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Objective. Clear cell renal cell carcinoma (ccRCC) carries significant morbidity and mortality globally and is often resistant to
conventional radiotherapy and chemotherapy. Immune checkpoint blockade (ICB) has received attention in ccRCC patients as
a promising anticancer treatment. Furthermore, competitive endogenous RNA (ceRNA) networks are crucial for the
occurrence and progression of various tumors. This study was aimed at identifying reliable prognostic signatures and exploring
potential mechanisms between ceRNA regulation and immune cell infiltration in ccRCC patients. Methods and Results. Gene
expression profiling and clinical information of ccRCC samples were obtained from The Cancer Genome Atlas (TCGA)
database. Through comprehensive bioinformatic analyses, differentially expressed mRNAs (DEmRNAs; n = 131), lncRNAs
(DElncRNAs; n = 12), and miRNAs (DEmiRNAs; n = 25) were identified to establish ceRNA networks. The CIBERSORT
algorithm was applied to calculate the proportion of 22 types of tumor-infiltrating immune cells (TIICs) in ccRCC tissues.
Subsequently, univariate Cox, Lasso, and multivariate Cox regression analyses were employed to construct ceRNA-related and
TIIC-related prognostic signatures. In addition, we explored the relationship between the crucial genes and TIICs via
coexpression analysis, which revealed that the interactions between MALAT1, miR-1271-5p, KIAA1324, and follicular helper T
cells might be closely correlated with the progression of ccRCC. Ultimately, we preliminarily validated that the potential
MALAT1/miR-1271-5p/KIAA1324 axis was consistent with the ceRNA theory by qRT-PCR in the ccRCC cell lines.
Conclusion. On the basis of the ceRNA networks and TIICs, we constructed two prognostic signatures with excellent predictive
value and explored possible molecular regulatory mechanisms, which might contribute to the improvement of prognosis and
individualized treatment for ccRCC patients.

1. Introduction

Renal cell carcinoma (RCC) is one of the most common
malignancies of the urological system [1]. Clear cell renal
cell carcinoma (ccRCC) is the most common type of malig-
nant renal tumor with more malignant features and poor
prognosis, accounting for most RCC-associated deaths [2].
Therapeutically, ccRCC patients generally lack sensitivity
to conventional chemotherapy and radiotherapy. Although

targeted therapies have made significant progress in improv-
ing the survival of patients with ccRCC, the median survival
rate remains poor for high-grade and advanced-stage
patients. Therefore, to improve the prognosis of ccRCC
patients, the exploration of novel mechanisms involved in
ccRCC development and the identification of potential prog-
nostic markers and therapeutic targets are urgently required.

Salmena et al. presented the competing endogenous
RNA (ceRNA) hypothesis, whereby lncRNA is able to
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compete with mRNA to combine with miRNA through
miRNA response elements (MREs), thereby depressing
miRNA-induced downregulation of their target mRNAs
[3]. Numerous studies have demonstrated that ceRNA reg-
ulatory networks play an essential role in cancer develop-
ment [4]. Several researches in recent years have shown
that immune cell infiltration in the tumor microenviron-
ment (TME) could be involved in the antitumor immune
response. RCC is considered an immunogenic tumor on
the basis of the high level of tumor-infiltrating T cells,
the incidence of spontaneous tumor regression, and the
response to immunotherapy [5, 6]. Furthermore, growing
evidence indicated that ceRNA networks regulate the
crosstalk between tumor cells and tumor-infiltrating
immune cells (TIICs). Immune cell infiltration is the basis
for effective immunotherapy, which plays a crucial role in
the prognosis of various malignancies [7]. Thus, exploring
markers to assess immune infiltration and the potential
regulatory mechanisms will contribute to the advancement
of immunotherapy researches. Up to now, the role of
mechanisms regulating immune cell infiltration through
gene regulatory networks and tumor cell-intrinsic signaling
pathways is not clear in ccRCC.

In the present study, differentially expressed ceRNAs
were identified on the basis of the transcriptome data of
ccRCC in TCGA database. We assessed the proportion
of TIICs in ccRCC using the CIBERSORT algorithm. Sub-
sequently, two prognostic risk signatures were constructed
according to survival-related ceRNAs and TIICs. Besides,
we innovatively identified the potential immune-related
biomarkers in ccRCC based on coexpression analysis
between ceRNAs and TIICs.

2. Materials and Methods

2.1. Data Source and Differential Expression Analysis. The
gene expression profiles of the ccRCC and normal samples
were collected from TCGA database (https://portal.gdc
.cancer.gov/). Meanwhile, the relevant clinical information
was obtained from TCGA database as well. Patients with less
than 30 days of follow-up and incomplete clinical informa-
tion were removed from the survival analysis. The R package
DEseq2 was used to identify differentially expressed mRNAs
(DEmRNAs), lncRNAs (DElncRNAs), and miRNAs
(DEmiRNAs) after eliminating non-ccRCC specific expres-
sion genes which were not detected in either tumor or
normal groups. The logFC ðfold changeÞ > 1:0 or <−1.0 and
false discovery rate (FDR) adjusted P value < 0.05 were
exploited as the filtering criteria.

2.2. Construction of ceRNA Networks. A ceRNA network was
established by GDCRNATools package in R software [8].
The interactive relations in both DEmiRNA-DEmRNA and
DElncRNA-DEmiRNA were derived from StarBase (http://
mirtarbase.mbc.nctu.edu.tw/). The miRNAs with significant
outcomes in hypergeometric testing and correlation analysis
were singled out to construct ceRNA networks. Ultimately,
ceRNA networks were visualized using Cytoscape version
3.4.0 [9].

2.3. Functional Enrichment Analysis. Gene Ontology (GO)
function analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis of DEmR-
NAs in the ceRNA network were realized via the R package
clusterProfiler [10]. GOplot and enrichplot packages in R
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normal samples available from TCGA database
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Figure 1: The flow diagram of the analytical procedure.
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Figure 2: The differentially expressed genes between ccRCC and normal tissues. (a–f) The heat map (a) and the volcano plot (b) of 3075
DEmRNAs; the heat map (c) and the volcano plot (d) of 359 DElncRNAs; the heat map (e) and the volcano plot (f) of 131 DEmiRNAs.
ccRCC: clear cell renal cell carcinoma; DEmRNAs: differentially expressed mRNAs; DElncRNAs: differentially expressed lncRNAs;
DEmiRNAs: differentially expressed miRNAs.

5Disease Markers



software were utilized to visualize the results of GO function
analysis and KEGG pathway enrichment analysis, respec-
tively. The cut-off criterion was P value < 0.05.

2.4. Survival Analysis and Nomograms of the Pivotal Genes in
ceRNA Networks. Firstly, the Cox regression analysis and
Lasso regression analysis were performed for all members of
the ceRNA network to screen the significant variables in the
initial Cox models and ensure that the multifactor models
were not overfitting. Subsequently, based on the multivariable
models, a nomogram was formulated to predict the risk score
for each patient’s overall survival (OS). Ultimately, to assess
the discrimination and accuracy of the nomogram, receiver
operating characteristic (ROC) curves and calibration curves
were performed. Meanwhile, Kaplan-Meier (K-M) survival
analysis was employed to explore the survival variations
between high-risk and low-risk groups.

2.5. Estimation of TIIC Abundance. CIBERSORT is an ana-
lytical tool to precisely estimate fractions of multiple human
immune cells in gene expression profiles. The superior per-
formance of CIBERSORT aroused an increasing focus on
cell heterogeneity studies [11, 12]. Our current study calcu-
lated the proportion of 22 types of TIICs in ccRCC tissues
through the CIBERSORT algorithm. The samples could be
used for further survival studies only when the threshold of
P value was less than 0.05. Then, the barplot and heat map
were drawn to describe the composition of TIICs in each

sample. In addition, the differences of TIICs between tumor
and matched normal tissues were assessed using the Wil-
coxon rank-sum test, and the results were visualized by the
R package vioplot.

2.6. Survival Analysis and Nomograms of the Crucial TIICs.
Univariate Cox regression analysis was carried out to
investigate the prognostic TIICs. Lasso regression, as a dimen-
sionality reduction analysis, was utilized to filter TIICs. Subse-
quently, multivariable Cox regression analysis was performed
to construct a TIIC-related prognostic signature. K-M survival
and ROC curves were conducted to evaluate the predictive
performance for prognostic signature. Meanwhile, a nomo-
gram was construed to predict the prognosis of each ccRCC
patient, and a calibration curve was applied to assess the dis-
crimination and accuracy. Ultimately, we investigated the
association between significant ceRNAs and TIICs based on
the Pearson correlation analysis.

2.7. Cell Culture and Transfection. The human ccRCC cell
lines (786-O, ACHN, Caki-1, and OSRC-2) and the normal
renal tubular epithelial cell line (HK-2) were obtained from
the Cell Bank of the Chinese Academy of Sciences (Shang-
hai, China), which were cultured according to the suppliers’
instructions, respectively. All experiments were carried out
with cells in the exponential phase. Small interfering RNAs
(siRNAs), si-MALAT1 and si-NC, were provided by RiboBio
(Guangzhou, China) and were transiently transfected into

(a) (b)

Figure 3: Construction of the ceRNA network via Cytoscape. (a) The ceRNA network of DEmRNAs, DElncRNAs, and DEmiRNAs. (b) The
lncRNA MALAT1 subnetwork. Blue circles indicate mRNAs, green balls indicate lncRNAs, and red balls indicate miRNAs.
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Caki-1 and OSRC-2 cell lines using jetPRIME® (Invitrogen,
Polyplus-transfection® SA, France) according to the
manufacturer’s protocol.

2.8. Quantitative Real-Time PCR (qRT-PCR). Total RNA
was extracted from the cultured cells with the Trizol reagent
(Invitrogen, CA, USA). Afterward, RNAs were reversely
transcribed into cDNA with GoScript™ Reverse Transcrip-
tion Mix (for mRNA and lncRNA, Promega, America) or
miScript II RT Kit and miScript SYBR® Green PCR Kit
(for miRNA, QIAGEN, Germany). qRT-PCR was conducted
with SYBR® Premix Ex Taq™ II (Takara, Japan) and mea-
sured in Applied Biosystems® 7500 Real-Time Systems
(Thermo Fisher, IL, USA). 18S and U6 were used as the
normalization control for mRNA and miRNA RCR, respec-
tively. The RNA relative expression was calculated by the
2−ΔΔCt method. The primers for amplification of targets are
shown in Supplementary Table 2.

2.9. Statistical Analysis. Only a two-sided P value < 0.05 was
considered statistically significant. All statistical analyses
were performed with R version 4.0.3 software (package:
GDCRNATools DEseq2, edgeR, ggplot2, clusterProfiler,

glmnet, preprocessCore, survminer, survival, timeROC,
rms, pheatmap, corrplot, and vioplot).

3. Results

3.1. Identification of ccRCC-Related Differentially Expressed
Genes. The analysis process of our work is illustrated in
Figure 1. We integrated the gene expression profiles of
539 ccRCC tissues and 72 normal tissues available from
TCGA database into this study. By defining the logFC >
1:0 or <−1.0 and FDR adjusted P value < 0.05 as the
cut-off, a total of 3075 DEmRNAs (1055 downregulated
and 2020 upregulated) and 359 DElncRNAs (71 downreg-
ulated and 288 upregulated) were identified between
tumor and normal samples (Figures 2(a)–2(d)). We also
performed differential expression analysis of miRNA
expression profiles between tumor and normal samples
to construct the lncRNA-miRNA-mRNA ceRNA network.
Consequently, 131 DEmiRNAs (70 downregulated and 61
upregulated) were retrieved with the same filter conditions
(Figures 2(e) and 2(f)).

3.2. Construction of the ceRNA Network and Survival
Analysis. Based on the 28 pairs of lncRNA-miRNA
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Figure 4: Functional enrichment analysis for DEmRNAs in the ceRNA network. (a–c) The chord diagram of the top 10 significant GO
terms and related genes in the cell component (a), biological process (b), and molecular function (c). (d) The bubble plot of the
significant KEGG pathways. KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene Ontology.
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Figure 5: Construction and evaluation of ceRNA-associated prognostic signature for ccRCC. (a, b) Lasso regression analysis retained 18
genes in the ceRNA network. (c) Forest plots indicated that seven genes were incorporated into multivariate Cox regression analysis to
predict the survival of ccRCC patients. (d) The K-M survival curve of ccRCC patients in the high- and low-risk groups based on the 7-
gene signature. (e) The ROC curves of 1-, 3-, and 5-year OS for the 7-gene signature. (f, g) The scatter plots of risk score distribution
and survival state of each patient. (h) The heat map of the expression of seven key prognostic genes in the high- and low-risk groups. (i)
The constructed nomogram for predicting the 1-, 3-, and 5-year prognosis of ccRCC patients. (j) The calibration curve for
demonstrating the discrimination and accuracy of the nomogram. K-M: Kaplan-Meier; ROC: receiver operating characteristic; OS:
overall survival.
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interactions and 200 pairs of miRNA-mRNA interactions,
we constructed a ceRNA network containing 12 DElncR-
NAs, 25 DEmiRNAs, and 131 DEmRNAs (Figure 3(a)).
Afterward, lncRNA MALAT1 and linked miRNAs and
mRNAs were included to build a subnetwork (Figure 3(b)).
Then, Kaplan-Meier survival analyses were exploited to val-
idate further the association between the genes involved in
the ceRNA network and the prognosis of ccRCC. It revealed
that a total of 48 genes were markedly related to the overall
survival of ccRCC (P < 0:001) (Supplementary Table 1).

3.3. Functional Enrichment Analysis. We performed a func-
tional annotation on 131 DEmRNAs in the ceRNA network.
The top 10 enriched GO terms are presented in Figures 4(a),
4(b) and 4(c), including the protein kinase complex and
transcription regulator complex in the cell component cate-
gory, signal transduction by p53 class mediator and positive
regulation of the cell cycle process in the biological process
category, and cyclin-dependent protein serine/threonine
kinase regulator activity and death receptor binding in the
molecular function category. The significant KEGG path-
ways are revealed in Figure 4(d), containing multiple
cancer-related pathways, such as the VEGF signaling
pathway, Notch signaling pathway, p53 signaling pathway,
focal adhesion, and cell cycle.

3.4. Construction of the ceRNA-Associated Prognostic
Signature. Univariate Cox analysis was employed using the
R survival package coxph function with a cut-off criterion
of P value < 0.05. Then, Lasso regression analysis was
applied to determine the optimal adjustment parameter
through 10-fold cross-validation to avoid overfitting
(Figures 5(a) and 5(b)). Ultimately, seven key genes in the
ceRNA network, including RELT, CNTNAP1, KIAA1324,
PREX1, OTOGL, LINC00894, and miR-130b-3p, were inte-
grated into the ceRNA-related signature for subsequent
studies by multivariate Cox regression (Figure 5(c)). In addi-
tion, Kaplan-Meier curves were plotted to demonstrate that
all seven key genes were significantly associated with survival
in ccRCC patients (Supplementary Figure 1). We
determined the weight coefficient of each hub gene and
calculated the risk score according to the following
formula: Risk score = 0:266 ∗ RELT + 0:315 ∗ CNTNAP1 +
0:202 ∗ KIAA1324 − 0:303 ∗ PREX1 − 0:108 ∗OTOGL +

0:185 ∗ LINC00894 + 0:274 ∗miR − 130b − 3p (Table 1).
The risk score stratified the ccRCC patients into high-risk
and low-risk groups based on the median cut-off value.
Subsequently, the Kaplan-Meier analysis suggested that the
high-risk group had a worse prognosis than the low-risk
group (Figure 5(d)), demonstrating that the ceRNA-related
prognostic signature owned great predictive value. The
ROC curves manifested favorable predictive accuracy in
survival outcomes (AUC of 1-year survival: 0.801, AUC of
3-year survival: 0.763, and AUC of 5-year survival: 0.78)
(Figure 5(e)). Meanwhile, the risk curve and scatter plot
also displayed each individual’s risk score and
corresponding survival status (Figures 5(f) and 5(g)). The
heat map displayed that PREX1 and OTOGL were
downregulated in the high-risk group, while miR-130-3p,
RELT, CNTNAP1, KIAA1324, and LINC00894 were
upregulated in the high-risk group (Figure 5(h)). Based on
the ceRNA risk model, the nomogram was generated to
predict the 1-, 3-, and 5-survival probability of each patient
with ccRCC (Figure 5(i)). Then, the calibration curve
indicated good precision and discrimination of the
nomogram (Figure 5(j)).

3.5. Profiles of TIICs in ccRCC. The CIBERSORT algorithm
was adopted to assess the fractions of 22 TIICs in ccRCC
patients, which was presented in the histogram and the heat
map (Figures 6(a) and 6(b)). The distribution difference of
TIICs between tumor and normal groups was calculated by
the Wilcoxon rank-sum test, which depicted that naive B
cells, plasma cells, resting memory CD4 T cells, and resting
dendritic cells were significantly lower in ccRCC. In contrast,
naive CD4 T cells, CD8 T cells, follicular helper T cells, and
regulatory T cells were markedly higher (Figure 6(c)).

3.6. Construction of the TIIC-Associated Prognostic
Signature. Kaplan-Meier survival analysis was employed to
identify the prognosis-related TIICs in ccRCC, which sug-
gested that the infiltration levels of follicular helper T cells
and regulatory T cells were significantly associated with sur-
vival (Figure 7(a)). Subsequently, 22 TIICs were integrated
into 5univariate Cox regression analysis. After Lasso regres-
sion and multivariate Cox regression analyses, three TIICs,
including activated memory CD4 T cells, follicular helper
T cells, and resting Mast cells, constituted a novel TIIC-
associated prognostic signature (Figures 7(b), 7(c) and
7(d), Table 2). Further, the survival curve revealed a worse
prognosis for patients with high-risk scores (Figure 7(e)).
Meanwhile, the ROC curves showed that the prognostic
signature manifested acceptable predictive accuracy (AUC
of 1-year survival: 0.641, AUC of 3-year survival: 0.655,
and AUC of 5-year survival: 0.644) (Figure 7(f)). The risk
curve and scatter plot illustrated that the higher the risk
scores, the more significant the mortality rate of ccRCC
patients (Figures 7(g) and 7(h)). The heat map displayed
the infiltration fractions of three immune cells in the high-
risk and low-risk groups (Figure 7(i)). The nomogram was
then conducted to predict the probability of survival for each
patient, and the calibration curve showed good consistency

Table 1: Multivariate Cox regression analysis identifying seven key
genes of the ceRNA network for prognosis in ccRCC.

Gene Coefficients HR
95% CI
lower

95% CI
upper

P
value

RELT 0.27 1.30 1.01 1.68 0.039

CNTNAP1 0.32 1.37 1.14 1.65 0.001

KIAA1324 0.20 1.22 1.09 1.38 0.001

PREX1 -0.30 0.74 0.61 0.90 0.003

OTOGL -0.11 0.90 0.79 1.02 0.088

LINC00894 0.19 1.20 1.07 1.35 0.002

miR-130b-
3p

0.27 1.32 1.08 1.60 0.006
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between the nomogram prediction and the actual
observation (Figures 7(j) and 7(k)).

3.7. Coexpression Analysis. The possible correlations among
diversified immune cells are shown in Figure 8(a). The coex-
pression analysis of seven key genes in the ceRNA-related
signature with three prognostic-related immune cells in the
TIIC-related signature was performed via the Pearson corre-
lation analysis (Figure 8(b)). There were significantly
positive correlations between KIAA1324 and follicular
helper T cells (R = 0:338, P < 0:001), LINC00894 and follic-
ular helper T cells (R = 0:316, P < 0:001), and miR-130b-3p
and activated memory CD4 T cells (R = 0:336, P < 0:001)
(Figures 8(c), 8(d) and 8(e)). KIAA1324 was selected for fur-
ther validation based on correlation coefficient R ranking.
We evaluated the relations between KIAA1324 expression
and the special surface markers of follicular helper T cells
in ccRCC using the TIMER database. The results revealed
that CD185 (CXCR5), CD278 (ICOS), CD279/PD-1
(PDCD1), CD3 (CD3D/CD3E/CD3G), CD4, and CXCL13
had significant coexpression patterns with KIAA1324
(Supplementary Figure 2).

3.8. Identification of a Potential ceRNA Regulatory Axis.
Combined with the results above, we identified a potential
regulatory axis of MALAT1/miR-1271-5p/KIAA1324 from
the ceRNA subnetwork. qRT-PCR was further performed
to detect the expression levels of MALAT1, miR-1271-5p,

and KIAA1324 in ccRCC cell lines (786-O, ACHN, Caki-1,
and OSRC-2) and the normal renal tubular epithelial cell
line (HK-2). The results indicated that MALAT1 and
KIAA1324 were highly expressed in ccRCC cell lines com-
pared to a normal renal tubular epithelial cell line, while
miR-1271-5p was lowly expressed (Figures 9(a), 9(b) and
9(c)). We selected Caki-1 and OSRC-2 cell lines as the
MALAT1 overexpresses for MALAT1 knockdown using
siRNA (Figure 9(d)). The results showed that the expression
of KIAA1324 was markedly downregulated when MALAT1
was silenced in Caki-1 and OSRC-2 cells (Figure 9(e)). In
contrast, miR-1271-5p expression was significantly
upregulated after MALAT1 silencing (Figure 9(f)).

4. Discussion

Clear cell renal cell carcinoma is a common urinary cancer
with high morbidity and mortality worldwide and is prone
to resistance to chemotherapy and radiotherapy [13]. Com-
pared to conventional treatments, immunotherapy has
shown great potential as a novel therapeutic option in the
treatment of cancer [14, 15]. However, some patients are
unable to benefit from it. Thus, it is essential to explore
molecular markers for predicting whether patients could
benefit from immunotherapy. Emerging evidence suggests
that tumor molecular profiles and the landscape of TIICs
play an essential role in tumor development, and they have
been proposed as potential prognostic biomarkers [16, 17].
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Figure 6: (a, b) The composition (a) and heat map (b) of 22 TIICs assessed by the CIBERSORT algorithm in ccRCC. (c) The violin plot of
different infiltration levels of immune cells in tumor and normal groups. TIIC: tumor-infiltrating immune cells; CIBERSORT: cell type
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Figure 7: Construction and evaluation of a TIIC-associated prognostic signature for predicting survival risk of ccRCC. (a) The K-M survival
curves of the prognostic-related TIICs in ccRCC. (b, c) The results of the Lasso regression analysis suggested that all three TIICs were
essential for modeling. (d) Forest plots indicated that three TIICs were incorporated into multivariate Cox regression analysis to predict
the survival of ccRCC patients. (e) The K-M survival curve of ccRCC patients in high- and low-risk groups. (f) The ROC curves of 1-, 3-
, and 5-year OS for the multivariate Cox model. (g, h) The scatter plots of risk score distribution and survival state of each patient. (i)
The heat map of the proportion of the three prognostic TIICs in the high- and low-risk groups. (j) The constructed nomogram for
predicting the 1-, 3-, and 5-year prognosis of ccRCC patients. (k) The calibration curve for demonstrating the discrimination and
accuracy of the nomogram.

Table 2: Multivariate Cox regression analysis identifying three key TIICs for prognosis in ccRCC.

Immune cells Coefficients HR 95% CI lower 95% CI upper P value

T cells CD4 memory activated 14.78 2:62E + 06 7.48 9:15E + 11 0.023

T cells follicular helper 7.99 2:96E + 03 0.08 1:13E + 08 0.137

Mast cells resting -5.88 2:79E − 03 5:72E − 07 13.66 0.174
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With the rapid development of bioinformatic
approaches and high-throughput sequencing technology,
researchers have identified an increasing number of abnor-
mally expressed RNAs and differences in the proportions
of immune cells between tumor and normal tissues. The
construction of ceRNA networks could provide a more com-
prehensive view of RNA regulatory mechanisms in ccRCC,
rather than emphasizing a specific molecular interaction.
In the present study, we identified the prognostic-related
ceRNAs and TIICs and constructed two prognostic signa-
tures that were confirmed to have good predictive value with
high accuracy and discrimination. Based on the level of gene
expression signatures and TIICs, we explored the potential
regulatory relationship between the MALAT1/miR-1271-
5p/KIAA1324 axis and immune responses.

lncRNA is a class of non-protein-coding RNA consist-
ing of more than 200 nucleotides that plays a pivotal role
in the development and progression of cancer [18]. The
ceRNA hypothesis suggests that lncRNAs may modulate
the expression of mRNA by acting as an endogenous
sponge to interact with miRNAs, which has been widely
accepted in recent years [19]. In the current study, the
constructed ceRNA network consisted of 12 DElncRNAs,
25 DEmiRNAs, and 131 DEmRNAs in ccRCC samples
according to the transcription profiles from TCGA ccRCC
cohort. Furthermore, Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were performed to investigate the potential func-
tion and pathways of the DEmRNAs. GO analysis revealed
that cyclin-dependent protein serine/threonine kinase reg-
ulator activity, positive regulation of the cell cycle process,
and protein kinase complex were associated with various
malignancies [20, 21]. KEGG analysis showed that the
DEmRNAs were significantly enriched in the cell cycle,
focal adhesion, VEGF signaling, and Notch signaling. Cell
cycle and focal adhesion are considered the leading causes

of ccRCC initiation and progression [22, 23], while VEGF
and Notch signaling pathways have been confirmed to
play an important role in the molecular regulation of
ccRCC [24, 25]. These might explain that the DEmRNAs
in the ceRNA network were significantly correlated with
the survival of ccRCC.

We observed that the expression of RELT, CNTNAP1,
KIAA1324, PREX1, OTOGL, LINC00894, and hsa-miR-
130b-3p in the ceRNA network was significantly related to
the survival status of patients with ccRCC. We then con-
structed a nomogram containing seven genes to accurately
predict the prognosis of individual patients. In addition, we
employed the CIBERSORT algorithm to identify the differ-
ent proportions of various TIICs between ccRCC and
normal tissues. Similarly, we constructed a prediction model
composed of activated memory CD4 T cells, follicular helper
T cells, and resting mast cells through a series of statistical
analyses, which performed well in predicting the overall sur-
vival of ccRCC. Subsequently, we attempted to determine
the association of the hub genes in the ceRNA-related signa-
ture with the immune cells in the TIIC-related signature. We
proposed a ceRNA regulatory axis in which MALAT1 regu-
lated KIAA1324 expression by sponging miR-1271-5p to
elucidate the potential mechanism for different degrees of
immune infiltration in ccRCC progression. This was prelim-
inarily validated in cell lines by qRT-PCR.

Numerous studies have indicated that MALAT1 has a
significant effect on cancer development and progression.
MALAT1 is implicated in the regulation of several signal-
ing pathways such as ERK/MAPK [25], Notch [26], and
Wnt/β-catenin [27], affecting cell proliferation, apoptosis,
migration, invasion, immunity, and inflammatory
response. Moreover, MALAT1 has been reported to mod-
ify ccRCC progression via regulating miR-194-5p/ACVR2B
signaling [28]. Previous studies have suggested that miR-
1271-5p is closely associated with the progression of
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Figure 8: (a) Coexpression analysis. Correlation heat map of proportions of diversified immune cells in ccRCC. (b) Correlation heat map of
the hub genes in the ceRNA and the prognostic TIICs. (c–e) KIAA1324 and LINC00894 were positively associated with follicular helper T
cells (c, d), and miR-130b-3p was positively associated with activated memory CD4 T cells (e).
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Figure 9: Experimental validation of the MALAT1/miR-1271-5p/KIAA1324 axis. (a–c) MALAT1 and KIAA1324 were upregulated in
ccRCC cell lines (86-O, ACHN, Caki-1, and OSRC-2) compared with the normal renal tubular epithelial cell line (HK-2) (a, c), and
miR-1271-5p was downregulated in ccRCC cells compared with normal renal tubular epithelial cells (b). (d) The knockdown efficiency
of si-MALAT1 in Caki-1 and OSRC-2 cells. (e, f) The expression levels of miR-1271-5p and KIAA1324 after MALAT1 knockdown in
Caki-1 and OSRC-2 cells.
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several malignancies. Han et al. found that miR-1271-5p
suppressed the progression of ovarian cancer through
Notch signaling [29]. Furthermore, it was reported that
MALAT1 sponges miR-1271-5p and facilitates multiple
myeloma and ovarian cancer progression by regulating
SOX13 and E2F5, respectively [30, 31]. In gastric cancer,
Kang et al. demonstrated that KIAA1324 was downregu-
lated and suppressed cell proliferation, invasion, and che-
moresistance [32]. However, Schlumbrecht et al.
indicated that overexpression of KIAA1324 was correlated
with worse prognosis in high-grade serous carcinoma of
the ovary/peritoneum [33]. The role of KIAA1324 in can-
cer has not yet been evaluated in ccRCC. According to the
functional enrichment analysis results, we hypothesized
that MALAT1 might regulate the expression of KIAA1324
as a miRNA sponge for miR-1271-5p to regulate the
Notch signaling pathway in ccRCC. KIAA1324 may serve
as a potential prognostic marker for patients with ccRCC
and predict the benefit of immunotherapy. In future stud-
ies, we will further focus on validating this molecular
mechanism in vitro and in vivo.

In the current study, coexpression analysis demonstrated
that KIAA1324 expression was positively related to follicular
helper T cells (R = 0:338, P < 0:001). As expected, we found
that KIAA1324 expression was positively associated with
most follicular helper T cell-related markers. Follicular
helper T cells are a predominant subset of CD4+ T cells spe-
cialized in providing requisite help for B cells to promote the
formation of germinal centers and generate high-affinity
antibodies [34, 35]. Accumulating evidence has suggested
that dysregulation of follicular helper T cells is involved in
various diseases. Numerous studies have demonstrated that
the infiltration of follicular helper T cells in multiple malig-
nancies is positively associated with survival, including that
of non-small-cell lung cancer [36], colorectal cancer [37],
and breast cancer [38]. Furthermore, Bronsert et al. reported
that high numbers and densities of PD1+ follicular helper T
cells were linked to adverse prognosis in triple-negative
breast cancer [39]. Taken together, we speculated that the
MALAT1/miR-1271-5p/KIAA1324 axis is closely related to
the poor prognosis of ccRCC by regulating follicular helper
T cell infiltration.

We comprehensively elucidated the potential molecular
mechanism for the progression of immune infiltration in
ccRCC by constructing a ceRNA regulatory network and
axis. Nevertheless, we have to acknowledge that there are
some limitations to the current study. First, this is a retro-
spective study based on the public database with a rela-
tively small normal sample size and incomplete clinical
information. Furthermore, due to the multiple sources of
public data, further confirmation is needed with homoge-
neous study samples as well as systematic experiments.
Second, the data used in our study mainly derive from
Western countries, so the results are applied with caution
in Asian populations. Third, in the CIBERSORT analysis,
we only took into account the proportion of TIICs and
ignored the heterogeneity of the immune microenviron-
ment related to the location of immune infiltration. How-
ever, in spite of its limitations, our study innovatively

proposed that MALAT1, miR-1271-5p, KIAA1324, and
follicular helper T cells might be closely associated with
the progression of ccRCC. Further biological studies
should be conducted to validate our results.

5. Conclusion

In summary, based on ceRNA network construction and
immune infiltration analysis, we identified two prognostic
signatures with good predictive value and utility for asses-
sing the survival of ccRCC patients. In addition, our study
inferred that the MALAT1/miR-1271-5p/KIAA1324 axis
and the infiltration of follicular helper T cells might play
critical roles in the progression of ccRCC. KIAA1324 could
be used as a potential prognostic marker for predicting the
benefit of immunotherapy in patients with ccRCC. Due to
the lack of experimental validation in vitro and in vivo, the
mechanism of KIAA1324-induced immune infiltration still
requires further investigation.
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