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Background. Pyroptosis is a form of programmed cell death, playing a significant role in cancer. Glioblastoma multiforme (GBM)
is the most common malignant brain tumor. The poor prognosis in GBM due to temozolomide (TMZ) resistance has been widely
discussed. Such being the case, the correlation between TMZ resistance and pyroptosis is seldom investigated. On this basis, this
paper aims to explore the potential prognostic value of genes related to TMZ resistance and pyroptosis as well as their relationship
to the immune microenvironment in GBM. Methods. A total of 103 patients from TCGA were assigned to a training cohort; 190
from CGGA were assigned to a validation cohort. The prognostic risk model reflecting pyroptosis and TMZ resistance was built
from the training cohort using multivariate Cox regression and performed validation. RT-qPCR was used to examine the
expression of 4 genes from the risk signature. FOXP3 was selected for overexpression and verified using the western blot. The
TMZ IC50 of FOXP3-overexpressed cell lines was determined by CCK8. Results. A four genes-based risk signature was
established and validated, separating GBM patients into high- and low-risk groups. Compared with the low-risk group, the
high-risk group presented worse clinical survival outcomes. Its differential expressed genes were enriched in immune-related
pathways and closely related to the immune microenvironment. Moreover, RT-qPCR results suggested that FOXP3, IRF3, and
CD274 were significantly upregulated in TMZ-resistant strains, while TP63 was downregulated. FOXP3-overexpressed GBM
cell lines had higher TMZ IC50, implying an increased resistance of TMZ. Conclusion. A novel gene signature relevant to
pyroptosis and TMZ resistance was constructed and could be used for the prognosis of GBM. The four genes from the risk
model might play a potential role in antitumor immunity and serve as therapeutic targets for GBM.

1. Introduction

Glioblastoma (GBM), of the highest glioma grade, is one of
the most common primary brain tumors (World Health
Organization grade IV) [1], known for its highly malignancy
and aggression and accounting for more than half of malig-
nant glioma (MG) cases [2]. In addition, the prognosis for
GBM is abysmal, mainly due to resistance to temozolomide

(TMZ), resulting in the survival of less than a year of most
patients, especially the elderly [3–5].

As a first-line chemotherapy agent for GBM patients
after surgery, TMZ can increase the median overall survival
of GBM patients from 12.1 to 14.6 months and improve the
2-year survival rate from 10.4% to 26.5% [6]. However, the
prognosis of GBM remains exceedingly grim due to thera-
peutic resistance to TMZ [7]. Based on this, the identifica-
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tion of potential therapeutics to conquer TMZ resistance
remains challenging in GBM [8, 9]. Encouragingly, evidence
shows that pyroptosis is correlated with tumorigenesis and
development and the resistance of chemotherapy drugs
[10–12].

Pyroptosis is a form of programmed cell death distin-
guished from apoptosis by its proinflammatory nature [13,
14]. Pyroptosis has been proved to play a role in antitumor
drug resistance in recent years. For instance, the treatment
option for BRAF V600E/K-mutant melanoma is a combina-
tion of BRAF inhibitors and MEK inhibitors (BRAFi +
MEKi). BRAFi + MEKi-resistant tumor lacks markers of
pyroptosis and shows reduced T-cell infiltration within the
tumor [15]. Another research reported that lobaplatin
increases pyroptosis of cancer cells by inducing the degrada-
tion of cIAP1/2 during the treatment of nasopharyngeal car-
cinoma. The application of cIAP1/2 antagonists and
lobaplatin may reduce chemotherapy resistance [16]. Thus,
it is of great significance to explore the potential connection
between pyroptosis and TMZ resistance in GBM.

Pyroptosis mediates the release of intracellular proin-
flammatory contents, which can produce and maintain a
long-term chronic inflammatory tumor microenvironment
(TME) [17, 18]. This internal environment also has a power-
ful influence on tumor progression and the antitumor
immunity of the human body. Additionally, the inflamma-
tory state of TME can influence the response of immune
checkpoint therapy [18–20]. With the widespread use in
clinical treatment and the positive feedback on outcomes,
immune checkpoint blockade (ICB) has drawn increasing
attention in GBM therapy [21–23]. Considering the cur-
rently limited treatment options and poor prognosis for
GBM patients, further understanding of TME and ICB ther-
apy becomes necessary [20].

This study identified differentially expressed genes
(DEGs) in GBM relevant to pyroptosis and TMZ resistance
using public databases like TCGA and CGGA. Then, a
model for the high- and low-risk groups was constructed
to predict GBM prognosis and investigate the link between
the expression of relevant genes, including FOXP3, and
immune infiltration. These will help to further deepen our
knowledge of GBM and provide implications for individual
immunotherapy of GBM.

2. Materials and Methods

2.1. Datasets Sources. Genes related to TMZ resistance or
pyroptosis were derived from GeneCards (https://www
.genecards.org/). DEGs with overall survival (OS) of GBM
were derived from TCGA (https://portal.gdc.cancer.gov).
TMZ-resistant samples from TCGA and CGGA were
selected as the training cohort and the validation cohort,
respectively. The normal samples were from GTEx (http://
www.cgga.org.cn/). A statistical analysis of 293 clinical sam-
ples from the training and validation cohorts formed the fol-
lowing data: The number of patients aged 60 and above was
103, 35.15% of the total. Furthermore, the number of
patients aged below 60 was 190, 64.85% of the total. The
average ± standard deviation of the age for all patients was

51:96 ± 14:41. There were 111 female patients (37.88%)
and 182 male patients (62.12%). Data analysis steps are
shown in Figure 1.

2.2. Identification of Prognostic Model Genes. A total of 792
TMZ resistance-related genes and 184 pyroptosis-related
genes were obtained from GeneCards. Among the 17621
DEGs in GBM patients with overall survival from TCGA,
taking hazard rate (HR) higher than 1, 174 genes was
obtained. Using the “Venn Diagram” R package, we identi-
fied 25 genes connected with TMZ resistance and pyroptosis
in GBM. The R package “heat map” was utilized to compare
the expression of the above genes in TMZ-resistant GBM
samples and normal samples. The detailed data is provided
in Supplementary Data 3. Then, multivariate Cox regression
analysis was performed on 25 candidate genes relevant to
pyroptosis and TMZ resistance. As a result, four optimal
genes (p < 0:05) were screened for the prognostic model.
The Kaplan-Meier (KM) curves were created separately to
facilitate survival analysis with R package “survival.”

2.3. Construction and Validation of Gene Signature Model. A
total of 103 TMZ-treated GBM samples from TCGA served
as a training cohort, with each given an independent risk
score. Based on multivariate Cox regression analysis and
the selected gene expression levels, the following formula
allowed us to calculate a risk score for each patient: risk
score = exprgene1 × βgene1 + exprgene2 × βgene2 +⋯+exprgeneN
× βgeneN. The median risk score was set as the split point,
and the training cohort was then divided into high- and
low-risk groups. The risk factor graph was generated by
the R package “frisk.” Subsequently, the principal compo-
nent analysis (PCA) was performed in the R package “stats”
and visualized with “ggbiplot.” The OS between different
groups was compared by KM analysis. Then, time-
dependent ROC curve analysis was drawn by the R package
“circlize” to verify the prognostic power of the risk signature.
Finally, 190 TMZ-treated GBM samples from CGGA were
taken as the validation cohort and validated using the same
approach.

2.4. Assessment of the Independence of Risk Models. Multi-
variate Cox regression analysis determined whether risk
score was an independent predictor of GBM prognosis. For-
est plots for subgroup analysis were employed to identify the
independence of the risk model. KM curves were produced
using the R package “survival” to assess OS grouped by age
and sex. The nomogram was plotted with the R package
“survival” and “rms” to visualize the predictive model.
Moreover, the calibrate curve was conducted with the R
package “calibrate” to check the fit of the nomogram.

2.5. Analysis of the Infiltrating Immune Cells and Functional
Enrichment. Based on the data acquired from TCGA, we
used the ssGSEA algorithm to analyze the correlation
between the expression levels of the 4 DEGs relevant to
pyroptosis and TMZ resistance; we also performed immune
cell-infiltrating analysis. Then, a volcano map was made
using the “ggplot2” R package to identify DEGs in high-
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and low-risk groups and was applied for subsequent analy-
sis. A functional analysis was carried out using the 388
protein-coding genes upregulated in the high-risk group
(log FC>1). The Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment analysis
were performed on differentially expressed protein-
encoding upregulated genes in the high-risk group using
the “clusterProfiler” R package. Moreover, the R package
“circlize” was used to generate a chord diagram for KEGG.
The data for GO enrichment analysis and KEGG pathway
analysis are provided in Supplementary Data 4.

2.6. Immune Analysis. The Estimation of STromal and
Immune cells in MAlignant Tumor tissues using Expression
data (ESTIMATE) was used to calculate patients’ ESTI-

MATE scores, immune scores, stromal scores, and tumor
purity. MCPcounter was conducted to evaluate the abun-
dance of 4 types of cells, including natural killer cells, neu-
trophils, myeloid dendritic cells, and fibroblasts. The
CIBERSORT algorithm was employed to calculate the pro-
portion of 22 kinds of tumor-infiltrating immune cells. Sub-
sequently, expression levels of immune checkpoint
molecules in the high- and low-risk groups were visualized
as boxplots utilized by the “ggpubr” R package.

2.7. Cell Lines, Cell Culture, and Plasmids. Glioma cell lines
LN229 (ATCC: CRL-2611™) and U87MG (ATCC: HTB-
14™) were derived from the American Type Culture Collec-
tion (ATCC). All cell lines were cultured in Dulbecco’s Mod-
ified Eagle’s Medium (DMEM, Biological Industries, Israel),

TMZ resistance-related genes
GeneCard n = 792

Pyroptosis-related genes
GeneCard n = 184

DEGs with (OS) of GBM
TCGA n = 174 (HR > 1)

Overlap Multivariate cox

Multivariate cox

25 prognostic DEGs related to
pyroptosis and TMZ resistence

Training cohort
TCGA n = 103

Training cohort
CGGA n = 190

A risk signature based on 4 genes related
to pyroptosis and TMZ resistence

Survival analysis

Function analysis

Immune analysis

Experimental verification

Figure 1: Workflow diagram.

Table 1: Primers for qPCR.

Primers Forward Reverse

FOXP3 5′-GGCACAATGTCTCCTCCAGAGA-3′ 5′-CAGATGAAGCCTTGGTCAGTGC-3′
IRF3 5′-TCTGCCCTCAACCGCAAAGAAG-3′ 5′-TACTGCCTCCACCATTGGTGTC-3′
CD274 5′-TGCCGACTACAAGCGAATTACTG-3′ 5′-CTGCTTGTCCAGATGACTTCGG-3′
TP63 5′-CAGGAAGACAGAGTGTGCTGGT-3′ 5′-AATTGGACGGCGGTTCATCCCT-3′
β-actin 5′-CACCATTGGCAATGAGCGGTTC-3′ 5′-AGGTCTTTGCGGATGTCCACGT -3′
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supplemented with 10% fetal bovine serum (FBS, Biological
Industries, Israel), and maintained at 37°C with 5% CO2. All
cell lines were tested negative for mycoplasma contamina-
tion and were passaged less than 10 times after the initial
recovery of the frozen stocks. All cell lines were validated
by short tandem repeat profiling before use.

We used the TMZ dose-escalation method to acquire
drug-resistant cell lines. The parental cell lines, i.e., LN229
and U87MG, were initially exposed to 10μM TMZ for one
week [24]. Depending on their growth status, the cells then
underwent repeated exposure to progressively increasing
amounts of TMZ (5-20μM) [25] until 5-fold 50% inhibitory
concentration (IC50) was reached [26]. The established
TMZ-resistant cell lines were named LN229-R and
U87MG-R. The above process took six months [27, 28].

FOXP3 lentiviral construct was generated by inserting
the FOXP3 cDNA into the pLVX-EF1alpha-IRES-Puro vec-
tor (catalog no. 631988; Clontech, Mountain View, CA)
using restriction enzymes EcoRI and BamHI (Takara). The
short-hairpin RNA (shRNA) vector was plvx-shRNA1, and
the targeted sequences of shRNA for FOXP3 were as follows:
contol (CACTTACGCTGAGTACTTCGA), shFOXP3#1

(AGCTGGAGTTCCGCAAGAAAC), and shFOXP3#2
(TCCTACCCACTGCTGGCAAAT).

2.8. Quantitative Real-Time PCR (RT-qPCR). A total of 1ml
Trizol reagent (R401-01, Vazyme, Nanjing, China) was
added to the target cells for lysis to obtain RNA. The
HiScript® II Q RT SuperMix for qPCR (+gDNA wiper)
(R223-01, Vazyme, Nanjing, China) was used to synthesize
the first-strand cDNA. Quantitative PCR was performed
using the real-time PCR System (CFX Connect, Bio-Rad,
USA) with MonAmp™ ChemoHS qPCR Mix (MQ00401S,
Monad, Shanghai, China). The primers for this experiment
are derived from Sangon (Shanghai, China), and primer
sequences are presented in Table 1. The presented results
were subjected to at least 3 experiments.

2.9. Western Blot. The proteins of the target cells were
extracted using the RIPA lysis buffer (Beyotime, Guangzhou,
China), of which 40μg was taken for western blot analysis.
Rabbit monoclonal antibody antihuman FOXP3 (#12632,
CST), mouse monoclonal antibody antihuman β-actin
(#AF7018, Affinity), goat antirabbit antibody (#S0001,
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Figure 2: Identification of DEGs related to prognostic pyroptosis and TMZ resistance in glioblastoma. (a) Venn diagram to identify the
TMZ resistance 79 (GeneCards), pyroptosis 184 (GeneCards), and DEGs 17621. (b) Twenty-five overlapping genes showed high
expression in TMZ-treated GBM samples compared to normal samples. (c) Forest plots presented the multivariate Cox regression
analysis results between 25 overlapping genes and OS. (d) KM curves analyzed the prognosis of samples expressing 4 genes related to
pyroptosis and TMZ resistance.
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Figure 3: Training cohorts to develop predictive DEG-based risk models. (a) The distribution and split point of the risk scores in the
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Affinity), and goat antimouse antibody (#A21010, Abbkine)
were purchased.

2.10. Cell Viability Assay. Cells to be tested were seeded in
96-well plates at a density of 2000 cells/well. The FOXP3
overexpression cell lines were incubated for 24 hours, and
the cells were treated with TMZ with a concentration gradi-
ent of 1μM, 5μM, 25μM, 75μM, 100μM, 200μM,
1000μM, and 2000μM and cultured for 48 hours. Cell
Counting Kit-8 (CCK-8, A311-01, Vazyme, Nanjing, China)
was added to the cells (10μl/well), which were incubated for
2 hours. The absorbance at 450 nm was measured using a
microplate reader (Synergy2, Bio-Tek, USA). The TMZ-
resistant strains knocked down by FOXP3 were incubated
for 2 hours at 0 h, 24 h, 48 h, and 72 h with CCK-8 (10μl/
well). Then, proliferation was detected using a microplate
reader. Finally, we obtained the IC50 value of FOXP3 over-
expression cell lines, and the proliferation curve of FOXP3

knockdown TMZ-resistant strains was plotted using the
GraphPad Prism (version 9.1.0.221).

2.11. Statistical Analysis. Data were presented as mean ±
standard deviation. The Student t-test was used to analyze
differences between groups. Multivariate Cox regression
was used to determine independent prognostic factors for
OS. Additionally, the log-rank test was applied to compare
the survival of the groups. Data analyses and visualization
were mainly completed using R (version 4.1.2), with p <
0:05 considered statistically significant.

3. Results

3.1. Identification of DEGs Relevant to Pyroptosis and TMZ
Resistance. Genes related to pyroptosis (Supplementary Data
1) or TMZ resistance (Supplementary Data 2) were obtained
from GeneCards. GBM DEGs for OS were obtained from
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Figure 5: Risk model as an independent indicator of GBM prognosis. (a) Multivariate Cox regression results showed that risk score was an
independent factor in GBM prognosis for patients in the training and validation cohorts. (b) KM curves with age as a subgroup were not
statistically significant. (c) KM curves with gender as a subgroup were not statistically significant. (d) Nomogram based on the genes
related to pyroptosis and TMZ resistance quantitatively predicted the survival probability of GBM patients. (e) Calibration curves were
plotted separately using data from TCGA and CGGA databases to verify the accuracy of the nomogram.
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Figure 6: Continued.
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analysis of TCGA (HR>1). Here, we found 25 genes
(FOXP3, BIRC3, CHI3L1, CXCL8, ADORA1, STAT3, IRF3,
BNIP3, CD274, NFE2L2, VIM, CASP8, JUN, PECAM1,

NFKB1, TP63, BECN1, SDHB, ADAMTS9AS2, BIRC2, XIST,
BSG, TP53, AKT1, andMDM2) in all three sets (Figure 2(a)).
We downloaded 766 normal tissue samples from the GTEx
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Figure 6: Functional enrichment analysis. (a) Correlation of each of the 4 genes related to pyroptosis and TMZ resistance with immune
infiltrating cells. (b) Volcano plot depicting DEGs in the high- and low-risk groups in the training cohort. (c) GO analysis suggested a
considerable enrichment of DEGs in immune-related biological processes (BP). (d) KEGG analysis indicated that DEGs were enriched in
immune-related pathways. (e) Chord diagram of KEGG. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗ p < 0:001; ns p > 0:05.
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Figure 7: Immune analysis for high- and low-risk groups based on training cohort. (a) Estimation of STromal and Immune cells in
MAlignant Tumor tissues (ESTIMATE) algorithm. (b) The violin plot revealed the abundance of the 4 types of immune cells. (c)–(d)
Heat map of the situation and correlation of tumor-infiltrating immune cells. (e) The expression levels of immune checkpoints in high-
and low-risk groups. ∗p < 0:05; ∗∗p < 0:01; ∗∗∗ p < 0:001; ns p > 0:05.
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database and 103 TMZ-treated GBM samples from the
TCGA database. The comparison in a heat map reveals that
the 25 candidate genes in the normal group were expressed
at a lower level than those in the TMZ-treated tumor sam-
ples (Figure 2(b)). To construct a high-quality prognostic
risk signature, we used multivariate Cox regression analysis
to identify 4 DEGs significantly related to pyroptosis and
TMZ resistance (FOXP3, IRF3, CD274, and TP63)
(Figure 2(c), p < 0:05). The KM curves of FOXP3, IRF3 low
expression group, and TP63 high expression group indicated
a superior prognosis (p < 0:05), while that of CD274 was not
statistically significant (Figure 2(d)).

3.2. Development of a Prognostic Risk Signature Based on
DEGs. Based on the above 4 genes, the relevant samples
from the TCGA database were divided into high-risk and
low-risk groups according to median risk scores
(Figure 3(a)). We found that patients in the high-risk group
had a higher mortality rate than those in the low-risk group
(Figure 3(b)). Moreover, the PCA plot showed significant
differences of both the two groups (Figure 3(c)), proving
the validity of the grouping. A heat map was used to visual-

ize the gene expression profile from the risk model. It could
be seen that patients in the high-risk group tended to express
risk genes with high-risk scores, including FOXP3, IRF3, and
CD274. In contrast, patients in the low-risk group expressed
protective genes with low-risk scores, including TP63
(Figure 3(d)). KM curves suggested that patients in the
high-risk group had a lower survival rate (Figure 3(e), p <
0:05). Regarding the estimation of risk prediction models
using the time-dependent ROC curves, the areas under the
curve of ROC (AUC) reached 0.726 at one year, 0.682 at
two years, and 0.702 at 3 years (Figure 3(f)). The above
results indicated that the gene signature model associated
with pyroptosis and TMZ resistance could realize an accu-
rate prognosis of GBM.

The grouping of the validation cohort was similar to that
of the training cohort (Figures 4(a)–4(c)). The heat map dis-
played that expression of FOXP3 and IRF3 was higher in the
high-risk group, while the expression of CD274 and TP63
showed no significant difference in the high- and low-risk
groups (Figure 4(d)). The KM survival curve showed that
similar to the training cohort, the low-risk group presented
a significantly higher survival probability than the high-risk
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Figure 8: Experimental verification reveals FOXP3 involved in TMZ resistance (a). RT-qPCR analysis displayed the expression level of 4
genes in GBM-resistant strains and normal groups. (b) FOXP3 stable overexpression by LN229 and U87MG cells was verified by western
blot. (c). The cell viability assay revealed that FOXP3-overexpressed GBM cell lines had a higher IC50 than the control group. ∗p < 0:05;
∗∗p < 0:01;∗∗∗ p < 0:001; ns p > 0:05.
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group (Figure 3(e), p < 0:05). The AUC was 0.616, 0.683,
and 0.670 at 1, 2, and 3 years, respectively (Figure 4(f)).

3.3. Independent Prognostic Value of the Risk Model. To fur-
ther clarify whether risk score was an independent factor in
the GBM prognosis, we used multivariate Cox regression to
analyze patients’ clinical characteristics and risk scores. The
results showed that the risk score was statistically significant
for GBM survival in the validation and training cohort
(training cohort: HR = 2:066, 95% CI=1.500-2.845, p <
0:05; validation cohort: HR = 1:003, 95% CI= 1.001-1.005,
p < 0:05; Figure 5(a)). In addition, KM curve analysis was
conducted on subgroups of samples with different clinical
characteristics. However, as shown in Figures 5(b) and
5(c), the KM curves grouped by age and gender in the train-
ing and validation cohorts were not statistically significant.
To quantitatively predict the survival rate of GBM patients,
we constructed a prognostic nomogram based on the 4 genes
in the risk model (Figure 5(d)). The total score was obtained
by summing the scores of each prognostic gene in the nomo-
gram, which in turn could be used to calculate 1-, 3-, and 5-
year survival rates of GBM patients. In addition, the calibra-
tion curve also indicated the accuracy of the nomination dia-
gram (Figure 5(e)). Eventually, we concluded that the risk
score was an independent factor in the GBM prognosis
and the risk signature had independent predictive value.

3.4. Infiltrating Immune Cells and Functional Enrichment
Based on the Risk Model. The correlation between genes
related to pyroptosis and TMZ resistance and infiltrating
immune cells was further explored. Obviously, 4 genes were
closely associated with infiltrating immune cells
(Figure 6(a)). For instance, FOXP3 was linked to regulatory
T cells, dendritic cells, and T cells. On this basis, it is neces-
sary to conduct further research on immune.

To research the molecular mechanisms of genes related
to pyroptosis and TMZ resistance, GO and KEGG analysis
was performed based on our risk model. Initially, differential
analysis of the TCGA data between the high- and low-risk
groups identified 1077 upregulated genes and 590 downreg-
ulated genes (Figure 6(b)). Subsequently, 388 protein-coding
genes upregulated in the high-risk group were selected for
functional analysis. GO analysis suggested that DEGs were
mainly enriched in immune-related biological processes
(BP), such as leukocyte migration, regulation of lymphocyte
activation, T cell activation, and humoral immune response.
(Figure 6(c)). The KEGG pathway analysis indicated that
DEGs were enriched in the JAK-STAT signaling pathway,
chemokine signaling pathway, and PI3K-Akt signaling path-
way (these are associated with the immune pathway)
(Figures 6(d) and 6(e)). Taken together, the high-risk score
group was strongly associated with immunoregulatory.

3.5. Comparison of the Immune Activity between High- and
Low-Risk Group. The ESTIMATE method was used to assess
the association between the risk signature and the immune
microenvironment of GBM. As shown in Figure 7(a), the
low-risk group represents a higher ESTIMATE, immune
score, and stromal score and lower tumor purity than the

high-risk group (p < 0:05). Regarding the abundance of 4
types of immune cells, MCPcounter revealed that NK cells
(p < 0:001) and fibroblasts (p < 0:01) were higher in the
high-risk group; in contrast, neutrophils (p < 0:05) and mye-
loid dendritic cells (p < 0:001) were higher in the low-risk
group (Figure 7(b)). The CIBERSORT algorithm was used
to evaluate the status of the 22 tumor-infiltrating immune
cells. A significant difference could be observed in partial
immune cell infiltration between the two groups, such as
dendritic cell activation. Additionally, naive and memory B
cells, activated mast cells and naive B cells, and naive CD4
T cells and M1 macrophages represented significant correla-
tion (Figures 7(c) and 7(d)). Interestingly, the FOXP3 gene
was associated with activation of various naive cells [29].
Then, we compared the molecular expression levels of joint
and immune checkpoints in the high- and low-risk groups.
As illustrated in Figure 7(e), the immune checkpoint mole-
cule expression levels are higher in the high-risk group than
in the low-risk group, such as PDL1 (p < 0:001), CTLA4
(p < 0:01), and LAG3 (p<0.05). The above findings demon-
strated that genes related to the expression of pyroptosis and
TMZ resistance were associated with the immune environ-
ment of GBM patients. Furthermore, those genes also acted
on the immune checkpoint. This finding may provide a new
idea to ICB therapy for GBM patients.

3.6. Experimental Verification Revealing FOXP3 Involved in
TMZ Resistance. To verify the expression of the 4 genes in
GBM-resistant strains, we performed further experiments.
RT-qPCR results showed high expression of FOXP3, IRF3,
and CD274 and low expression of TP63 in resistant strains,
i.e., LN229 (LN229-R) and U87MG (U87MG-R)
(Figure 8(a)), which coincided with the expression levels of
the 4 genes depicted in the training cohort’s high-risk and
low-risk groups (Figure 3(d)). Taken together, in GBM-
resistant strains, FOXP3, IRF3, and CD274 tended to be
highly expressed, while TP63 tended to be low expressed.
Subsequently, FOXP3-overexpressing LN229 and U87MG
constructed by lentiviral infection were verified by western
blot (Figure 8(b)). Cell viability assay suggested that the
IC50 value of FOXP3-overexpressing LN229 was 408μM,
220.9 more than the 187.1μM of the vector group. In con-
trast, the IC50 of FOXP3-overexpressing U87MG was
839μM, 286.4 more than the 552.6μM of vector control
(Figure 8(c)). This indicated that LN229 and U87MG over-
expressed FOXP3, increasing IC50 for TMZ and drug resis-
tance but reducing drug sensitivity. Moreover, stable
knockdown FOXP3 cell lines were constructed from
LN229-R and U87MG-R using the shRNA strategy. RT-
qPCR was performed to detect the knockdown efficacy,
and both shFOXP3#1 and #2 were found to inhibit FOXP3
expression significantly. (Supplementary Figure S1 A). Then,
CCK-8 assay was carried out using stable knockdown
FOXP3 cell lines, indicating that knockdown of FOXP3
markedly inhibited cell proliferation (Supplementary Figure
S1 B). Based on the above experimental conclusions, 4 genes
related to pyroptosis and TMZ resistance were expressed at
high or low levels in glioma-resistant strains, affecting the
therapeutic efficacy of TMZ on samples. Perhaps these 4
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genes will become an essential point to solve TMZ resistance
and improve the prognosis in GBM patients.

4. Discussion

This study screened out DEGs related to pyroptosis and
TMZ resistance in GBM. By analyzing the relations between
the expression of the 4 DEGs and OS of GBM patients, a
novel signature model was constructed. The signature was
built by dividing the training cohort of the TCGA database
sample into high- and low-risk groups and was validated
in the validation cohort. Then, we performed differential
analysis between the two groups. Enrichment analysis
revealed that the protein-encoding upregulated genes in
the high-risk group were concentrated in immune-related
pathways.

Pyroptosis-mediated inflammatory response elicits
robust antitumor immunity in the microenvironment and
acts synergistically with ICB, such as PD1 [30, 31]. PD-L1
can mediate pyroptosis through non-immune checkpoint
function, leading to tumor necrosis [32]. TME, which con-
sists of non-malignant cells (such as endothelial, immune,
and inflammatory cells), may mediate chemo- and radio-
therapeutic resistance through multiple mechanisms [33,
34]. Cellular crosstalk and cell-to-TME-matrix interaction
lead to acquired multi-drug resistance. For example, endo-
thelial cells can selectively upregulate T cell inhibitory recep-
tors and participate in immune evasion in GBM [35, 36].
Additionally, the mechanism of de novo resistance is that
the stromal tissue within the TME mediates immune evasion
of tumor cell subsets and enables them to resist to chemo-
therapy by inducing stemness [37–39]. TMZ, an oral alkylat-
ing agent, has been widely used in postoperative
chemotherapy for GBM. Overexpression of O6-
methylguanine-DNA methyltransferase (MGMT) or mis-
match repair (MMR) deficiency leads to rapid acquired
TMZ resistance for GBM, which is a significant contributor
to tumor recurrence [27, 40, 41]. Improvement of the sensi-
tivity of GBM patients to TMZ has been extensively
researched. However, little research was found on the rela-
tionship between pyroptosis and TMZ resistance in GBM.
On this basis, we attempted to discuss the above two hot
topics in the context of GBM TME. This study constructed
prognostic risk models using the screened 4 genes related
to pyroptosis and TMZ resistance (i.e., FOXP3, IRF3,
CD274, and TP63).

Related research suggests that FOXP3 exerts a paradoxi-
cal effect on tumorigenesis. For one thing, FOXP3 is a tumor
suppressor of breast cancer and prostate cancer [29, 42, 43].
For another, the expression of FOXP3 correlates with poor
prognosis. For example, high-level FOXP3 contributes to
the proliferation and metastasis of non-small cell lung can-
cer cells [44]. Additionally, Chun Li et al. found that the
downregulation of FOXP3 in human lung adenocarcinoma
inhibited cell proliferation and enhanced chemosensitivity
[45]. The transcription factor IRF3 is essential for innate
antiviral immunity. IRF3 is a critical yes-associated protein
(YAP) activator, probably involved in GBM chemoresistance
via the Hippo pathway [46, 47]. CD274, the gene encoding

PD-L1, is commonly used in immunotherapy and presents
effectiveness against many cancer types [48, 49]. As previ-
ously mentioned, CD274 is involved in the antitumor
immunity of GBM. The inhibition of MGMT responsible
for the mediation of p53 activation is found to have a strong
association with the inhibition of glioblastoma resistance to
TMZ [50, 51]. TP63 is a member of the P53 family, whose
expression can affect the expression of TP53 [52]. TAp63,
the isoform of TP63, has been shown to facilitate TMZ sen-
sitivity in GBM cells through down-regulation of MYC [53].
Taken together, the available research indicated that FOXP3,
IRF3, CD274, and TP63 play an essential role in cancer, even
in GBM.

The prognostic signature constructed for the 4 genes
related to pyroptosis and TMZ resistance presented some
predictive power and good model fit (0.616, 0.683, and
0.670 at 1, 2, and 3 years, respectively). Further analysis
found that the risk score was an independent predictor of
OS in GBM patients. These findings will contribute to pro-
viding an effective prognostic prediction for GBM patients.
Then, the expression of FOXP3, IRF3, CD274, and TP63
was validated by RT-qPCR and western blotting. Further-
more, cell viability assay revealed that FOXP3 was involved
in TMZ resistance in GBM.

The development of a new signature has advanced GMB
research. However, we still have to acknowledge the limita-
tions of this study. For example, differences between the
sample sources of TCGA and CGGA databases led to a little
inconsistent expression of CD274 and TP63 in training and
validation cohorts. This research only initially revealed the
correlation between DEGs and antitumor immunity, and
further understanding of molecular mechanisms needs to
be refined by more experiments in the future. Moreover,
the tumor immune environment and ICB therapy deserve
more in-depth study.

5. Conclusion

To sum up, a novel prognostic signature based on 4 genes
related to pyroptosis and TMZ resistance and correlated
with GBM OS could be applied to predict GBM prognosis.
In addition, the immune analysis of GBM patients suggested
that FOXP3 was involved in TMZ resistance of GBM, which
was verified experimentally. The analysis result is expected
to provide some insights into the immunotherapy of
patients.
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