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Antibody-dependent cellular phagocytosis- (ADCP-) related regulators (PRs) have been confirmed an important role in
immunotherapy. However, the characterization of specific PRs in low-grade glioma (LGG) has not been comprehensively
explored. In this study, we retrieved RNA-seq and CRISPR-Cas9 data to identify specific PRs in LGG patients and constructed
a PRs-signature using the LASSO-Cox algorithm. The ROC analysis and Kaplan-Meier analysis showed that PRs-signature had
a good predictive effect, and the multivariate Cox regression analysis showed that PRs-risk scores were independent prognostic
factors correlated with overall survival (OS). In addition, CIBERSORT, ssGSEA, and MCP counter algorithms were used to
explore immune cell content in different risk groups, especially in the correlation between macrophages and specific PRs.
Finally, mRNA expression was upregulated in the high-risk group compared with the low-risk group at most immune
checkpoints and proinflammatory factors. In conclusion, we constructed a prediction model for prognostic management and
revealed the cross-talk between specific PRs and immunotherapy in LGG patients.

1. Introduction

The most frequent primary central nervous system tumors
are low-grade glioma, which arises from glial cells. Surgical
excision, radiation, and chemotherapy are possibilities for
glioma treatment. However, the overall survival (OS)
remains low [1]. As a result, the major objective of therapy
is to improve the overall survival (OS). It is vital to be able
to identify high-risk patients and personalize treatment to
them to attain this aim.

Phagocytosis is involved in several disease processes,
including the clearance of apoptotic cells, cell regeneration,
tumor monitoring, and removal of cellular debris following
damage [2]. Meanwhile, autoimmunity and developmental
abnormalities can occur when phagocytosis is out of balance
[3]. In addition, to engulf various types of particles, phago-
cytes use diverse surface receptors and signaling cascades

[4]. It is worth mentioning that monoclonal antibody thera-
pies targeting tumor antigens drive cancer cell elimination in
large part by triggering macrophage phagocytosis of cancer
cells [5]. Therefore, the identification of antibody-
dependent cellular phagocytosis- (ADCP-) related regulators
has become important in tumor immunotherapy. Luckily,
the development of the CRISPR-Cas9 system has enabled
dramatically improved genome-scale knockout screens with
high precision in mammalian cells [6]. Therefore, the
researchers have performed a large-scale identification by
this method for ADCP-related regulators (PRs). However,
the prognostic correlation between PRs and LGG has not
been thoroughly studied.

Therefore, our study was aimed at developing a novel
prognostic signature based on the above PRs to predict OS
in LGG patients. In addition, we further validated the tumor
immune microenvironment and response to immunother-
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apy. In particular, the association of specific PRs with mac-
rophages in LGG tissues was explored and whether PRs
could be used to assess ADCP status.

2. Materials and Methods

2.1. Datasets and Data Preprocessing. A total of 1081 WHO
grade II and III glioma samples (TCGA database [7]) and
103 normal cortical samples were included in the study
(GTEx project [8]). The TCGA-LGG dataset (n = 506) was
defined as the training cohort and the CGGA dataset
(n = 575) as the validation cohort. It is worth noting that
samples have been excluded with clinical information with
non-LGG and incomplete follow-up information. Mean-
while, IMvigor210 [9], a cohort of atezolizumab (anti-PD-
L1 antibody) for uroepithelial carcinoma, was extracted to
evaluate the predictive value of our signature for immuno-
therapy. In addition, regulators of cancer cell phagocytosis
were derived from 730 genes identified using the CRISPR-
Cas9 method.

2.2. Identification and Validation of Signature Based on PR
Expression. A list of differentially expressed PRs (p < 0:05, ∣
log FC∣ > 1) was identified as specific PRs in LGG based
on RNA-seq data obtained from TCGA and GTEx database
[10]. In parallel, we calculated the macrophage content in
LGG tissues using the ssGSEA algorithm; subsequently, the
Spearman analysis was used to further explore the correla-
tion between specific PRs and macrophages. Among the spe-
cific PRs, they were screened by univariate Cox regression
analysis with a threshold ofp < 0:001and further screened
by Kaplan-Meier survival curves and log-rank test. Subse-

quently, hub PRs were identified by LASSO regression anal-
ysis [11] and the multivariate Cox regression analysis. The
risk score for each patient was calculated by multiplying
the expression values of certain genes by their weights in
the multivariate Cox model and then adding them together;
the formula was as follows: ∑n

i=1Coef i ∗ xi. The prognostic
value of the PRs-signature was assessed by the TCGA and
CCGA cohorts. PRs-signature for predicting survival was
assessed by area under the curve (AUC) and receiver operat-
ing characteristic (ROC) curve. We calculated the risk score
of each patient for determining the median value, which is
used to select “high-risk” and “low-risk” groups. The
Kaplan-Meier analysis was performed to compare differ-
ences in overall survival (OS) between different groups [12].

2.3. Comprehensive Analysis of Molecular and Immune
Characteristics. KEGG and GO enrichment analyses were
used to explore the possible biological processes of specific
PRs [13]. To identify the immune characteristics of the TC
samples, expression data were imported into CIBERSORT
package to estimate the proportion of 22 immune cells
[14], and the ssGSEA algorithm and MCP counter [15] algo-
rithms were used for further validation. Finally, the mRNA
expression levels of immune checkpoint and proinflamma-
tory factors were analyzed in different groups.

2.4. Vitro Assays. Two grade III glioma cell lines (HS683 and
SW1088) were purchased from American Type Tissue Cul-
ture Collection. siRNA targeting SDHC was purchased from
Genepharm (Nanjing, China). Human glioma cell line U251
and human glial cell HEB were obtained from ATCC, cul-
tured in MEM-EBSS and DMEM-EBSS basal culture
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Figure 1: Workflow diagram. The specific workflow graph of data analysis.
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Figure 2: Identification of specific PRs in LGG. (a) The heatmap showed the top 10 specific PRs. (b) Specifically, the volcanic plot showed
the distribution of upregulation and downregulation in specific PRs. (c) Scatter diagram of specific PRs correlated with macrophage content.
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Figure 3: Enrichment analysis. (a) GO enrichment analysis about 97 specific PRs. (b) KEGG enrichment analysis about 97 specific PRs.
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medium (Biological Industries), and supplemented with 10%
FBS (Biological Industries). The cells were cultured in a
humid condition with 5% CO2 at 37°C. Isolation of total
RNA from the cell lines was performed according to the
instructions for the TRIzol reagent, and the purity and con-
centration of RNA were determined by MV3000 Microspec-
trophotometer (260/280 ratio). Equal amounts of RNA were
then reversely transcribed to make complementary DNA.
We used GAPDH as an internal control gene; reactions were
carried out using the SYBR Green Premix Pro Taq HS qPCR
Kit (Accurate Biology, AG11701). Finally, a BIO-RAD
CFX96 Real-Time PCR Detection System was used for the
determination of the target gene expression levels. Each
sample was repeated three times. The relative abundance of
each gene mRNA was calculated by the 2−ΔΔCt method.
Detailed experiment was carried out according to the
methods in the previous reference [16]: siRNA-1 5′-GATT
AAGAATCAAGTTCACTC-3′and siRNA-2 5′-GATCAA
CTTCTATGAACAGTA-3′and SDHC forward: 5′-GATC
TACTACACGCCACGAAG-3′and reverse: 5′-GCGTTG
CCACAGATACATC-3′.

2.5. Cell Proliferation Assay. The cell growth rate was
detected by CCK-8 cell proliferation assays. The cells were
seeded in a 96-well plate at the density of 1:0 × 104 cells
per well. The cell viability was detected at four selected time
points (0, 12, 24, and 48 hours). CCK-8 solution (10μL) was
added to each well at indicated times and incubated for
another 3 hours. The absorbance of each well was obtained

from the PerkinElmer 2030 Victor X multilabel plate reader
(PerkinElmer) at 450 nm.

2.6. Western Blot. All the proteins were extracted. The cell
lysate was run on SDS-PAGE and then transferred to a
PVDF membrane (MILLIPORE). The membrane was then
blocked with 5% fat-free milk for 2 hours at room tempera-
ture. Next, the membrane was probed with a primary anti-
body at 4°C overnight. The primary antibodies against
were SDHC (Abcam, Ab155999, 1 : 10000) and GAPDH
(Abcam, Ab8245, 1 : 1000). After washing, the membrane
was incubated with appropriate secondary antibodies (Bios-
wamp) at 4°C overnight as well. The membrane was stained
with enhanced chemiluminescence reagent and visualized
using the automatic chemiluminescence analyzer (Tanon).

2.7. Statistical Analysis. All statistical analyses were per-
formed using the R software (v.4.0.1). Detailed statistical
methods for transcriptome data processing are covered in
the above section. ∗∗∗, ∗∗, ∗, and ns refer to p < 0:001,
<0.01, <0.05, and not significant, respectively. The overall
flow diagram is shown in Figure 1.

3. Results

3.1. Specific PRs in LGG May Be Involved in the ADCP
Process. Monoclonal antibody therapies targeting tumor
antigens trigger macrophages to engulf cancer cells [16],
and regulators that block antigen-dependent cell phagocyto-
sis (ADCP) have been identified using the CRISPR method.
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Figure 4: Potential prognostic value of each specific PRs. (a) The forest plot showed the prognostic specific PRs in the univariate Cox
regression. (b) Kaplan-Meier analysis revealed 16 prognostic-specific PRs.
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Therefore, we used differential gene screening analysis to
identify specific PRs in LGG tissues, and we identified a total
of 97 specific PRs in 506 LGG and 103 normal samples
(Figure 2(a)). Among them, 39 upregulated genes and 58
downregulated genes were shown in the volcano plot
(Figure 2(b)). Meanwhile, we used the ssGSEA algorithm
to estimate the macrophage content in LGG tissues as a
way to further explore the correlation between specific PRs
and ADCP process. As shown in Figure 2(c), a total of 34
PRs were identified from 97 specific PRs that were strongly
correlated with macrophage content (p < 0:001; ∣r ∣ >0:3).
Interestingly, EFS demonstrated the strongest negative corre-
lation, while S100A11 showed the strongest positive correla-
tion with macrophages in the LGG. Taken together, our data
showed that specific PRs, especially in EFS and S100A11, are
most likely to be involved in the ADCP process in LGG.

3.2. Identification of PRs Related to Biological Processes. GO
and KEGG enrichment analyses were performed to clarify
the biological functions of specific PRs. GO enrichment
analysis showed that 97 specific PRs were mainly related to
mitochondrial respiratory chain complex assembly and
NADH dehydrogenase complex assembly in BP section,
respiratory chain complex and mitochondrial respiratory
chain complex I in CC section, and NADH dehydrogenase
(ubiquinone) activity in MF section (Figure 3(a)). In addi-
tion, KEGG enrichment analysis showed that related PRs
were enriched in thermogenesis, oxidative phosphorylation,
nonalcoholic fatty liver disease, etc. (Figure 3(b)).

3.3. Potential Prognostic Value of Specific PRs in LGG
Patients. Firstly, a preliminary screening of 97 specific PRs
using the univariate Cox regression analysis (p < 0:001)
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showed that 28 PRs were significantly associated with OS in
LGG patients (Figure 4(a)). In detail, CMC1 (HR = 4:064)
demonstrated a strong risk-indicating effect, and SDHC
(HR = 0:711) showed a strong protective effect. In addition,
we identified the above 28 PRGs again using the Kaplan-
Meier survival analysis and log-rank test (p < 0:001), and
finally 14 PRs proved to have strong prognostic value
(Figure 4(b)). Notably, SDHC showed the best prognostic
value within both screening methods.

3.4. Quantify the Predictive Value of PRs. The low phagocytic
activity of macrophages and the expression of antiphagocy-
tic factors in cancer cells are still obstacles to the targeted
therapy for various cancers, and the associated dysregulation
of PR expression can indirectly impact patient survival.
Therefore, we attempted to quantify PRs for prognostic
assessment of LGG patients in response to phagocytosis abil-
ity. Based on the 14 PRs mentioned above, we further
removed redundant genes by LASSO regression
(Figure 5(a)), and the prognostic model performed best
when 8 PRs were used (Figure 5(b)). In addition, further

stepwise multivariate Cox regression identified 6 PRs to be
involved in the calculation of risk scores, and correlation
coefficients were determined (Figure 5(c)). The formula
was PRs − risk score = ð0:0037 × expression level of S100A11
Þ + ð0:0024 × expression level of CNN3Þ + ð0:0689 ×
expression level of POFUT1Þ + ð0:0332 × expression level of
SAMD4BÞ + ð0:2817 × expression level of NPAS2Þ + ð−
0:1743 × expression level of SDHCÞ.

3.5. Prognostic Value of PRs-Risk Score in LGG Patients. All
patients in the TCGA and CGGA cohorts were differentiated
into low-risk and high-risk groups based on the median
PRs-risk score in the TCGA-LGG cohort. The Kaplan-
Meier survival analysis showed significant differences in
OS between the low- and high-risk groups (p < 0:05,
Figures 6(a) and 6(d)); specifically, the OS time was shorter
in the high-risk group than in the low-risk group. In addi-
tion, the risk score distribution demonstrated that patients
in the high-risk group had a greater likelihood of death
(Figures 6(b) and 6(e)). ROC analysis of the TCGA cohort
showed that the PRs-risk score was a good predictor (1-year
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Figure 9: Kaplan-Meier analysis in different clinical subgroups. Kaplan-Meier analysis in age subgroups (a), gender subgroups (b), WHO
grade subgroups (c), 1p/19q codeletion subgroups (d), and IDH status (e).
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AUC = 0:850, 3-year AUC = 0:813, and 5-year AUC = 0:781
), as shown in Figure 6(c). Similarly, good predictive power
was shown in the CGGA cohort (1-year AUC = 0:682, 3-
year AUC = 0:677, and 5-year AUC = 0:659), as shown in
Figure 6(f). Combined with the clinical information, we per-
formed the Cox regression analyses to assess whether PRs-
risk score could be used as an independent predictor for
patients with LGG. As shown in Figure 7, the univariate
Cox regression analysis in the different cohorts showed that
PRs-risk score was significantly associated with OS in all
LGG cases (p < 0:05). In addition, the multivariate Cox
regression analysis showed that PRs-risk score was an inde-
pendent risk factor associated with OS as well (p < 0:05).

3.6. Correlation of PRs-Risk Score and Clinical Subgroups. To
explore the potential correlation between PRs-risk score and
clinicopathological factors, we performed correlations

between age, WHO grade, IDH status, and 1p/19q mutation
status. The results showed that among the clinical sub-
groups, IDH-WT subgroup (Figure 8(a)),1p/19q non-
codeletion subgroup (Figure 8(b)), elderly subgroup
(Figure 8(d)), and G3 group (Figure 8(e)) had higher
PRs-risk scores. In contrast, no statistically significant dif-
ferences in risk scores were observed in gender subgroups
(Figure 8(f)). In addition, we performed the Kaplan-Meier
analysis for each subgroup, and PRs-risk scores showed a
risky indication in the young group (Figure 9(a)), the
male/female groups (Figure 9(b)), the G2/G3 groups
(Figure 9(c)), the 1p/19q mutation/nonmutation groups
(Figure 9(d)), and the IDH mutation group (Figure 9(e)),
with higher-risk patients having a smaller likelihood of sur-
vival. Moreover, there was no significant survival difference
in the older group as well as in the IDH-WT group, but it
is worth noting.
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Figure 10: Estimate, MCP counter, ssGSEA, and CIBERSORT algorithms to explore immune status in different PRs-risk groups. (a)
Difference in stromal score, immune score, and ESTIMATE score in different PRs-risk groups. (b) Correlation analysis between PRs-risk
score and three scores. (c) The difference in immune cells is calculated by the MCP counter algorithm. (d) The difference in immune
cells is calculated by the ssGSEA algorithm. (e) The difference in immune cells was calculated by the CIBERSORT algorithm. ∗p < 0:05,
∗∗p < 0:01, and ∗∗∗p < 0:001.
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3.7. Immune Cell Infiltration in Different PRs-Risk Groups.
Firstly, we assessed tumor microenvironment (TME) in the
LGG tissues using the ESTIMATE algorithm, with a higher
stromal score, immune score, and estimate score in the
high-risk group (Figure 10(a)). We then excluded three sam-
ples with significantly outlier risk scores (risk score > 100)
and performed a Spearman correlation analysis between
PRs-risk score and TME scores, which showed a strong pos-

itive correlation (r > 0:5, p < 0:05) between risk score and
TME scores (Figure 10(b)). We used the MCP counter algo-
rithm to profile the content of an immune cell in LGG tissue
(Figure 10(c)). Interestingly, we found a more pronounced
distribution of scores in the monocyte lineage and higher
monocyte lineage scores in the high-risk subgroup com-
pared to the low-risk group. In addition, we performed a
detailed analysis of the monocyte lineage using the ssGSEA
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Figure 11: Exploring potential immune checkpoints in different PRs-risk groups. (a) Significant immune checkpoint expression in different
risk groups. (b) The difference in CTLA4, CD279, and CD274 expressions in S100A11, CNN3, POFUT1, SAMD4B, NPAS2, and SDHC
groups.
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algorithm and found that within the monocyte lineage, mac-
rophages were still more abundant in the high-risk group
(Figure 10(d)). Finally, the CIBERSORT algorithm illus-
trated that macrophage M1 was higher in the lower-risk
group compared to the high-risk group, while M2 was
higher in the high-risk group (Figure 10(e)). Taken together,
the results of the three algorithms provided another value
that risk score may be indicative of the macrophage content
and the status of the ADCP process induced by PRs.

3.8. Risk Score as an Indicator Aimed to Estimate the
Situation of Immune Checkpoint and Proinflammatory
Factors. To explore the relationship between immune check-

points and risk score as well as the 6 selected PRs, immune
checkpoint expression levels were calculated for high- and
low-risk groups based on the TCGA-LGG database
(Figure 11(a)). Interestingly, among the immune check-
points, including PD-1, PD-L1, and CTLA4, which are cur-
rently commonly used in LGG clinics, mRNA expression
was upregulated in the high-risk group compared to the
low-risk. In addition, PD-1 and CTLA4 expression levels
were significantly different between the high and low sub-
groups of the 6 selected PRs (Figure 11(b)). In detail, the
high expressing PR group had lower levels of immune
checkpoint expression. Numerous studies have shown that
chronic inflammation has an important role in immune cell
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Figure 12: Exploring proinflammatory factors in different PRs-risk groups. (a) Significant proinflammatory factor expression in different
risk groups. (b) The difference in IL1B, IL6, and IL18 expressions in S100A11, CNN3, POFUT1, SAMD4B, NPAS2, and SDHC groups.
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Figure 13: The assessment of immunotherapy. (a and b) Difference of risk score in different treatment response groups. (c) Kaplan-Meier
survival analysis of anti-PD-L1 cohort (IMvigor210). (d) ROC analysis of different risk signatures in TCGA-TC cohort.
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infiltration and major proinflammatory factors, including
interleukin 1α (IL-1A), interleukin 1β (IL-1B), interleukin
6 (IL-6), and interleukin-18 (IL-18) [17]. Hence, we explored
the association of three major proinflammatory factors with
risk scores. The results showed that the expression levels of
IL-1B, IL-6, and IL-18 were significantly higher in the
high-risk group (p < 0:001, Figure 12(a)). Meanwhile, three
proinflammatory factors showed high-expression levels in
the SAMD4B, S100A11, and CNN3 high-expression groups;
IL-6 and IL-18 were expressed at higher levels in the low
SDHC expression group than in the high-expression group,
and IL-6 and IL-18 were expressed at higher levels in the
high POFUT1 expression group than in the low-expression
group. In addition, the expression levels of IL-18 in the high
NPAS2 expression group were lower than those in the low-
expression group (Figure 12(b)).

3.9. Validating the Benefit of the Risk Score in ICI Treatment.
We assessed the prognostic value of PRs-signature in
cohorts treated with anti-PD-L1. As shown in Figure 13(a),
we found significant differences between the high- and
low-risk score groupings in the CR/PR and SD/PD cohorts.

In addition, patients in the SD/PD cohort had higher PRs-
risk scores (Figure 13(b)). Meanwhile, patients with low
PRs-risk scores had better OS than high PRs-risk scores
(Figure 13(c)). Unfortunately, our PRs-signature may be a
poor predictor of OS at 1, 3, and 5 years in the IMvigor
cohort (Figure 13(d)), but the role of PRs in assessing
response to ICI treatment should not be ignored.

3.10. Validation of Hub Prognostic PR In Vitro. In the above,
we found that SDHC showed the best prognostic value
within both the Cox regression analysis and Kaplan-Meier
analysis (Figure 2(c)). Hence, we further studied the expres-
sion, biological function, and diagnostic value of SDHC in
LGG. SDHC is significantly upregulated in LGG tissues
(Figure 14(a)) and has a good predictive value for the diag-
nosis (Figure 14(b)). In addition to being a predictor of over-
all survival, SDHC has excellent prognostic value for disease-
specific survival (Figure 14(c)) and progress-free interval
(Figure 14(d)). We also found that SDHC was significantly
elevated in glioma cell lines compared to normal glial cells,
so we knocked down the expression of SDHC in the U251
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Figure 14: Validation of hub prognostic PR in vitro. (a) Differential expression of SDHC in normal and abnormal samples. (b) ROC
analysis for diagnosis LGG. (c) Kaplan-Meier survival analysis for disease-specific survival. (d) Kaplan-Meier survival analysis for the
progress-free interval. (e) SDHC mRNA expression in HEB, HS683, and U251 cell lines. ∗∗∗p < :001. (f and g) SDHC mRNA expression
in HEB, HS683, and U251 cell lines. ∗∗∗p < :001. (h) RT-qPCR analysis of the cells with SDHC knockdown. (i) Knockdown of SDHC
suppressed proliferation of U251 cells indicated by CCK-8 assay.
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cell line and found that the proliferation rate of cells in the
knockdown group was significantly lower compared to the
untreated group, suggesting that SDHC is a poor prognostic
factor that may be associated with affecting glioma prolifer-
ation (Figures 14(e)–14(i)).

4. Discussion

Phagocytosis is a multistep cellular process that includes
target cell identification, cytophagy, and lysosomal diges-
tion, all of which are influenced by target cell and
receptor-ligand interactions [6]. Although healthy normal
tissues and cells have inherited the ability to avoid self-
elimination by phagocytes through the expression of anti-
phagocytosis molecules, cancer cells depend even more on
similar mechanisms to evade immune eradication [18]. It
is becoming increasingly clear that tumor cell phagocytosis
and subsequent immune recognition are controlled by
multiple inhibitory and stimulatory signals that must be
considered to generate an optimal antitumor response.
Innovative approaches using genetic screening strategies
to identify key regulators of phagocytosis under physiolog-
ical conditions and nontumorigenic pathologies can be
extended to the oncology setting. For example, recent
studies using genome-wide CRISPR screens have identified
previously unknown regulators of phagocytosis that are
important in amyloid β clearance in Alzheimer’s disease.
How these phagocytic regulators work in concert to regu-
late the clearance of tumor cells by professional phago-
cytes at different stages of tumorigenesis and in different
types of cancer remains to be elucidated. From a clinical
perspective, how to incorporate phagocytic checkpoint
blockers/stimulators into the current cancer immunother-
apy paradigm needs further evaluation. At the outset, tar-
geting phagocytic checkpoints should complement existing
T-cell immune checkpoint inhibitors to maximize antitu-
mor responses. For example, tumors with low PD-L1
levels, which are less sensitive to blockade of the PD-1/
PD-L1 axis, may be more sensitive to CD47-SIRPα inter-
ference. Similarly, adaptive immunotherapy relies on the
generation of specific T-cell clones that recognize tumor-
associated neoantigens, which correlates with the degree
of tumor cell genomic alteration, whereas phagocytic
checkpoint blockade appears to be effective also in cancers
with the low mutational burden (e.g., AML). Therefore,
comprehensive analysis of PRs is essential for immuno-
therapy and prognosis prediction of LGG. In this study,
we constructed a robust PRs-score to predict the prognosis
of LGG patients using the PRs-signature. For evaluation of
treatment effectiveness, our PRs-signature can not only
estimate the effect of immunotherapy but also preliminar-
ily explore the potential association between specific PRs
and ADCP status. Especially, in exploring the immune
microenvironment, we found an important correlation
between PRs-risk scores and M1/M2 type macrophages.
Finally, we knocked down the hub prognostic PR (SDHC)
and found that proliferation was significantly inhibited.
Immunotherapies represented by the PD-1/PD-L1 and

CTLA-4/B7 pathways have shown significant clinical effi-
cacy in a variety of cancer types. However, only a small
proportion of patients show a good response to anti-
PD1-PD-L1 or anti-CTLA-4/B7 treatment. The overex-
pression of PD-L1 and CTLA-4 is an important suppres-
sor of antitumor immunity and is associated with better
therapeutic response and increased clinical benefit. Given
the unprecedented predictive value of PD-L1 and CTLA-
4 expression in immunotherapy, investigating the different
regulators of PD-L1 and CTLA-4 expression that may
influence immunotherapeutic efficacy will contribute to
the individualized clinical management of cancer patients
[19, 20]. This study identified 6 PRs with prognostic value
in risk signature, including S100A11, CNN3, POFUT1,
SAMD4B, NPAS2, and SDHC. S100A11 is a calcium-
binding protein that belongs to the S100 family [2]. The
upregulation of S100A11 has been found to accelerate
tumor cell proliferation, migration, and invasion by acti-
vating several signaling pathways [21, 22]. Interestingly,
S100A11 has also been discovered as a tumor-derived
EVP protein implicated in eliciting immunological
responses, suggesting that it is important in tumor immu-
nity [23]. In addition, the protein encoded by CNN3 reg-
ulates cytoskeletal organization and actin interactions
through efficient binding to F-actin [24]. A bioinformatics
study has now confirmed CNN3 as a promising immuno-
therapeutic target in glioma [25]. In breast [26] and colo-
rectal malignancies [27], NPAS2 has also been discovered
as a unique predictive biomarker. Furthermore, in colorec-
tal cancer, suppressing NPAS2 expression boosts cell pro-
liferation and invasion, indicating that NPAS2 plays an
important tumor-suppressive role. Although most of the
above-mentioned genes are involved in the progression
of cancer, how to affect the development of LGG and
ADCP has not been well explained. Thus, this study lays
the foundation for our future in vivo and in vitro experi-
ments. Thus, phagocytic checkpoints may provide an alter-
native strategy for treating unresponsive or refractory
tumors to conventional cancer immunotherapy or given
concurrently with adaptive immune checkpoint inhibitors
to improve overall patient response rates. Finally, it is also
important to strike a balance between efficacy and toxicity.
Unlike adaptive immune responses, which are limited to
some extent by self-tolerance, innate responses are less
specific and therefore more susceptible to damage by nor-
mal tissues. This is particularly important because phago-
cytic checkpoint inhibitors may be used in combination
with other immunomodulatory agents, such as TLR or
STING agonists, cytokines, or systemic chemotherapy.
However, targeting phagocytic checkpoints provides new
avenues for gaining insight into tumor-mediated immune
evasion mechanisms and developing more effective thera-
pies that can bridge the innate and adaptive immune sys-
tems for the benefit of cancer patients.

However, this study only used the data from the public
database TCGA and CGGA to construct the model, and
there was no condition to collect our data to validate
PRs-signature, which was a limitation of our study. In
addition, we only have a focus on SDHC in LGG cell
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lines, and experimental validation needs to be conducted
in the future.

5. Conclusion

We constructed an accurate and robust PRs-signature for
predicting the prognosis of patients with LGG. On this basis,
we revealed the cross-talk between specific PRs and immu-
notherapy in LGG patients. In particular, different risk
groups may represent different ADCP statuses in LGG
patients. Comprehensively, these will shed light on the
development of novel therapeutic strategies and render sur-
vival benefits for LGG patients.
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