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Background. Prior research has revealed the predictive significance of a series of genetic markers in the prognosis of rectal cancer
(RC), but the roles of apoptosis-associated genes in RC are rarely studied. Methods. The RNA-seq data as well as clinical data
about patients with rectum adenocarcinoma (READ) were downloaded from The Cancer Genome Atlas (TCGA) and the
Genotype-Tissue Expression (GTEx) project. Additionally, 87 apoptosis-associated genes were downloaded and acquired from
Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Comprehensive bioinformatics analysis was carried out for deep
exploration of the expression and prognostic significance of these genes. Least absolute shrinkage and selection operator
(LASSO) and multivariate Cox regression analysis was performed for the establishment of a risk scoring equation for the
prognosis model and construction of a survival prognosis model. ROC curves were drawn for evaluating the accuracy of the
model. A real-time quantitative PCR assay was conducted for quantification of apoptosis-associated proteins related to
prognosis. Results. Eight genes were identified as hub genes associated with the prognosis of PFS. A risk model of prognosis
prediction based on four gene signatures (CYCS, IKBKB, NFKB1, and TRADD) was constructed. According to further analysis
of this model, the high-risk group experienced worse overall survival than the other. The prognosis model demonstrated a
favorable predictive ability, with areas under the receiver operating characteristic curves (AUC) of 0.720, 0.641, and 0.677 in
forecasting the 1-, 2-, and 3-year prognosis, respectively. In addition, CYCS and NFKB1 presented low expression, while
IKBKB and TRADD presented high expression in TCGA and clinical tumor samples. Conclusions. A four-gene signature risk
model for prognosis forecasting of RC has been constructed, which possesses favorable predictive ability, which offers ideas
and breakthrough points to the apoptosis-associated development of RC.

1. Introduction

According to the World Cancer Report 2020, colorectal can-
cer (CRC) ranks second in frequently seen cancers among
both men and women [1]. Appropriately 30%-35% of CRC
patients are rectal cancer (RC) patients, most of which are
rectal adenocarcinoma (READ) [2]. It is the tumor from
the dentate line to the border of the rectum and sigmoid
colon, which can be easily confirmed through sigmoid colo-
noscopy and digital rectal examination, and mainly afflicts

individuals > 45 years old [3, 4]. RC can be treated by sur-
gery, radiotherapy, chemotherapy, molecular targeted ther-
apy, etc. [5–8]. Clinically, surgical resection is still the
primary means for it. However, many patients with cancer
miss the optimal surgery timing because of the lack of nota-
ble symptoms in the early phase, so the treatment outcome
of advanced RC is still unsatisfactory [9]. CRC is classified
into colon cancer and RC [10, 11]. Despite their various
common characteristics, the two have some crucial differ-
ences, including the high postoperative local recurrence rate
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of appropriately 15%-45% in RC [12]. Through years of
efforts, the number of oncogenes and tumor suppressors
and markers of RC has been clarified [13, 14]. However,
the risk model for prognosis prediction of READ requires
further research. Besides, there are abundant studies on
colon cancer than rectal cancer which motivated us to per-
form this study to construct a prediction model of prognosis
for rectal cancer patients. The innovation of this study is to
construct a new and promising risk model for predicting
the prognosis of rectal cancer. Accordingly, it is of crucial
significance to find and establish a prognosis model of
READ for developing strong diagnosis and therapy methods
and evaluating the prognosis.

Apoptosis, or programmed cell death, also takes a pivotal
part in the development and maturation of normal tissues. It
maintains the homeostasis in vivo by controlling the
immune system, as the main cellular mechanism that elimi-
nates DNA-damaged cells and maintains the homeostasis of
tissues for mammals [15–17]. There exist two primary ways
to activate apoptosis, the external way and the internal way.
Tumors can escape apoptosis in many means. For instance,
the increase in BCL-2 protein and deletion of BAX/BAK
suppress the apoptosis and thus trigger tumor [18], and sup-
pression of caspase function also hinders apoptosis function
[19]. In addition, in vivo and in vitro assays have verified the
roles of many chemopreventive drugs in inducing trans-
formed cells’ apoptosis [20, 21].

Zhang et al. [22] have confirmed some metabolic genes
associated with RC prognosis. Huang et al. [23] have identi-
fied a risk model based on 10 M6A gene markers for progno-
sis prediction of RC patients. However, the application of
apoptosis-associated genes in forecasting the prognosis of
RC is yet to be reported. Accordingly, this study analyzed
the expression and associations of 87 apoptosis-associated
genes in RC and used LASSO regression and Cox regression
analyses to screen out prognosis-associated gene markers.
Finally, a prognostic risk prediction model composed of four
gene signatures was constructed, which had high accuracy.

2. Methods

2.1. Data Source. RNA-seq as well as clinical data about
READ cases were acquired from The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov/) and RNA-seq data of
healthy tissues from the Genotype-Tissue Expression
(GTEx, https://gtexportal.org/) project, removing batch
effects from normalized data and corresponding to the cor-
responding clinical samples, removing duplicates and
deleted samples from the downloaded data and cases with
missing clinical outcomes. For the analysis of patients’ clin-
ical data, the data of those with unknown survival time
and those with survival time of “0” were deleted. 87
apoptosis-associated genes were acquired from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database.

2.2. Specimen Collection. Totally, 33 RC tissue specimens
and 33 corresponding paracarcinoma tissue specimens were
acquired from RC patients who underwent surgery in the
Gastroenterology Department in the 1st Affiliated Hospital

of Wenzhou Medical University and the Large Intestine Sur-
gery Department in Wenzhou Central Hospital between Jan-
uary 2019 and July 2020. The resected RC tissues and
paracarcinoma tissues were immediately placed in liquid
nitrogen for later analyses. All the postoperative specimens
were confirmed by pathological examination, and the site
that cancer tissues were taken was a cancer-rich site, and
no obvious necrotic tissue was found in the specimens.
Our study was performed after ratification by the hospital
Medical Ethics Committee.

2.3. Gene Expression Analysis. The Limma software package
of R software (version 4.0.3) was adopted for studying the
differential expression of mRNA. The adjusted P value was
analyzed based on TCGA or GTEx to correct the false posi-
tive result. Under the condition of jlogFCj ≧ 1 and adjusted
P < 0:05, genes with aberrant expression were screened,
and the heat map was drawn via R package ggplot2.

2.4. Protein-Protein Interaction (PPI) Network Construction.
Genes with differential levels were evaluated using Metas-
cape (https://metascape.org/gp/index.html#/main/step1),
and PPI network was thus constructed. The MCODE plugin
in Cytoscape software (version 3.8.2) was adopted for fur-
ther exploration of gene interaction.

2.5. Kaplan-Meier Survival Analyses. Survival in R package
was utilized for survival analyses. P value and hazard ratio
(95% CI) in KM curves were acquired through both log-
rank test and univariate Cox proportional hazard regression.

2.6. Gene Ontology (GO) Enrichment Analysis. According to
GO analysis of genes based on DAVID (version 6.8, https://
david.ncifcrf.gov/), P < 0:05 or FDR < 0:05 in the enrich-
ment was significant in terms of statistics.

2.7. LASSO Model Construction. With the LASSO regression
algorithm, characteristics were selected, and 10-fold cross-
validation was carried out for parameter determination to
acquire a suitable model. Then, the genes acquired by
LASSO regression were treated with multivariate Cox
regression, and the multivariate regression coefficient of
every gene was calculated, on which a risk scoring equation
was constructed. Patients were grouped into the high-/low-
risk groups in the light of the median risk score. KM survival
curves were used for analyzing and comparing the two
groups’ overall survival (OS), and time-associated receiver
operator characteristic curve (ROC) was adopted for predic-
tive value evaluation of gene markers.

2.8. Protein Expression Verification. Immunohistochemical
staining maps about protein levels of gene signatures in
CRC tissues and normal rectum tissues were acquired from
the Human Protein Atlas (HPA).

2.9. Gene Set Enrichment Analysis (GSEA). To observe the
effect of gene expression on tumors, the samples were
divided into two groups of high and low expression based
on the median expression level of genes, and the enrichment
of KEGG and HALLMARK pathways in the high- and low-
expression group was analyzed using GSEA, respectively.
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2.10. Real-Time Quantitative PCR (RT-qPCR). Total RNA of
tissues acquired via Trizol reagent (Invitrogen, Carlsbad,
California, the States) were subjected to reverse transcription
under the guidelines of PrimeScript RT Reagent Kit (Takara,
Japan) to acquire cDNA that was subsequently treated by
PCR under the guidelines of SYBR Premix Ex Taq II Kit
(Takara, Japan). Shanghai Sangon Biotech Co., Ltd. com-
pleted the synthesis of specific primers adopted in qRT-
PCR (Table 1: primer sequences). The calculation of relative
expression was carried out using 2-ΔΔCt (internal reference:
GAPDH). The assay was conducted in triplicate, and the
obtained results were averaged.

2.11. Statistical Analyses. SPSS 22.0 (IBM Corp., Armonk,
NY, USA) was adopted for data analyses and GraphPad
Prism 8.0 (GraphPad Software, La Jolla California USA)
for visualization of data into figures. Measurement data were
presented by (mean ± SD), and every assay was performed in
triplicate. The independent-samples t-test was adopted for
intergroup comparison of measurement data in normal dis-
tribution. Differentially expressed genes between normal tis-
sues and tumor tissues were identified through the Wilcoxon
test. P < 0:05 implies a notable difference.

3. Results

3.1. Expression and Interaction of Apoptosis-Associated
Genes. Based on observation on the expression of 87
apoptosis-associated genes in 165 RC specimens and 10 cor-
responding paracancerous specimens from TCGA and 799
normal tissue specimens from GTEx, 77 genes with differen-
tial levels were acquired via variation analysis (Figure 1(a):
the heat map). For exploring the interaction of these
apoptosis-associated genes, PPI was conducted, and the
MCODE plugin in Cytoscape was adopted for the calcula-
tion of characteristics of each node in the network diagram
and their visualization (Figure 1(b)). The functional enrich-
ment of all MCODE modules is presented in Table 2.
According to the results, 5 MCODEs were mainly enriched
in IL-1 signaling pathway, apoptosis, c-FLIP regulation,
and amyotrophic lateral sclerosis (ALS).

3.2. Progression-Free Survival (PFS) Analysis of 77 Genes.
According to the clinical information of 165 specimens, the
PFS of 77 genes was analyzed, and 8 PFS-associated genes
bound up with READ were acquired (Figures 2(a)–2(h):
KM curves for PFS of them). All specimens were grouped
into high-/low-expression groups based on gene level
(median). According to the obtained results, high expression
of AKT2, CAPN1, IKBKB, and TRADD and low expression
of CASP3, CASP6, CYCS, and NFKB1 were all strongly
bound up with short PFS in patients (all P < 0:05).

3.3. Establishment of a Risk Model for Prognosis Prediction
Based on TCGA Cohort. With the LASSO-Cox regression
model, prognostic characteristics were constructed for anal-
ysis of gene levels. According to the minimum criterion
(lambda:min = 0:0291), CYCS, IKBKB, NFKB1, and
TRADD were selected for construction of a prediction
model (Figures 3(a) and 3(b)) with four gene signatures.

The prediction risk score was primarily composed of the fol-
lowing: risk score = ð0:7211Þ ∗ IKBKB + ð0:058Þ ∗ TRADD
+ ð−0:1209Þ ∗ CYCS + ð−0:2872Þ ∗NFKB1.

According to the median value of risk scores, these spec-
imens were grouped into the high-/low-risk groups. As the
distribution of survival time showed in Figure 3(c), more
patients died in the high-risk group than in the low-risk
group, and there were more patients with shorter overall
survival (OS) in the high-risk group than in the low-risk
group. KM analysis revealed notably worse prognosis in
the high-risk group than in the other (Figure 3(d)). Addi-
tionally, the sensitivity and specificity of this model for fore-
casting the OS of high-/low-risk cases were verified via ROC
curves. The AUC of the risk model was 0.720, 0.641, and
0.677 in forecasting the 1-, 2-, and 3-year prognosis, respec-
tively, demonstrating relatively high accuracy in forecasting
the prognosis and survival of READ patients (Figure 3(e)).

3.4. Independent Predictive Significance of the Risk Model.
We conducted multivariate and univariate Cox regression
analyses for evaluating the feasibility of adopting the risk
scores of four gene signatures as one independent factor
for prognosis. According to the latter analysis, in TCGA
cohort, risk score and TMN staging were independent fac-
tors for forecasting adverse survival (Table 3). According
to the former analysis, risk score was one independent prog-
nostic predictor after adjustment or other confounding fac-
tors (Table 4).

3.5. Expression of CYCS, IKBKB, NFKB1, and TRADD in
TCGA-READ. According to expression analysis of CYCS,
IKBKB, NFKB1, and TRADD in 165 RC tissue specimens
and 10 corresponding paracarcinoma tissue specimens from
TCGA, RC tissues showed downregulated CYCS and
NFKB1 (Figures 4(a) and 4(c)) and upregulated IKBKB
and TRADD (Figures 4(b) and 4(d)) in contrast to normal
tissues.

3.6. Expression of CYCS, IKBKB, NFKB1, and TRADD in
Clinical Specimens. The HPA contained the immunohisto-
chemical results of 4 genes in CRC tissues and normal rec-
tum tissues. The results revealed expressed CYCS and

Table 1: Primer sequences.

Genes Primer sequences (5′-3′)

CYCS
Forward: CTTTGGGCGGAAGACAGGTC

Reverse: TTATTGGCGGCTGTGTAAGAG

IKBKB
Forward: GTCTTTGCACATCATTCGTGGG

Reverse: GTGCCGAAGCTCCAGTAGTC

NFKB1
Forward: GGTGCGGCTCATGTTTACAG

Reverse: GATGGCGTCTGATACCACGG

TRADD
Forward: GCTGTTTGAGTTGCATCCTAGC

Reverse: CCGCACTTCAGATTTCGCA

GAPDH
Forward: ACAACTTTGGTATCGTGGAAGG

Reverse: GCCATCACGCCACAGTTTC
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Figure 1: Continued.
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Figure 1: Expression and interaction of apoptosis-associated genes in READ. (a) The heat map displays the expression of apoptosis-
associated genes in specimens from TCGA+GTEx. (b) PPI network displays the interaction of apoptosis-associated genes.

Table 2: GO enrichment analysis of each MCODE.

MCODE GO Description log10 Pð Þ
MCODE_1 WP195 IL-1 signaling pathway -21.8

MCODE_1 WP4496 Signal transduction through IL1R -21.2

MCODE_1 R-HSA-9020702 Interleukin-1 signaling -19.1

MCODE_2 ko04210 Apoptosis -40.4

MCODE_2 hsa04210 Apoptosis -39.6

MCODE_2 ko04668 TNF signaling pathway -36

MCODE_3 R-HSA-3371378 Regulation under c-FLIP -35.4

MCODE_3 R-HSA-69416 Procaspase-8 dimerization -35.4

MCODE_3 R-HSA-5218900 Suppressed CASP8 activity -35.4

MCODE_4 ko04210 Apoptosis -13.2

MCODE_4 hsa04210 Apoptosis -13

MCODE_4 M144 PID ceramide pathway -13

MCODE_5 ko05014 Amyotrophic lateral sclerosis (ALS) -16.8

MCODE_5 hsa05014 ALS -16.5

MCODE_5 WP3414 Initiation of transcription and translation elongation at the HIV-1 LTR -13.9
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Figure 2: Continued.
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NFKB1 in normal rectum tissues and their lower expression
in CRC tissues (Figures 5(a) and 5(e)) and also revealed
underexpressed IKBKB and TRADD in normal rectum tis-
sues and their higher expression in CRC tissues
(Figures 5(c) and 5(g)). In the collected clinical specimens,
qPCR results revealed notably lower CYCS and NFKB1
expression (Figures 5(b) and 5(f)) and notably higher
IKBKB and TRADD expression (Figures 5(d) and 5(h)) in
cancer tissues than in healthy paracarcinoma ones
(P < 0:05).

3.7. Gene Set Enrichment Analysis. To observe the effect of
gene expression on tumors, we divided the rectal cancer

samples into two groups with high and low expression
according to the median expression levels of CYCS, NFKB1,
IKBKB, and TRADD and analyzed the enrichment of signal-
ing pathways in KEGG and HALLMARK in high- and low-
expression groups by GSEA. The top 3 signaling pathways
most significantly enriched in both databases have been
listed. GSEA results verified CYCS was mainly enriched in
Alzheimer diseases and mitotic spindle (Figure 6(a)).
NFKB1 was mainly enriched in phosphatidylinositol signal-
ing system and adipogenesis (Figure 6(b)). IKBKB was
mainly enriched in T cell receptor signaling pathway and
early estrogen response (Figure 6(c)). TRADD was mainly
enriched in gap junction and UV response (Figure 6(d)).
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Figure 2: Progress-free survival analysis. (a) KM curves for PFS of AKT2. (b) KM curves for PFS of CAPN1. (c) KM curves for PFS of
CASP3. (d) KM curves for PFS of CASP6. (e) KM curves for PFS of CYCS. (f) KM curves for PFS of IKBKB. (g) KM curves for PFS of
NFKB1. (h) KM curves for PFS of TRADD.
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4. Discussion

RC is one frequently seen cancer, with an unfavorable post-
operative cure rate and OS and a high local recurrence rate.
Over the past few years, searching for gene markers associ-
ated with RC prognosis and developing other prediction
methods for prognosis have become a hot focus [13, 24].
Our study acquired the information of apoptosis-associated
genes and corresponding data from TCGA-READ dataset.
Through LASSO regression analysis, a risk model for fore-
casting RC prognosis was constructed, which delivered high
accuracy in forecasting patients’ prognosis in 1, 2, and 3
years (AUC: 0.720, 0.641, and 0.677), with four apoptosis-
associated gene signatures. Subsequently, multivariate and

univariate Cox regression analyses demonstrated that the
risk scores given to the 4 gene signatures could serve as inde-
pendent prognostic markers.

The risk model for prognosis prediction of RC based on
4 apoptosis-related genes was composed of CYCS, IKBKB,
NFKB1, and TRADD. Few studies were conducted to con-
struct prediction model for the prognosis of rectal cancer.
Zuo et al. [25] identified a 6-gene signature predicting prog-
nosis for colorectal cancer including rectal cancer. Thus, our
prediction model of prognosis in rectal cancer is of signifi-
cant. Whereafter, verification results by HPA database and
qPCR of clinical tissue specimens revealed lowly expressed
CYCS and NFKB in RC tissues and highly expressed IKBKB
and TRADD in them.

CYCS, released by mitochondria, forms a large protein
complex called apoptotic bodies by interacting with Apaf-
1. The complex recruits and activates caspase-9 to initiate
caspase cascade and apoptosis and thus supports the synthe-
sis of ATP in mitochondria. CYCS is also bound up with
cancers involving apoptosis and p53 tumor inhibition path-
way [26]. Liu et al. [27] have revealed that the upregulation
of CYCS triggers the cascade activation of caspase-9 and
caspase-3 and then gives rise to apoptosis. However, in our
study, CYCS presented low expression in RC cases, and the
low expression was strongly bound up with the short PFS.
Similar to prior research, patients with a low CYCS level
show weaker apoptosis of cancer cells. As everyone knows,
the IKK complex is composed of IKKα, IKKγ, and IKKβ
(also referred as IKBKB) [28]. The last one has been verified
to be implicated in tumor growth through NF-κB activation
and phosphorylation-dependent suppression of tumor sup-
pressor [29, 30]. It has been confirmed to have increased
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Figure 3: Construction of a risk model based on TCGA cohort. (a) LASSO regression analysis of 7 PFS-associated apoptosis genes. (b)
Intersectional confirmation for parameter choice in LASSO regression analysis. (c) Survival time, risk score, state, and levels of 4 gene
signatures. (d) KM curves of the high-/low-risk groups. (e) ROC curves for accuracy verification of LASSO model in prediction within 1,
2, and 3 years.

Table 3: Univariate Cox regression analysis.

B SE Wald P value HR (95% CI)

Age 0.003 0.016 0.029 0.865 1.003 (0.972, 1.034)

Gender -0.340 0.349 0.950 0.330 0.712 (0.360, 1.410)

TNM stage 0.830 0.196 17.935 0.000 2.293 (1.562, 3.366)

Risk score 1.302 0.412 10.007 0.002 3.677 (1.641, 8.239)

Table 4: Multivariable Cox regression analysis.

B SE Wald P value HR (95% CI)

Age -0.004 0.016 0.073 0.787 0.996 (0.964, 1.028)

Gender -0.560 0.378 2.192 0.139 0.571 (0.272, 1.199)

TNM stage 0.691 0.206 11.284 0.001 1.996 (1.334, 2.987)

Risk score 1.126 1.126 5.838 0.016 3.084 (1.237, 7.688)
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expression and/or abnormal activity in various kinds of
human cancers including osteosarcoma [31]. Gong et al.
[32] have discovered the association of IKBKB rs2272736
with the survival rate of gastric cancer. Our study analyzed
the PFS time of TCGA specimens and revealed a shorter
PFS time of patients with high IKBKB expression. NFKB1
is one subunit of NF-κB [33]. It has been verified to be one
pathway-specific tumor inhibitor, which can prevent hema-
tological malignancies after cell damage mediated by alkylat-
ing agent (N-methyl-N-nitrosourea) [34]. Prior research has
revealed that NFKB1 acts via p50 homodimer and is a sup-
pressor of neutrophil-driven hepatocarcinoma [35]. The sig-
nificance of NFKB1 function could be observed in models of
mouse: Nfkb1−/− mouse showed intensified inflammatory
response and susceptibility to DNA injury in some forms
and finally suffered cancer and quick aging phenotype [36].
However, in our study, NFKB1 presented low expression
in RC cases, and the low expression was also strongly bound
up short PFS. The results also indirectly reflect that down-
regulated NFKB1 could not act as a tumor suppressor gene,

which induces RC development. TRADD is one crucial TNF
signal transduction medium mediated by TNFR1. Its mech-
anism of action is primarily responsible for recruiting other
effector proteins, thus activating MAPK, NF-κB, and other
signal pathways including cell death [37, 38]. On the one
hand, TRADD takes a pivotal part in TNF-α-induced proin-
flammatory reaction by interacting with TNFR1 [39]. On the
other hand, TNF-α also initiates apoptosis and necrosis by
recruiting FADD protein [40]. Based on our study results,
IKBKB, NFKB1, and TRADD are all bound up with the
NF-κB signaling pathway, which offers ideas to the further
study of RC.

Based on the above research results, we constructed a
model for the prediction of RC prognosis based on 4
apoptosis-associated genes and further revealed the feasibil-
ity of using risk score based on this model as one indepen-
dent predictor of RC patients’ prognosis. The results
provide a potential novel target for RC therapy and also a
novel target and idea for targeted therapy of tumors. The
study also has some limitations. Genes in tumors are studied
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Figure 4: Expression of CYCS, IKBKB, NFKB1, and TRADD: (a) CYCS expression; (b) IKBKB expression; (c) NFKB1 expression; (d)
TRADD expression.
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Figure 5: Continued.
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Figure 5: Protein expression verification of 4 genes and their expression in clinical specimens. (a) Expression verification of CYCS in cancer
tissues and normal rectum tissues based on HPA. (b) CYCS in clinical specimens. (c) Expression verification of IKBKB in cancer tissues and
normal rectum tissues based on HPA. (d) IKBKB in clinical specimens. (e) Expression verification of NFKB1 in cancer tissues and normal
rectum tissues based on HPA. (f) NFKB1 in clinical specimens. (g) Expression verification of TRADD in cancer tissues and normal rectum
tissues based on HPA. (h) TRADD in clinical specimens. ∗∗∗P < 0:001.
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Figure 6: Gene set enrichment analysis of 4 genes in KEGG and HALLMARK datasets. (a) GSEA results of CYCS ranked in the top 3 for its
correlation with signaling pathways in KEGG and HALLMARK database. (b) GSEA results of NFKB1 ranked in the top 3 for its correlation
with signaling pathways in KEGG and HALLMARK database. (c) GSEA results of IKBKB ranked in the top 3 for its correlation with
signaling pathways in KEGG and HALLMARK database. (d) GSEA results of TRADD ranked in the top 3 for its correlation with
signaling pathways in KEGG and HALLMARK database.

14 Disease Markers



less, and their mechanism of action needs deeper explora-
tion. Besides, the clinical tissue samples we collected for this
study do not include the follow-up survival information
which cannot be used for the validation of the risk model.
Whether the conclusions already reached can be verified
equally in vivo or in vitro needs to be proved by more
follow-up basic biological experiments. In addition, due to
the rare public RNA-seq datasets on rectal cancer, it is
urgent to collect more clinical rectal cancer sample to con-
struct a transcriptome library.
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