copy number varia-
tions of the interferon cluster which is related to T cell
infiltration are also associated with OS of melanoma patients
[9]. However, none of these biomarkers had been used clin-
ically. Because of the genetic heterogeneity of melanoma, the
instability of biomarkers’ performance across cohorts was
one of the most important reasons. Currently, according to
the robustness across datasets, the optimized panels of gene
expression based-models are emphasized [10–13]. For
instance, MammaPrint and Oncotype DX have been used
clinically due to their high performance [14–16]. In this
study, we focused on developing a model for melanoma
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patients using gene expression profiling and evaluating the
model’s earnings management in the training and validation
subsets (Figure 1).

2. Materials and Methods

2.1. Dataset Description. Two gene expression profiles of
melanoma as well as common nevus based on RNA-seq
(GSE98394) and microarray (GSE46517), respectively,
were downloaded from the Gene Expression Omnibus
(GEO) website (https://www.ncbi.nlm.nih.gov/geo). In the
RNA-seq dataset (GSE98394), the researchers examined
transcriptome changes from benign states to early-, inter-
mediate-, and late-stage tumors using a set of 78
treatment-naive melanocytic tumors consisting of primary
melanomas of the skin (n = 51) and benign melanocytic
lesions (n = 27) [17]. For the other dataset (GSE46517),
the authors analyzed 31 primary melanoma samples as
well as 9 nevus samples basing on microarray. These two
datasets were used for melanoma-related gene extraction.
The expression matrix along with the matched clinical
records of cohort from The Cancer Genome Atlas (TCGA)
were downloaded from the UCSC Xena website (https://
xenabrowser.net/datapages/) [18]. Only patients from
TCGA database with sufficient RFS were retained and ran-
domly divided into the training and validation subsets
with a ratio of 7 : 3.

2.2. Differentially Expressed Gene (DEG) Analysis. DEGs of
the RNA-seq cohort (GSE98394) were identified using
“DESeq2 [19], and the DEGs of microarray-based cohort
(GSE46517) were identified using the “limma” package
[20]. DEGs were determined based on the thresholds that
the absolute log 2ðfold − changeÞ > 1 and the P value <
0.05. Then, we overlapped the upregulated DEGs as well as
downregulated DEGs from the two datasets, respectively,
to obtain more convincing results. The Kyoto Encyclopedia
of Genes and Genomes (KEGG) and Gene Ontology (GO)
analyses were executed to find out key pathways involved
in the pathogenesis of melanoma using clusterProfiler [21].

2.3. Feature Selection and Model Development. R (version
3.6.2) was used for all calculations in this paper. The “sur-
vival” package (v3.1-8) was used for univariate/multivariate
Cox regression analyses. TCGA gene expression value
(Transcripts Per Kilobase of exon model per Million
mapped reads (TPM)) was reversed into log2 ðTPM + 1Þ
for downstream analysis. The univariate Cox regression
analysis was carried out to find out the RFS-related gene
candidates (P < 0:05) using the consistent DEGs from the
two GEO datasets. The LASSO Cox regression analysis was
performed to select genes with the most prediction power.
Then, the selected genes were used to construct the prognos-
tic model by multivariate Cox regression analysis and the
risk scores of each patient were calculated. Based on the pre-
diction weight of each marker gene, we construct the

GSE46517
T = 51, N = 27

GSE46517
T = 31, N = 9 TCGA training

Differential expression analysis

Tumor vs. Normal DEGs Tumor vs. Normal DEGs

Consensus DEGs

Univariate Cox regression analysis

Genes significantly associated with RFS

LASSO Cox regression analysis

Risk prediction model

Stratified analysis of
clinical information

Co-expression
analysis

TCGA validation

Figure 1: Flow diagram of this study.
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prediction model and the risk level of each sample could be
quantitized as follows: risk score = 0:127 × expression ðDFN
A5Þ − 0:300 × expression ðTNFRSF1BÞ − 0:134 × expression
ðTMEM158Þ + 0:302 × expression ðMMP11Þ − 0:020 × expr
ession ðMAGEA6Þ + 0:035 × expression ðAPOBEC3GÞ −
0:070 × expression ðABCA8Þ. As a result, patients from
TCGA database were separated into low- and high-risk sub-
groups (risk score < 0 or risk score > 0, respectively). Sam-
ples from the validation dataset were also separated into
these two different risk level groups following the prognostic
model. Kastle–Meyer test was performed to determine the
significance of RFS risks between these two subgroups. In
addition, the receiver operating characteristic (ROC) curve
was applied to evaluate the robustness of the prognostic
model using the R package “pROC” (v1.16.2) [22].

2.4. Identification of Coexpression Genes and Pathway
Enrichment Analyses. To explore potential mechanisms of
how these key genes play a role in the progression of mela-
noma, we tried to identify the highly coexpressed genes
(Pearson correlation coefficient more than 0.5 or less than
-0.5) of them based on TCGA gene expression profile. The

Cytoscape software was executed to visualize their interac-
tions, and KEGG and GO analyses were performed to verify
the relevant significant pathways [21].

3. Results

3.1. Identification of DEGs. With the lack of normal tissues in
TCGA dataset, we adopted two GEO datasets to find out key
DEGs. The DEGs of the RNA-seq cohort (GSE98394) were
identified using “DESeq2” [19], while the DEGs of the micro-
array cohort (GSE46517) were identified using the “limma”
package [20]. Genes with jlog2ð f old − changeÞj > 1 and P
value < 0.05 were considered statistically significant DEGs.
For GSE98394 cohort, we found that 2,312 and 3,388 genes
were upregulated and downregulated in melanoma tissues
compared with normal controls, respectively (Figures 2(a)
and 2(b) and Supplementary table 1). For the GSE46517
cohort, 107 genes were upregulated and 122 genes were
downregulated in melanoma tissues compared with normal
controls (Figures 2(c) and 2(d) and Supplementary table 2).
In order to obtain more convincing DEG assembly, we
overlapped the findings from two datasets. After that, there

GSE98394 up regulated

GSE46517 up regulated

2233 79 28 3337
51 71

GSE98394 down regulated

GSE46517 down regulated

(e)

Figure 2: Identification of differentially expressed genes (DEGs). (a) Principal component analysis (PCA) distinguishing the melanoma and
nevus tissues in the GSE98394 cohort; (b) the volcano plot displaying DEGs between melanoma and nevus tissues in the GSE98394 cohort;
(c) PCA distinguishing the melanoma and nevus tissues in the GSE46517 cohort; (d) the volcano plot displaying DEGs between melanoma
and nevus tissues in the GSE46517 cohort; (e) overlapping DEGs between two cohorts.

Table 1: Clinical parameters of The Cancer Genome Atlas dataset.

Training set Testing set P SMD Missing (%)

Total number 209 89

Sex (%)
Male 125 (59.8%) 63 (70.8%)

0.096 0.232 0
Female 84 (40.2%) 26 (29.2%)

Age (%)
<60 117 (56.0%) 47 (52.8%)

0.707 0.064 0
≥60 92 (44.0%) 42 (47.2%)

Stage (%)
I/II 89 (46.4%) 46 (59.0%)

0.088 0.250 9.7
III/IV 102 (53.4%) 32 (41.0%)

Melanoma Clark level value (%)
I/II 9 (8.0%) 4 (8.0%)

1.000 0.001 45.6
III/IV 103 (92.0%) 46 (92.0%)

TCGA: The Cancer Genome Atlas; SMD: standard mean difference.
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were 79 genes upregulated and 51 genes downregulated by
comparing the melanoma tissues with normal controls
(Figure 2(e) and Supplementary table 3). Interestingly, these
DEGs were significantly enriched in activity of different
enzymes and complement-related pathways (Figure S1).

3.2. Identification of Prognostic Genes and Establishing a
Seven-Gene-Based RFS Predicting Signature. After extracting

the 130 genes’ expression profile from GEO datasets, we
tried to establish a RFS-related prognostic model using sep-
arated training and testing dataset from TCGA (Table 1).
RFS-related gene candidates were identified by univariate
Cox regression analysis. In total, 20 genes were detected sig-
nificantly associated with the RFS (Figure S2). Then, we
executed the LASSO Cox regression analysis to extract key
genes with the most RFS prediction power. These genes
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Figure 3: Seven-gene-based signature construction for recurrence-free survival (RFS) prediction. (a) LASSO coefficient against tried values
of log lambdas; (b) 10-fold cross-validation for tuning parameter (lambda) selection via minimum criteria in the model; (c) forest plot
showed results of multivariate cox analysis.
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were then subjected to LASSO Cox regression analysis, and
regression coefficients were calculated. The coefficient of
each gene is plotted in Figure 3(a). To confirm the
accuracy of this risk model, 10-fold cross-validation was
performed to obtain the confidence interval under each
lambda (Figure 3(b)). After this process, seven key genes
including DFNA5, TNFRSF1B, TMEM158, MMP11,
MAGEA6, APOBEC3G, and ABCA8 were extracted. As a
result, a seven-gene-based RFS predicting model was
extracted which refers to the key gene expression using
multivariate Cox regression: risk score = 0:127 × expression ð

DFNA5Þ − 0:300 × expression ðTNFRSF1BÞ − 0:134 × expre
ssion ðTMEM158Þ + 0:302 × expression ðMMP11Þ − 0:020 ×
expression ðMAGEA6Þ + 0:035 × expression ðAPOBEC3GÞ −
0:070 × expression ðABCA8Þ (Figure 3(c)). The patients with
risk score < 0 and >0 were assigned into low- and high-risk
subgroups, respectively.

3.3. Significance and Stability Assessment of the Seven-Gene-
Based RFS Predicting Signature. Subsequently, we employed
K-M analysis to validate the significance of the seven-gene-
based RFS predicting signature, and results indicated that for
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Figure 4: Assessment of the predictive value of the signature. (a) The K-M curve showed that the low- and high-risk sample groups from the
training cohort separated by the seven-gene-based signature had significant PFS difference. (b) ROC curve showed that the signature
obtained good predictive effect in the training cohort. (c) The K-M curve confirmed that the low- and high-risk sample groups from the
training cohort separated by the seven-gene-based signature had significant PFS difference. (d) ROC curve showed that the signature
obtained good predictive performance in the validation cohort. K-M: Kaplan-Meier; ROC: receiver operating characteristic.
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these patients in the low-risk group, most have better survival
outcomes than those in the high-risk subset in both the train-
ing (P < 0:001, Figure 4(a)) and validation cohorts (P = 0:006,

Figure 4(c)). In addition, the sensitivity and stability of this
model were proved by the ROC curve. We found that our
model obtained a satisfying predictive value in the training
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Figure 5: Multivariate analysis. (a) Multivariate Cox regression analysis showed the signature as an independent prognostic indicator. (b)
The ROC curve showed that the seven-gene-based signature had better predictive performance than other clinical features. (c) Subgroup
analyses confirmed the prediction value of the signature in different clinical subsets of melanoma patients.

Figure 6: Interaction network between the seven genes and their corresponding coexpressed genes. Genes that have a Pearson correlation
coefficient more than 0.5 or less than -0.5 were defined as coexpressed genes and are shown in this figure (green nodes).
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cohort ðAUC = 81:7, 95% CI: 73.8-89.5, Figure 4(b)) and a
moderate predictive value in the validation cohort
(AUC = 72:2, 95% CI: 55.2-89.3, Figure 4(d)).

3.4. Prediction Efficiency Comparison and Patient Subgroup
Analyses. We combined other clinicopathological features
including patient age, gender, tumor stage, and melanoma
Clark level value with people’s prediction gene signature
and carried out multivariant Cox regression analysis. The
seven-gene-based signature was still statistically significant
(P < 0:001) and provided a much higher predictive value

(HR = 4:03, 95% CI: 1.99-8.2) than other clinical features,
indicating the prediction signature was an independent
prognostic factor for RFS prediction (Figure 5(a)). To fur-
ther verify the prognostic prediction efficiency of our model,
we performed the ROC analysis and compared the area
under curve (AUC) with other individual clinicopathological
features. As a result, our signature showed better predictive
value (AUC = 77:7, 95% CI: 68.4-87.1) than melanoma
Clark level value (AUC = 61:7, 95% CI: 49.0-74.5), stage
(AUC = 77:0, 95% CI: 68.7-85.2), age (AUC = 52:0, 95%
CI: 40.0-64.1), and sex (AUC = 53:8, 95% CI: 43.6-64.0)
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Figure 7: Pathway enrichment analyses. (a–f) GO-BP, GO-CC, GO-MF, KEGG, Reactome, and Hallmark pathway enrichment analyses for
the coexpressed genes of the seven genes enrolled in the signature. GO: Gene Ontology; BP: biological process; CC: cellular component; MF:
molecular function; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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(Figure 5(b)). Notably, we found that the nomogram showed
the best predictive value by combing the classifier with other
features, with the AUC value of 87.6 (95% CI: 80.9-94.2).

We also performed subgroup analyses referring to differ-
ent clinicopathological features, such as stage (I/II and III/
IV) and sex (female and male). The results indicated that
our signature was able to predict RFS outcomes for different
sex (female and male), stage (I/II and III/IV), and melanoma
Clark level value (I/II and III/IV) subsets, while it was only
able to predict the RFS outcomes for patients’ age less than
60 rather than ≥60 (Figure 5(c)). Overall, all the results sup-
port the significance and stability of the seven-gene-based
RFS predicting signature.

3.5. Identification of Coexpression Genes and Pathway
Enrichment. To explore potential mechanisms on how these
key genes influence the progression of melanoma, we per-
formed the coexpression analysis based on TCGA gene
expression profile. These genes, whose Pearson correlation
coefficient was more than 0.5 or less than -0.5, were enrolled.
Then, 783 highly coexpressed genes were merged from five
of the seven key genes (Figure 6). Besides, the GO
(Figures 7(a)–7(c)), KEGG (Figure 7(d)), Reactome
(Figure 7(e)), and Hallmark (Figure 7(f)) pathway overre-
present enrichment analyses were performed to investigate
the relevant significant pathways. We found that these
highly coexpressed genes were playing a critical role in
immune response processes, such as T cell activation, regu-
lation of lymphocyte activation, cytokine receptor activity,
and immunoregulatory interactions.

4. Discussion

Although AJCC staging system provides prognostic infor-
mation for melanoma patients to some extent [23], remark-
able prognostic heterogeneity exists, and several clinical
prognosis predicting tools have been established to improve
predictive value [24], with limited effects obtained. In the
present study, we firstly identified the DEGs based on two
cohorts. Many of the critical genes lead to tumorigenesis or
progression when there is differential expression due to
mutation, amplification, or loss. Thus, we tried to establish
a DEG-based RFS predicting signature. With the help of
LASSO Cox regression analysis, a seven-gene-based RFS
predicting signature was set up by which the melanoma
patients were assigned into low and high risk, and K-M
and ROC curve analyses provide the significance and stabil-
ity of our signature. Further, multivariate analysis confirmed
the independence of our signature from clinicopathological
features, and it worked even better the clinical stage. We
explored the potential mechanisms of how these DEG candi-
dates influence the progression of melanoma patients. We
calculated the Pearson correlation coefficient between the
seven DEGs and the whole mRNA profile; then, the pathway
enrichment analyses were to classify the function of these
coexpressed genes. Interestingly, we found that these genes
were significantly enriched in immune response-related
pathways, such as T cell activation, regulation of lymphocyte
activation, cytokine receptor activity, and immunoregulatory

interactions, indicating immune responses potentially pro-
mote the progression of melanoma.

Melanoma is described as one of the most immunogenic
tumors, and many studies have been devoted to exploring
the relationship between tumorigenesis and immune system
[25]. And the results suggested that immunomodulatory
mechanisms have been revealed leading to immune resis-
tance and immunosuppression by mediating the disorder
of melanoma recognition and attack by immune cells, favor-
ing tumorigenesis and progression. Studies also confirmed
the correlation between the proliferation of melanoma cells
and the activity defective immune system, while others
described that the variability of the antigenic repertoire is a
pivotal factor for the immunosurveillance and progression
of melanoma [26, 27]. These findings provide therapeutic
advantages to conquer the immune evasion.

In our study, we found two independent prognostic indi-
cators, the seven-DEG-based signature, and the AJCC stag-
ing system. Recently, an online predicting website was
established based on the big AJCC melanoma staging dataset
for melanoma patients with localized disease [28], by which
each patient could obtain their 1-, 2-, 5-, and 10-year sur-
vival with 95% confidential interval (95% CI). Increasing
evidence suggests that molecular profiling will add addi-
tional information supporting to the staging and prognosis
prediction of melanoma patients. Hence, attributing to an
improved cognition of disease at molecular level, improve-
ments in targeting therapies for metastatic melanoma
patients are obtained [29–33]. Nevertheless, biomarkers for
the diagnosis, prognosis prediction, and guidance of treat-
ment for melanoma patients are still lacking. In our study,
we analyzed the DEGs from two cohorts and overlapped
the findings of the two cohorts to obtain a more accurate
and convincing DEG cluster. The LASSO Cox regression
analysis was used to choose the stable and effective candi-
dates. Thus, the final model we established based on seven
DEGs is able to discriminate the melanoma patients with
high and low risk. The K-M and ROC curve analyses con-
firmed its application value. Besides, the multivariate analy-
sis supports its independent role in predicting RFS of
melanoma patients.

To sum up, the prognostic model we developed based on
the seven DEGs is robust in RFS outcome prediction of mel-
anoma, and it also serves as an independent prognostic indi-
cator for melanoma prognosis. Our signature offers a
complement to clinicians with RFS information and will
help the organization of future individualized therapy. Fur-
ther multicenter-based large-scale studies are necessary to
verify these findings, promoting its clinical application.
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