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Competitive endogenous RNA regulation suggests an intricate network of all transcriptional RNAs that have the function of
repressing miRNA function and regulating mRNA expression. Today, the specific ceRNA regulatory mechanisms of lncRNA–
miRNA–mRNA in patients who have diabetes mellitus (DM) and myocardial infarction (MI) are still unknown. Two data sets,
GSE34198 and GSE112690, were rooted in the Gene Expression Omnibus database to search for changes of lncRNA, miRNA,
and mRNA in MI patients with diabetes. Weighted gene correlation network analysis (WGCNA) was used to identify the
modules related to the development of diabetes in patients with MI. Target genes of miRNAs were predicted using miRWalk,
TargetScan, mirDB, RNA22, and miRanda. Then, functional and enrichment analyses were performed to build the lncRNA–
miRNA–mRNA interaction network. We built ceRNA regulatory networks with three lncRNAs, two miRNAs, and nine
mRNAs. Differentially expressed genes enriched in biological process, including neutrophil activation, refer to immune
response and positive system of defense feedback. Besides, there is significant enrichment in molecular function of calcium toll
−like receptor binding, icosanoid binding, RAGE receptor binding, and arachidonic acid binding. Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis enriched differentially expressed genes (DEGs) in pathways that were well known in MI,
indicating inflammation and immune response. Pathways associated with diabetes were also significantly enriched. We
confirmed significantly altered lncRNA, miRNA, and mRNA in MI patients with diabetes, which might serve as biomarkers for
the progress and development of diabetic cardiovascular diseases. We constructed a ceRNA regulatory network of lncRNA–
miRNA–mRNA, which will enable us to understand the novel molecular mechanisms included in the initiation, progression,
and interaction between DM and MI, laying the foundation for clinical diagnosis and treatment.

1. Introduction

Morbidity and mortality from cardiovascular disease (CVD)
are extremely high [1, 2]. Moreover, CVD is also the leading
cause of death in urban and rural areas, overshadowing can-
cer and other diseases in China. The incidence of CVD and
mortality among Chinese patients also remains high, and
more importantly, the upward trend is projected to continue
into the next decade [3]. The increasing burden of CVD has
become a significant public health problem. Myocardial
infarction (MI) is particularly severe, resulting in progressive
heart failure and cardiovascular mortality, and diabetes mel-

litus (DM) is a major risk factor for CVD [4, 5]. Patients
with diabetes are twice as likely to have an MI as healthy
people. Diabetes and impaired glucose tolerance are quite
common among people with MI (seen in almost two-thirds
of patients) and are associated with a twofold increase in
mortality rate compared to those with normoglycemia [6].
In addition, there have been numerous studies proving that
DM is a strong prognostic biomarker in patients with estab-
lished coronary artery disease [7–9]. Follow-up studies have
shown that 39.5% of patients with type 2 DM (T2DM) died
within 2 years of their first MI, compared with 28.5% of non-
diabetic patients with MI only [10]. However, mechanisms
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that can explain the complex association between diabetes
and MI remain mysterious. Therefore, to improve the poor
outcome of CVDs, effort should be made toward discovering
a potential pathogenesis and exploiting novel medication
targets and therapeutic strategies.

Noncoding RNAs, including miRNA and lncRNA, are
essential for the regulation of RNA expression [11]. miRNAs
have the ability to negatively regulate the expression of target
genes [12], and lncRNAs have no or little function in encod-
ing proteins that affect many biological processes [13].
lncRNAs are important in regulating basic biological pro-
cesses and may cause diseases if aberrant expression occurs
[14, 15]. However, little is known about whether or how
lncRNA is related to DM and MI.

lncRNAs can compete with target genes for miRNA
response elements and weaken the repressive effect of miR-
NAs on target genes [16, 17]. Thus, they can indirectly reg-
ulate the expression of target genes and influence the onset
and progression of disease [18]. Nevertheless, the association
between ceRNAs and diabetic MI remains unclear. In this
manuscript, we summarize the regulatory roles of lncRNAs,
miRNAs, and mRNAs and discuss a regulatory network
built of ceRNA.

2. Materials and Methods

2.1. Data Acquisition. miRNAs and lncRNAs in MI patients
with or without DM were collected from two microarray
data sets: GSE34198 (Czech Republic: 15 patients with DM
and 34 controls) and GSE112690 (USA: 85 patients with
DM and 244 controls), which are based on the platform of
GPL6102 Illumina human-6 v2.0 expression beadchip and
GPL24804 Biomark high-throughput human miRNA RT-
qPCR assay (MGH, Boston, MA, USA). The GEO database
is an international public repository.

2.2. Data Processing and Differential Expression Analysis.
After quantile normalization to ensure differentially
expressed genes (DEGs), probe identifiers of GSE34198 were
transformed into gene symbols, and the single expression
value of the gene was calculated. To screen related differen-
tially expressed lncRNAs (DELncs), the probe identifiers of
GSE34198 were blasted against the GENCODE (https://
www.gencodegenes.org/human/) long noncoding RNA
database to be reannotated [19]. GEO series matrix files of
GSE112690 were downloaded and the quantile was normal-
ized to obtain the differentially expressed miRNAs
(DEMics). Subsequently, the differential expression analysis
was executed with the threshold of P value < 0:05 using Stu-
dent’s t-test in R software.

2.3. Gene Ontology. Gene ontology is a channel for perform-
ing gene annotation, which classifies genes into three catego-
ries [20, 21]. A gene database was used to assign genomes to
specific pathway maps of molecular interactions, reactions,
and relationship networks [22]. The gene ontology (GO)
function annotation and enrichment analysis of DEGs were
performed using the R package clusterProfiler [23], and a
P value < 0:05 was considered significant.

2.4. Weighted Gene Correlation Network Analysis. We pro-
ceeded to conduct gene correlation analysis of DEGs and
DELncs to verify the key genes and lncRNAs associated with
diabetes in MI patients. The purpose of the WGCNA is to
find coexpressed gene modules and explore any relevance
between gene networks and related phenotypes. First, hierar-
chical cluster analysis is performed with the hclust function.
The modules are constructed with soft thresholds filtered by
the pickSoftThreshold function. Candidate powers (1–30)
are used to test the average degree of connectivity of differ-
ent patterns and their independence. If the degree of inde-
pendence is >0.8, a suitable power value is selected. For the
present study, coexpression networks were constructed
[24] with the smallest module size set at 30, and each pattern
was labeled with a different color. The relationship of func-
tional modules and concerned phenotype (in our case, dia-
betes) was also evaluated.

The hub genes were also described in this study as genes
that were most strongly related to disease. A module that
was highly related to diabetes was explored, and a regulatory
network of DEGs and DELncs in the module was con-
structed and visualized by Cytoscape software [25], which
was used because it can visualize complex networks.

2.5. miRNA Target Prediction. The construction of a ceRNA
background network requires a large number of lncRNAs,
miRNAs, and mRNAs, along with their interactions. Target
genes of differentially expressed miRNAs found in
GSE112690 were predicted with the help of the miRWalk
[26], TargetScan [27], miRDB [28], RNA22 [29], and
miRanda databases [30]. The predicted target genes were
intersected with DEGs found in GSE34198 to be further
explored.

2.6. lncRNA–miRNA–mRNA ceRNA Network. The relation-
ship between DELncs and DEMics was calculated with the
TargetScan 6.1 algorithm [31]. Then, according to ceRNA
theory, gene pairs with opposite expressions were screened
out based on the expression of differentially expressed miR-
NAs and differentially expressed lncRNAs for construction
of the background network.

3. Results

3.1. Identification of DEGs, DELncs, and DEMics. To screen
DEGs, lncRNAs, and miRNAs, the series matrix files of
GSE34198 and GSE112690 were downloaded from the
GEO database. Subsequently, Student’s t-test was executed
to analyze the DEGs and DELncs between controls and
patients with DM in the GSE34198 data set. Meanwhile,
the differential expression analysis of DEMics between con-
trols and patients with DM was implemented with the
threshold of P value < 0:05 by Student’s t-test in R software.
As shown in Figures 1, 499 DEGs and 23 DELncs were iden-
tified from GSE34198 microarray data using cutoff criteria of
P < 0:05 (detailed information about the DEGs and DELncs
can be found in Table S1), while four DEMics were found in
GSE112690, using the same threshold (Table S2).
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Figure 1: Continued.
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3.2. KEGG Pathway Enrichment Analysis. DEGs were sub-
jected to GO functional annotation and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analy-
sis, with a P value < 0:05 deemed significant. The results
showed that DEGs mainly enriched biological processes
(Figure 2(a)) in specific granules, secretory granule lumen,
cytoplasmic vesicle lumen, vesicle lumen, and secretory
granule membrane (Figure 2(a)). In addition, these DEGs
showed enrichment in the molecular functions of calcium
toll−like receptor binding, icosanoid binding, RAGE recep-
tor binding, and arachidonic acid binding (Figure 2(a),
Table S3).

KEGG analysis enriched DEGs in pathways of leishman-
iasis, Epstein–Barr virus infection, and tuberculosis, among
others (Figure 2(b)). Several pathways are well known in
MI that indicate inflammation and immune response. Addi-
tionally, pathways related to diabetes were also enriched,

including the insulin resistance pathway and insulin signal-
ing pathway (Table S4).

3.3. Weighted Gene Correlation Network Analysis
(WGCNA). To determine the key elements most closely related
toMI patients who also have diabetes,WGCNAwas performed
using the expression profile of DEGs and DELncs that were
identified earlier. All three modules were determined (Figure 3
(a); detailed mRNAs and lncRNAs in each module can be
found in Table S5). The blue module was negatively
correlated with DM (correlation coefficient = −0:32, P = 0:03;
Figure 3(b)), and the turquoise module was also negatively
correlated with DM (correlation coefficient = −0:32, P = 0:02;
Figure 3(b)). At the same time, the gray module was
negatively correlated with DM (correlation coefficient = −0:34,
P = 0:02; Figure 3(b)). All three modules were positively
correlated, and each of them was positively correlated with
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Figure 1: Overview of differentially expressed genes and lncRNAs. (a) Volcano plot of differentially expressed genes and lncRNAs between
patients with DM and controls. Red dots represent significantly upregulated genes and lncRNAs, while blue dots represent those that are
significantly downregulated. (b) Heat map of differentially expressed genes and lncRNAs between patients with DM and controls. Red
blocks represent significantly upregulated genes and lncRNAs, while blue blocks represent those that are significantly downregulated.
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Figure 2: Gene ontology enrichment and KEGG pathway annotation of DEGs. (a) Bar plot showing the top 10 enriched gene ontology
terms in each category. The x-axis represents the negative logarithmic of different P values, and y-axis represents GO terms. (b) x-axis
representing an enriched factor, and the y-axis represents KEGG pathway terms. Sizes of the circles indicate gene counts, and the color
of the circles represents different adjusted P values.
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each other (Figure 3(c)). Hub nodes have a key role in
maintaining the overall connectivity of the network.
Therefore, the top 5% were selected as hubs. We chose
differentially expressed genes and lncRNAs in MEturquoise to
construct the correlation network (Figure 4), with 10 DEGs
and 5 DELncs identified as hub genes and lncRNAs
(UBE2D3, MNDA, AMN1, TMBIM4, RCSD1, CLK4,
PPP1R12A, USP15, NT5C2, PCMTD1, DNAJC3-DT,
LINC00921, AC108134.3, AL445524.1, and AC114980.1,
Table S6).

3.4. lncRNA–miRNA–mRNA ceRNA Network. To survey the
regulation of ceRNAs and identify DM-related lncRNAs in
MI patients, we built a network. As shown in Figure 5, three
lncRNAs, two miRNAs, and nine mRNAs were included in
the network, and the red, green, and blue nodes represent
lncRNAs, miRNAs, and mRNAs, respectively. The edges
represent the interactions between lncRNAs, miRNAs, and
mRNAs. The lncRNA acts as a natural miRNA sponge to
suppress the function of miRNAs, and the expression of
lncRNA–miRNA and miRNA–mRNA were negatively cor-
related. Notably, the key DEGs and DELncs related to MI

patients with DM that we had identified in WGCNA were
also found in the ceRNA regulatory network, suggesting they
also correlate with the DEMics we screened from
GSE112690. In addition, based on ceRNA mechanisms, we
identified LINC00921, AL445524.1, and AC114980.1 as can-
didate lncRNA biomarkers for diabetic MI.

4. Discussion

Salmena et al. proposed how mRNAs and lncRNAs commu-
nicate with each other [16]. lncRNAs regulate mRNA
expression posttranscriptionally by competing for miRNAs
[32]. Dysregulated lncRNAs and mRNAs (sequences com-
plementary to lncRNAs) affect the expression levels of target
mRNAs through interference of miRNAs, together with tar-
get mRNAs harbored by lncRNAs called miRNA response
elements (MREs) [33, 34]. This endogenous RNA exchange
forms a large-scale regulatory network across the tran-
scriptome that plays a crucial role in the physiological and
pathological processes of disease [35]. Next, we integrated
genome-wide lncRNA, mRNA, and miRNA expression pro-
filing data and experimentally validated miRNA–target
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Figure 3: WGCNA used for the identification of key modules associated with MI patients with diabetes. (a) Dendrogram obtained by
clustering the dissimilarities based on consensus topological overlap with the corresponding module colors indicated by the color row.
(b) The relationships between different modules, where red indicates a positive correlation. (c) Heat map of the correlation between
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interactions to construct a regulatory network in diabetic MI
patients. Three candidate lncRNA biomarkers were identi-
fied for the comorbidity of MI and DM.

Diabetes affects the heart, including metabolic distur-
bances, abnormalities in subcellular components, microvas-
cular damage, and autonomic dysfunction [36, 37]. The
myocardium shows local inflammation, coronary endothe-
lial dysfunction, necrosis, apoptosis, and autophagy [38,
39]. The hub miRNA (miR-4306) is downregulated in coro-
nary artery disease (CAD), and miR-4306 is an independent
poor prognostic factor in CAD [40].

miR-4306 noticeably inhibited the human monocyte-
derived macrophages (HMDMs) in vitro and reduced the
number of macrophage cells in cardiac tissue in MI mice.
Another hub miRNA (miR-423-5p) was found to have sig-
nificantly higher expression in the vitreous of the eyes with
proliferative diabetic retinopathy (PDR) and was proved to
be related to angiogenesis and fibrosis [41].

Regarding the hub genes we found in the ceRNA net-
work, studies had proved that the ubiquitin-conjugating
enzyme UBE2D3 was involved in RNA processing and splic-
ing and was associated with increased fasting plasma glucose
[42]. PPP1R3G is downregulated in the liver by fasting and
increased by feeding, and it plays an important role in the
control of postprandial glucose homeostasis through its reg-
ulation of hepatic gluconeogenesis during the fasting–feed-
ing transition [43]. The 5′-nucleotidase cytosolic II
(NT5C2) variants were reported to be nominally associated
with coronary heart disease (CHD) susceptibility in the sub-
groups of males and with hypertension and diabetes [44].
Ubiquitin-specific protease 15 (USP15) was found to be a
potential target of miR-26a and mediated the proautophagic
and cardioprotective effects of miR-26a against ischemic
injury [45]. Protein phosphatase 1 regulatory subunit 12A
(PPP1R12A) was reported to be a member of the insulin-
stimulated IRS1 signaling complex, and the interaction of
PPP1R12A with IRS1 was dependent on Akt and mTOR/
raptor activation [46]. To summarize, all the genes and miR-
NAs we identified in the ceRNA network were associated
with either DM complication or MI side effects, indicating
the analysis we conducted was solid and effective. However,
no research has been found to elucidate that the lncRNA
biomarkers we found are strongly related to the comorbidity
of DM and MI. In the days to come, molecular biology
methods, including qPCR, luciferase reporter systems, and
co-immunoprecipitation assays could be helpful to substan-
tiate our findings, thus unraveling the molecular mecha-
nisms of the mutual effects that DM and MI bring to bear
during the complex and development of certain diseases.

5. Conclusion

In conclusion, our study provides more comprehensive
material for the ceRNA link between mRNAs and lncRNAs
in diabetic MI by constructing competing endogenous RNA
networks, and three candidate lncRNA biomarkers for the
comorbidity of MI and DM were identified. The findings
will improve comprehension of the molecular mechanisms
underlying the pathology of MI and DM from a ceRNA per-

spective and provide potential therapeutic targets for the
treatment of diabetic MI in clinical practice.
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