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Background. This work used bioinformatic analysis to identify the relationship between periodontitis (PD) and aging, which could
lead to new treatments for periodontal disease in the elderly. Method. Four microarray datasets were obtained from the Gene
Expression Omnibus (GEO) database and analyzed in R language to identify differentially expressed genes (DEGs). The
common DEGs of PD and aging were evaluated as key genes in this investigation by a Venn diagram. These common DEGs
were analyzed through additional experiments and analysis, such as pathway analysis and enrichment analysis, and a network
of protein-protein interactions (PPIs) was constructed. Cytoscape was used to visualize hub genes and critical modules based
on the PPI network. Interaction of TF-genes and miRNAs with hub genes is identified. Result. 84 common DEGs were found
between PD and aging. Cytohubba was performed on the PPI network obtained from STRING tool, and the top 10 genes
(MMP2, PDGFRB, CTGF, CD34, CXCL12, VIM, IL2RG, ACTA2, COL4A2, and TAGLN) were selected as hub genes. VIM
may be a potential biomarker in the analysis of linked hub gene regulatory networks, and hsa-mir-21 and hsa-mir-125b are
predicted to be associated in PD and aging. Conclusion. This study investigated the key genes and pathways interactions
between PD and aging, which may help reveal the correlation between PD and aging. The current research results are obtained
by prediction, and follow-up biological experiments are required for further verification.

1. Introduction

Periodontitis, an infectious and chronic inflammatory disease,
is one of the world’s most common chronic diseases, affecting
roughly 11% of adults globally [1, 2]. Without proper treat-
ment, PD may cause damage to the periodontal soft and hard
tissues, leading to the formation of periodontal pockets, loss of
attachment, resorption of alveolar bone, and ultimately tooth
loss [3].

Aging is a time-dependent process characterized by the pro-
gressive deterioration and loss of function of multiple organs of
an organism and was recently introduced by the World Health
Organization as a new disease in the International Classification
of Diseases [4]. From a biological point of view, with age, many
molecular pathways are deregulated due to the accumulation of
various molecules and cellular damage, thereby affecting tissue

homeostasis, causing structural damage, and affecting its bio-
mechanical properties [5, 6].

In recent years, an increasing number of studies have
found that PD is closely linked to the advancement of aging-
related systemic disorders such as diabetes, coronary heart dis-
ease, and rheumatoid arthritis [7–9]. Although aging itself has
not been classified as a contributing factor to periodontitis
[10], recent studies have shown that similar to other systemic
diseases, PD susceptibility changes with aging, and the degree
of alveolar bone destruction is related to age factors [11]. The
reason may be that one of the major changes occurring in the
aging process is the dysregulation of the immune response,
leading to the dysregulation of the proinflammatorymediators
and the chronic systemic inflammatory state of [12]. However,
the hyperactivation of the immune response in the host system
can directly activate the osteoclast activity and the alveolar
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bone loss, which can further induce the progression of peri-
odontal disease [13]. However, the underlying mechanisms
between PD and aging are not fully understood. As a result,
additional research on the function of aging in PD will con-
tribute to a better understanding and treatment of periodontal
disease in the elderly. It may provide new ideas for the study of
aging-related systemic disorders as well as prospective novel
tactics for the treatment of periodontal diseases in the elderly.

To address this question, we employed an integrative bioin-
formatics approach to identify common functional genes asso-
ciated with PD and aging. Moreover, investigation of DEGs in
four datasets from the GEO can discover commonmechanisms
of action and PPI nodes. It may provide a basic theoretical basis
for the diagnosis and pathogenesis of periodontal disease in the
elderly. Figure 1 depicted the progressive workflow of our study.

2. Materials and Methods

2.1. Data Sources. GEO (https://www.ncbi.nlm.nih.gov/geo) is
a public database developed and maintained by the National
Center for Biotechnology Information (NCBI), which stores
gene expression data, microarrays, and other forms of high-

throughput functional genomic data and makes it available to
researchers for free [14]. This study retrieved the gene expres-
sion profiling datasets GSE10334, GSE16134, GSE23586, and
GSE83382 from the GEO, based on the keywords “periodonti-
tis and gingival tissue,” “aging and gingival tissue,” and “Homo
sapiens.” These datasets were screened based on inclusion cri-
teria. The inclusion criteria were as follows: (1) interdental
CAL detectable at ≥2 nonadjacent teeth or (2) buccal or oral
with pocketing >3mm detectable at ≥2 teeth. Details of the
microarray dataset are presented in Table 1.

2.2. DEG Identification. The primary goal of this work is to
identify common DEGs from the GSE10334, GSE16134,
GSE23586, and GSE83382 datasets. To identify the DEGs of
GSE83382, we used the R language and the limma package
(version 3.42.2) [15]. The GEO2R (https://www.ncbi.nlm.nih
.gov/GEE351452r/) web tool, which also employs the limma
program to detect DEGs, was used to evaluate the DEGs from
the GSE10334, GSE16134, and GSE23586 datasets. GEO2R
(version 3.26.8) is an online GEO analysis application that
allows users to analyze and compare data from two or more
separate sample groups under similar experimental settings

GEO database

Periodontitis datasets
GSE10334, GSE16134, GSE23586

Aging dataset
GSE83382

Go and KEGG pathway analysis

Common DEGs

PPI network & MCODE analysis

Hub genes

TF-miRNA coregulatory network TF-gene interaction network

1. Periodontitis
2. Gingival tissue
3. Homo sapiens

1. Aging
2. Gingival tissue
3. Homo sapiens

Aging
DEGs

Periodontitis
DEGs

Figure 1: Workflow chart of the study.

Table 1: List of datasets used in this study.

Datasets Organism Sample Platform Control Affected

GSE10334 Homo sapiens Gingival tissue GPL570 64 183

GSE16134 Homo sapiens Gingival tissue GPL570 69 241

GSE23586 Homo sapiens Gingival tissue GPL570 3 3

GSE83382 Homo sapiens Gingival tissue GPL11154 3 3
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[16]. DEGs were defined as genes with screening criteria jLog
2 fold change ðFCÞj > 0:5 and P value < 0.05. The intersection
of common DEGs from the four datasets was defined as public
DEGs in the following study and was found using the Venn
diagram network tool (version 1.6.20) (http://bioinfogp.cnb
.csic.es/tools/venny/), and finally, the primary experimental
genes for the entire study were determined.

2.3. DEG Analysis at the Functional Level. Gene Ontology
(GO) enrichment analysis is a technique for examining gene
expression data. Enrichment is the process of classifying
genes based on past knowledge, such as genome annotation
information. GO is a method for identifying genes, gene
products, and sequences as potential biological phenomena
based on their roles in order to annotate and classify genes.
It primarily consists of biological processes (BP), cellular com-
ponents (CC), and molecular functions (MF) [17]. KEGG is a
comprehensive database resource for biological interpretation
of genomic sequences and other high-throughput data [18].
WebGestalt (http://www.webgestalt.org/), a long-standing
and extensively used web program for functional enrichment
analysis, has been regularly updated to fulfill the needs of biol-
ogists from various research fields [19]. WebGestalt (2019)
was used in this study to perform GO and KEGG analysis
on common DEGs. The usual measure was a P value of 0.05.

2.4. PPI Network Analysis. The search tool to retrieve interact-
ing genes/proteins (STRING) (https://string-db.org/) is an
interactive network for studying gene and protein interactions,
supplementing heuristic association and analysis methods,
and investigating known and predicted PPI associations with
PD and aging. In this investigation, we used a string database
to build a PPI network of DEGs and interacted with a compos-

ite score of >0.4 as a crucial criterion [20]. In addition, we used
Cytoscape (https://cytoscape.org/) to build the PPI network
for visual representation and additional experimental testing.
Cytoscape (version 3.9.1) is a free and open-source network
visualization platform that combines biomolecular interaction
networks, high-throughput expression data, and other molec-
ular states into a cohesive conceptual framework [21].

2.5. Hub Gene Extraction and Module Analysis. The PPI net-
work is made up of nodes, edges, and connections, with the
most entangled nodes serving as hub genes. Cytohubba
(http://apps.cytoscape.org/apps/cytohubba) is a new Cytos-
cape plugin for sorting and retrieving central or possible or
potential target elements underpinning biological networks.
The cellular landscape plugin Cytohubba can discover hub
genes more precisely thanks to 11 algorithms [22]. Further-
more, the Molecular Complex Detection (MCODE) (http://
apps.cytoscape.org/apps/mcode) plugin Cytoscape was used
with a plugin with default parameters to discriminate the
modules that best reflect DEG clusters [23].

2.6. Transcription Factors and miRNAs Interact with Hub
Genes. A network analysis database was used to investigate
the human transcription factors (TFs) of the discovered hub
genes. TF-gene interactions with identified hub genes evaluated
TF outcomes at the functional pathway and gene expression
levels [24]. NetworkAnalyst (https://www.networkanalyst.ca/)
(version 3.0) is a complete platform of web tools that allows
researchers to execute a wide range of common and difficult
meta-analyses on gene expression data via an easy-to-use web
interface [25]. In addition, miRNAs targeting gene interactions
were incorporated, and TF-miRNA coregulated interactions
were collected from a network library [26]. Finally, the
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Figure 2: Identification of gene expression profiles in the four datasets. (a–c) Volcano plot of PD microarray data. (d) Volcano plot of aging
microarray data. (e) Venn diagram of the 84 common DEGs between PD and aging.
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Cytoscape tool was used to show the network of interactions
between TFs, miRNAs, and hub genes.

3. Results

3.1. DEG Identification. As described in the materials and
methods section, we performed DEG analysis on the
screened samples and used volcano plots to show the final
screening results of DEGs (Figures 2(a)–2(d)). We identified
2000 DEGs in GSE10334, 2132 DEGs inGSE16134, 3467
DEGs in GSE23586, and 2268 DEGs in GSE83382. Whereas
for extraction, all significant DEGs are based on jLog 2 fold
change ðFCÞj > 0:5 and P value < 0.05. A Venn diagram net-
work tool was used to visualize common DEGs among the
four datasets. These common genes were the main experi-

mental gene for the entire study and were used to complete
the next experiments. The Venn diagram revealed 84 shared
differential genes (Figure 2(e)), including 24 coupregulated
genes and 5 codownregulated genes.

3.2. DEG Enrichment Analysis by GO and KEGG Pathways.
Based on the screened commonDEGs, we ran GO enrichment
and KEGG pathway analysis to assess the biological processes,
cellular components, and molecular function of gene func-
tions and their linked pathways. Figure 3 depicted the top
ten substantially enriched phrases for each process with a lin-
ear connection in a histogram for each category. Extracellular
structure organization, extracellular matrix organization, cell
adhesion, biological adhesion, cell-substrate adhesion, blood
vessel formation, blood vessel morphogenesis, and so on are
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Figure 3: GO function enrichment analysis and KEGG pathway analysis of common DEGs. (a) Biological process. (b) Cell component. (c)
Molecular function. (d) KEGG pathway.
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all part of the BP category. These genes were abundant in
collagen-containing extracellular matrix, extracellular matrix,
cell leading edge, receptor complex, cell surface, and integrin
complexes on the CC side. Extracellular matrix structural
components, protein-containing complex binding, vascular
endothelial growth factor binding, integrin binding, phos-
phatidylinositol 3-kinase binding, and actin filament binding
were the most abundant genes in this category for MF. KEGG
pathway analysis revealed that these genes were significantly
involved in focal adhesion, PI3K-Akt signaling pathway,
ECM-receptor interaction, regulation of actin cytoskeleton,
leukocyte transendothelial migration, and cell adhesion mole-
cules (CAMs).

3.3. PPI Network Identification Hub Genes and Module
Analysis. To clarify the interactions between DEGs, we per-
formed a PPI network analysis on all common DEGs in this
study (Figure 4). The resulting PPI network contains 55
nodes and 133 edges. At the same time, we used Cytoscape
to analyze the topological logic properties of the network.
In the analysis results, we found highly connected genes,
among which MMP2, PDGFRB, CTGF, CD34, CXCL12,
VIM, IL2RG, ACTA2, COL4A2, and TAGLN were the top
10 highly connected genes (Supplementary Table 1). We
then defined these 10 genes as hub genes. Subsequently, we
reviewed the regulatory roles of these hub genes in PD and
aging (Table 2).

The identified common DEGs were projected onto the
Cytoscape MCODE plugin to assess key modules. The two

most critical modules, which include the specified hub genes,
are chosen from among all the modules. We used KEGG
pathway analysis on the chosen modules and discovered that
the genes in the two modules were considerably significantly
enriched in the GnRH signaling route, leukocyte transendo-
thelial migration, relaxin signaling pathway, cancer path-
ways, and actin cytoskeleton regulation (Figure 5).

3.4. TF-Gene Interaction Network. We examined the connec-
tions between hub genes to discover significant changes occur-
ring at the transcriptional level and obtain insight into the most
critical regulatorymolecules among hub genes. NetworkAnalyst
network analysis program found 109 nodes and 118 edges of 7
hub genes. The generated data were then put into Cytoscape
software to visualize the interactions between TFs and hub
genes (Figure 6). The expression values and characteristics of
hub genes in individual cohorts are shown in Supplementary
Table 2. The results showed that VIM was regulated by 75-TF
genes, IL2RG was regulated by 17 TF-genes, and COL4A2
was regulated by 9-TF genes, which indicated that the above
three genes may be key genes in the TF-target network of PD
and aging.

3.5. TF-miRNA Coregulatory Network. A network analysis
framework was used to build TF-miRNA coregulatory net-
works. The TF-miRNA coregulatory network splits TF-
miRNA interactions and hub genes. This connection might be
in charge of controlling hub gene expression. The TF-miRNA
coregulation network was constructed with 204 nodes and
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238 edges. Hub genes were interacted with by 109 miRNAs and
85 TF-genes (Figure 7). The expression values and characteris-
tics of hub genes in individual cohorts are shown in Supplemen-
tary Table 3.

4. Discussion

With the global aging and the increase in the number of
remaining teeth in the oral cavity, the demand for periodontal

disease treatment and health care for the elderly population
will continue to grow. A great number of studies have linked
PD to age-related systemic disorders such as coronary heart
disease and rheumatoid arthritis, indicating that chronic peri-
odontal inflammation may increase with the aging of tissues
and organs. Therefore, exploring the impact of aging on PD
and its mechanism of action is critical [44, 45].

As an emerging interdisciplinary subject, bioinformatics
has been widely used in the field of life sciences. Recently,
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the use of bioinformatics tools to study the genetic relationship
between aging and inflammatory diseases, studies have found
some correlation in molecular pathogenesis and disease devel-
opment [46–48]. In this study, the four datasets identified 84
common DEGs, including 24 common upregulated genes
and 5 common downregulated genes. DEGs were subjected
to GO functional enrichment analysis and KEGG pathway
analysis at the same time. The protein interaction network
and the regulatory network between the proteins expressed
by the differential genes were visualized and studied, and 10

hub genes were screened out, including MMP2, PDGFRB,
CTGF, CD34, CXCL12, VIM, IL2RG, ACTA2, COL4A2,
and TAGLN.

By performing GO functional enrichment analysis on
DEGs, GO items were selected according to the P value. For
BP, it mainly focuses on extracellular structural organization,
extracellular matrix organization, cell adhesion bioadhesion,
cell-substrate adhesion, vascular development, and vascular
morphogenesis. In vitro, it enhanced the secretion of proin-
flammatory cytokines by macrophages by upregulating the

Table 2: Review the regulatory role of hub genes in PD and aging.

Genes PD Aging

MMP2

Compared with healthy individuals (controls),
metalloproteases (MMP-2, MMP-9) cascade in the initiation

and progression of inflammatory bone resorption and
periodontal soft tissue destruction in patients with

periodontitis. [27].

Skin aging with age or premature aging caused by light
promotes cellular inflammation, ROS production, and the

increase of hydrogen peroxide, and matrix metalloproteinase
(MMP2) expression is upregulated. [28].

PDGFRB

PDGF receptor- (PDGFR-) β on periodontal cells is a crucial
element for various functions, such as wound healing in
periodontal tissue, and their expression decreases when

subjected to fluid shear stress [29].

Oxidative stress-induced senescent vascular smooth muscle
cells were obviously desensitized to stimulation by platelet-
derived growth factor- (PDGF-) BB, which may have been
caused by suppression of promoter activity, transcription,

translation, and activation levels of PDGF receptor- (PDGFR-)
β [30].

CTGF

CTGF promotes the fusion of preosteoclasts by
downregulating Bcl6 and subsequently increasing the

expression of dendritic cell-specific transmembrane protein in
periodontitis [31].

An upregulation of CTGF expression has been demonstrated
in senescent cells [32].

CD34

The highest concentration of CD34+ cells was observed in the
group of patients with advanced periodontal disease [33].
Treatment of periodontitis has neutral effects on peripheral
endothelial function but significantly decreases circulating

CD34(+) cell count [34].

The absolute number of circulating CD34(+) cells
progressively and significantly decreased with advancing age

[35].

CXCL12

CXCL12 (SDF-1alpha) may be involved in the immune defense
pathway activated during periodontal disease. Upon the

development of diseased tissues, CXCL12 (SDF-1alpha) levels
increase and may recruit host defensive cells into sites of

inflammation [36].

CXCR4 pathway stimulated by CXCL12 regulated AKT
activation, CREB phosphorylation, and P53 level to affect the

process of aging and Alzheimer’s disease [37].

VIM
VIM expression is also regulated by TGF and proinflammatory

cytokines. VIM expression increased significantly as
periodontitis developed severe [38].

It was reported that VIM expression in was significantly
increased in aged skin fibroblasts [39].

ACTA2 None

Seven aging molecular phenotype-relevant key genes (ACTA2,
CALD1, LMOD1, MYH11, MYL9, MYLK, and TAGLN) were
identified, which were specifically upregulated in tumors and

in relation to dismal prognosis [40].

COL4A2

COL4A2 in the ECM promotes osteogenic differentiation of
PDLSCs through negative regulation of the Wnt/β-catenin

pathway, which can be used as a potential therapeutic strategy
to repair bone defects [41].

Aging suppresses the expression levels of Col4a1 and Col4a2
and affects basement membrane-related factors in the steady

state [42].

TAGLN None

Seven aging molecular phenotype-relevant key genes (ACTA2,
CALD1, LMOD1, MYH11, MYL9, MYLK, and TAGLN) were
identified, which were specifically upregulated in tumors and

in relation to dismal prognosis [40].

IL2RG None
The expression levels of IL7, IL2RG, and IL7R were

significantly lower in the 90-year-old adults, as compared with
the middle-aged offspring [43].
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expression of endothelial cell adhesion molecules [49]. In the
CC, vascular development and vascular calcification have long
been recognized as a degenerative age-related pathology caused
by passive deposition of extracellular matrix [50]. The most
significant MF of GO is extracellular matrix structural constit-
uent, protein-containing complex binding, vascular endothelial
growth factor binding, integrin binding, phosphatidylinositol
3-kinase binding, and actin filament binding. Oral fibroblast
aging has been discovered to affect ECM synthesis and, more
crucially, the structure of ECM fibers, which may hinder
wound healing in the elderly [51]. According to cellular com-
position, the top GO keywords are collagen-containing extra-
cellular matrix, extracellular matrix, and cell leading edge.
Cell sheets made from PDLSCs from elderly donors have lower
osteogenic potential than cell sheets made from PDLSCs from
young donors based on the synthesis of ECM proteins such as
fibronectin, integrin 1, and collagen type I [52].

The investigation of KEGG pathways for common DEGs
revealed that these DEGs were mostly engaged in the focal
adhesion signaling route, the PI3K-Akt signaling pathway,
and the ECM receptor interaction signaling system. Previous
research has linked the focal adhesion signaling pathway and
PI3K-Akt signaling to age-related diseases. It was observed that
the PI3K-Akt-mTOR signaling pathway is active during hippo-
campus aging. Adhesion sites are made up of adhesion proteins
such as integrins and extracellular proteins that attach cells to
the ECM [53]. The PI3K-Akt signaling pathway is a pathway
with extensive intracellular effects. PI3K mainly promotes cell
survival and resists apoptosis by activating Akt. After activation
of Akt signaling, it can inhibit a variety of proapoptotic factors
[54]. Studies have shown that antiaging drugs play a balance
between antiaging effects and oxidative stress by activating
the PI3K-Akt signaling pathway [55].

In this study, two important modules of common DEGs
were screened for KEGG signaling pathway analysis. The
results showed that the modules are mainly related to GnRH
signaling pathway, leukocyte transendothelial migration,
relaxin signaling pathway, and other pathways and have
high correlation with the occurrence of aging and the devel-
opment of inflammation, which deserve further study [56].

To find the most important regulatory molecules among
the 10 hub genes, we analyzed the correlation between the
hub genes and constructed a regulatory network between the
hub genes and the tf-genes and the miRNA. According to our
analyses, most hub genes exhibited strong correlations, and
VIM had direct or indirect connections with other genes in
the TF target regulatory network. VIM stands for vimentin,
which is a class III intermediate filament protein present in
nonepithelial cells, notably mesenchymal cells, and plays a cru-
cial role in intracellular structural stability. VIM, a biomarker of
epithelial-to-mesenchymal transition, has also been used as a
diagnostic, prognostic, and therapeutic marker for fibrotic dis-
eases [57, 58]. VIM is associated with abilities responsible for
signal transduction and kinase interactions, thereby exerting
control over gene regulatory networks. According to its role
in fibrosis, VIM expression is also regulated by TGF and pro-
inflammatory cytokines [59].

The miRNAs regulate the expression of many genes in
cells, so abnormal expression of miRNAs may have an impact

on the development of diseases. By examining the interaction
between hub genes, TFs and miRNAs, we discovered that sev-
eral miRNAs are implicated in PD (such as hsa-mir-17, hsa-
mir-21, hsa-mir-29a, hsa-mir-29b, hsa-mir-29c, hsa-mir-31,
hsa-mir-125a-5p, and hsa-mir-125b)[60–63]and aging (such
as hsa-mir-23a, hsa-mir-125b, hsa-mir-21, hsa-mir-137, and
hsa-mir-144) [64–66].

Several limitations in this study should be acknowledged.
First, this analysis is based on existing datasets to identify com-
mon DEGs. The datasets are relatively small in size, and the
obtained results may be biased, which requires subsequent
external experiments to verify in order to obtain reliable con-
clusions. Second, hub gene screening is based on the degree of
node identification, and the results are purely hypothetical.
Furthermore, functional studies are necessary to confirm the
hub genes in PD and aging. Therefore, in future studies, we
may provide a theoretical framework and basis based on exist-
ing research to explore the relationship between PD and aging
through gain or loss of function on biological models.

5. Conclusion

In the present work, a new mechanism was proposed which
explain that progression in pathogenesis of both diseases
might due to the common hub genes that disturbs the path-
ways which ultimately leads to disease condition. Moreover,
it was further found that the signaling systems such as adhe-
sion signaling pathway, PI3K-Akt signaling pathway, and
ECM receptor interaction may be mainly involved. Addi-
tionally, VIM may be a potential biomarker in the analysis
of linked hub gene regulatory networks, and hsa-mir-21
and hsa-mir-125b are predicted to be associated in PD and
aging. These findings may lay the theoretical foundation
for future studies.
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