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Background. The impaired osteoblastic differentiation of bone marrow mesenchymal stem cells (BMSCs) is a major cause of bone
remodeling imbalance and osteoporosis. The bicaudal C homologue 1 (BICC1) gene is a genetic regulator of bone mineral density
(BMD) and promotes osteoblast differentiation. The purpose of this study is to explore the probable function of BICC1 in
osteoporosis and osteogenic differentiation of aged BMSCs. Methods. We examined the GSE116925 microarray dataset
obtained from the Gene Expression Omnibus (GEO) database. The GEO2R algorithm identified differentially expressed genes
(DEGs) in Sca-1+ BMSCs from young (3 months old) and old (18 months old) mice. Then, to identify the most crucial genes,
we used pathway enrichment analysis and a protein-protein interaction (PPI) network. Furthermore, starBase v2.0 was used to
generate the regulatory networks between BICC1 and related competing endogenous RNAs (ceRNAs). NetworkAnalyst was
used to construct TF-gene networks and TF-miRNA-gene networks of BICC1 and ceRNA. Furthermore, we investigated the
Bicc1 expression in aged Sca-1-positive BMSCs. Result. We detected 923 DEGs and discovered that epidermal growth factor
receptor (EGFR) was the top hub gene with a high degree of linkage. According to the findings of the PPI module analysis,
EGFR was mostly engaged in cytokine signaling in immune system and inflammation-related signaling pathways. 282 ceRNAs
were found to interact with the BICC1 gene. EGFR was not only identified as a hub gene but also as a BICC1-related ceRNA.
Then, we predicted 11 common TF-genes and 7 miRNAs between BICC1 and EGFR. Finally, we found that BICC1 mRNA
and EGFR mRNA were significantly overexpressed in aged Sca-1-positive BMSCs. Conclusion. As a genetic gene that affects
bone mineral density, BICC1 may be a new target for clinical treatment of senile osteoporosis by influencing osteogenic
differentiation of BMSCs through EGFR-related signaling. However, the application of the results requires support from more
experimental data.

1. Introduction

The progression of an aging body is one of the most preva-
lent, yet stubborn, medical challenges. The cause of the
majority of age-related illnesses, including those that cause

changes in skeletal tissue composition, such as osteoporosis,
remains unclear. Osteoporosis is a systemic bone disease
characterized by reduced bone mass, altered bone micro-
structure, and fragility fractures [1]. Age has an important
impact on bone loss and fracture. The most noticeable
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feature of osteoporosis in the elderly is an imbalance in bone
remodeling characterized by increased osteoclast absorption
and decreased osteoblast bone formation [2]. However, bone
loss occurs as a result of aging or certain pathological condi-
tions in which bone resorption exceeds bone formation [3].
Bone marrow mesenchymal stem cells have multidirectional
differentiation potential [4]. In the presence of appropriate
environmental signals, BMSCs have the ability to undergo
strong osteogenic differentiation. Recently, the role of
genetic genes in regulating BMSC differentiation through
the osteogenic pathway during osteoporosis has attracted
much attention [5].

BICC1 is a multicellular animal evolutionarily conserved
RNA binding protein that plays a vital role in signal transduc-
tion pathways, organ development, and homeostasis [6]. At
least three Bicclmutant mice (jcpk, bpk, and 67Gso) have been
reported. The frequency of humoral cysts in the kidneys
increases in these mutants, as does the expansion of the liver
ducts and pancreas. These characteristics are extremely similar
to those reported in humans with hereditary polycystic kidney
disease (PKD) [7]. The Bicc1 mutation also causes pancreatic
developmental abnormalities, including a decrease in
insulin-producing cells, which leads to diabetes.

Through comprehensive genetic approaches, Mesner
et al. discovered that single nucleotide polymorphisms
(SNPs) in Bicc1 were strongly associated with bone mineral
density. The researchers discovered that BMD in Bicc1+/-

mice was considerably lower than in wild-type mice, demon-
strating that Bicc1 was a genetic predictor of BMD. Further
research revealed that BICC1 was coexpressed with PKD2,
a protein involved in osteoblast differentiation. In primary
cranial osteoblasts, knocking out Bicc1 or Pkd2 had an effect
on osteoblast differentiation [8]. Pkd2 overexpression can
rescue osteoblast functional deficits induced by Bicc1
deficiency, indicating that Bicc1 may control osteoblast dif-
ferentiation through Pkd2. Other research has shown that
polycystin-1 (PC1), expressed by the Pkd1 gene, interacts
with polycystin-2 (PC2) to form an interdependent signal
complex, and that the phenotype of bone-specific Pkd1 defi-
cient mice is similar to age-related bone loss. PC1 and PC2
can combine to produce a complex that binds to primary
cilia in osteoblasts and functions as a “mechanical sensor”
to regulate bone mass [9]. In 2021, the five priority osteopo-
rosis genes were discovered from 38 reported BMD genome-
wide association studies (GWAS), with Bicc1 having the
highest Tier-1 SNPs, indicating that Bicc1 was a crucial gene
in controlling osteoporosis [10].

There is currently a lack of comprehensive evaluation of
the effect of BICC1 on osteoporosis and osteogenic differen-
tiation of aged BMSCs. Recent data suggests that the
research of biological pathways behind various diseases has
been facilitated by the discovery of gene maps using bioin-
formatics analysis. Therefore, we obtained gene expression
data of BMSCs isolated from young and aged mice. Based
on identified DEGs, we performed gene set enrichment anal-
ysis and pathway analysis to better understand the biological
process of genome-based expression. The PPI network was
used to screen hub genes, and PPI function modules were
created to predict the signaling pathways involved in hub

genes. The target genes of BICC1 were screened by the
ceRNA network, and then, the shared miRNAs and tran-
scription factors of BICC1 and hub genes were screened.
We created an mRNA-ceRNA network of BMSCs in elderly
osteoporosis, which might lead to new discoveries about the
etiology and therapy of osteoporosis.

2. Materials and Methods

2.1. Data Collection. The dataset GSE116925 was retrieved
by screening from the GEO database [11]. GEO is commit-
ted to developing a gene expression data warehouse as well
as online facilities for retrieving gene expression data from
any species or man-made source. GEO mostly contains chip
data and a minor amount of sequencing data. Li C et al.
donated the microarray file dataset GSE116925. It featured
gene expression data from BMSCs isolated from young
(3 months old) and aged (18 months old) mice. The pop-
ulation of Sca-1+CD29+CD45–CD11b–BMSCs was sorted
for experiments. The dataset is based on the Affymetrix
mouse transcript array 1.0 (transcript (gene) CSV version)
platform GPL20775 (mta-1 0).

2.2. Data Processing and Identification of DEGs. Hub gene
research is an essential step in anticipating illness therapeutic
targets [12].We discovered DEGs between BMSCs from young
and aged mice using the online analysis tool GEO2R (https://
www.ncbi.nlm.nih.gov/geo/geo2r/). Benjamini-Hochberg was
applied to the dataset for the control of false discovery rate
(FDR) [13], and Padj < 0:001 was utilized as the database’s
cut-off criteria.

2.3. GO and KEGG Enrichment Analysis. We used the Data-
base for Annotation, Visualization, and Integrated Discovery
(DAVID) (https://david.ncifcrf.gov/tools.jsp) to explore the
Kyoto Encyclopedia of Genes and Genes (KEGG) pathway
of differentially expressed genes and gene modules of inter-
est. DAVID provides a comprehensive set of functional
annotation tools for investigators to understand the biologi-
cal meaning behind large lists of genes [14]. We ran the
Gene Ontology (GO) analysis on the DEGs through Web-
Gestalt [15], and the results are divided into three sections:
molecular function, cellular component, and biological pro-
cess. The cut-off criteria were established at P < 0:05 and
FDR < 0:25.

2.4. Construction of PPI Network and Clustering of
Functional Modules. Constructing a PPI network is an essen-
tial step in completing the research. PPI network analysis is
useful for studying illness molecular mechanisms and dis-
covering new therapeutic targets in a methodical manner
[16]. In this article, we uploaded the aforesaid differentially
expressed genes to the STRING (http://stringdb.org) online
database, with the cut-off criterion set to interaction score
> 0:4, in order to construct a PPI network. STRING is a
database that allows us to explore and predict the interac-
tions of known proteins [17]. It now contains 24,584,628
proteins from 5,090 organisms. Protein interactions involve
both direct physical interactions and indirect functional con-
nections. PPIs were put into Cytoscape [18] for additional
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analysis in order to mine the core regulatory genes. Cytos-
cape (https://cytoscape.org/) is an open-source software
platform for visualizing molecular interaction networks
and biological pathways; it also has a plethora of plugins that
provide great convenience for researchers. MCODE is a
program that searches for clusters (highly linked sections)
in a large gene (or protein) network [19]. This could
reveal the primary functional modules of differentially
expressed genes.

2.5. Identification of Hub Gene. CytoHubba [20] was used to
identify hub genes. CytoHubba is a significant app in Cytos-
cape that can explore important nodes/hubs and fragile
motifs in an interactome network using a variety of topolog-
ical algorithms such as degree, maximum neighborhood
component (MNC), and maximal clique centrality (MCC),
as well as centralities based on shortest paths such as bottle-
neck (BN), eccentricity, closeness, radiality, betweenness,
and stress. In this study, the top ten nodes ranked by degree
were identified as hub genes.

2.6. Exploration of Key ceRNA Related to BICC1. starBase
v2.0 can identify more than 4.1 million RBP-RNA, 2.9
million miRNA-mRNA, 4.1 million miRNA-ncRNA, and
1.5 million RNA-RNA interactions from multidimensional
sequencing data [21]. We designated BICC1 as a ceRNA
GENE of interest and found target genes that may have a
high level of interaction with it using a P < 0:001 and FDR
< 0:01 cut-off criterion. Venny 2.1.0 (https://bioinfogp.cnb
.csic.es/tools/venny/index.html) was used to find common
genes between hub and target genes.

2.7. TF-Gene Network. The construction of a TF-gene net-
work helps assess the impact of TF-genes on the gene func-
tion pathway and the expression level of important genes.

NetworkAnalyst (https://www. networkanalyst.ca/) is a
comprehensive web platform for performing gene expres-
sion on a wide range of species [22]. The TF-gene network
was built using the ChEA database [23], which is part of
the NetworkAnalyst platform. ChEA is a database of tran-
scription factor targets derived from combining literature-
curated Chip-X data.

2.8. Gene-miRNA Network. The association between genes
and miRNA was demonstrated in the gene-miRNA network,
which will aid in the investigation of the mechanism of gene
connection. The gene-miRNA network in NetworkAnalyst
is displayed using extensive experimentally validated
miRNA-gene interaction data from TarBase v8.0 [24].

3. Results

3.1. Identification of DEGs. Compared to the young Sca-1+
BMSCs, GEO2R identified 923 differently expressed genes
in the aged mice group, including 702 upregulated genes
and 221 downregulated genes. The cut-off standard was set
at Padj < 0:001. The volcano map in Figure 1 depicts the
end consequence.

3.2. GO and KEGG Enrichment Analysis of DEGs. We used
WebGestalt to perform GO enrichment analysis on the
above DEGs to investigate how DEGs contribute to an
organism’s biology at the molecular, cellular, and organism
levels. The findings are divided into three categories: molec-
ular function (MF), cellular component (CC), and biological
process (BP) (Figure 2(a)). The analysis showed significant
enrichment in BP including immune response and regula-
tion of response to stress, changes in CC containing
endoplasmic reticulum, etc., and the enrichment of MF
included several binding and activity related functions.
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Figure 1: A volcano plot showed the DEGs between aged and young Sca-1+ BMSCs.
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Figure 2: Continued.
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Figure 2(b) depicts the top ten GO terms with the most sig-
nificant rich concentration data, and the network may imply
a link between these channels. Changes in KEGG pathways
were significantly enriched in immune system (cytokine sig-
naling in immune system and interferon signaling etc.).
FDR < 0:001 was used as the cut-off criterion for the results
(Figure 3).

3.3. Construction of PPI Network and Identification and
Enrichment of Functional Modules. The above DEGs were
entered into the STRING platform to create a PPI network,
and the results were uploaded to Cytoscape for further
study. We found three strongly interacting modules after
analyzing MCODE in Cytoscape (degree cut off = 2, node
score cut off = 0:2, k − core = 2, and max:depth = 100). We
enriched the genes in three modules using DAVID to deter-

mine the function of these subnetworks (Figure 4). The find-
ings revealed that module 1 was strongly enriched in the
interferon signaling route, module 2 was significantly
enriched in the ECM-receptor interaction and PIK-Akt sig-
naling pathways, and module 3 was significantly enriched
in the EGFR-related pathways.

3.4. Identification of Hub Gene and Selection of BICC1-
Related ceRNA. Through topological analysis in cytoHubba,
the top ten genes of degree algorithm in the network were
identified EGFR, STAT1, IRF7, CCL2, COL1A1, IFIH1,
CXCL10, MX1, ISG15, and IRF1 as hub genes (Figure 5(a)
and Table 1). BICC1 was entered into starBase v2.0 to assess
its involvement in causing aging characteristics, and 282
related ceRNAs were obtained based on multidimensional
sequencing data. Nominal P < 0:001, FDR < 0:01, and
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Figure 2: GO enrichment analysis results of DEGs. (a) The lollipop chart showed the top 10 results of BP, MF, and CC. (b) Network
displayed the top 10 results, including immune response, negative regulation of response to stimulus, defense response, regulation of
response to stress, tube morphogenesis, vasculature development, blood vessel development, angiogenesis, extracellular structure
organization, and extracellular matrix organization.
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hitMiRnum > 35 were set as cut-off criteria (Supplementary
materials Table S1). EGFR was identified as a hub gene
and BICC1-related ceRNA (Figure 5(b)).

3.5. Construction of TF-Gene Network between BICC1 and
EGFR. NetworkAnalyst was used to collect TF-gene interac-
tions. There were 11 common TF-genes (JARID2, ESR1,
SRY, TEAD4, SUZ12, MITF, SMAD4, SMAD3, HNF4A,
TCF4, and MTF2) identified. The TF-gene interaction net-
work is depicted in Figure 6.

3.6. Construction of Gene-miRNA Network. We built gene-
miRNA networks of BICC1 and EGFR using the TarBase

v8.0 database in the NetworkAnalyst platform. The network
displayed common seven essential miRNAs (hsa-let-7b-5p,
hsa-mir-182-5p, hsa-mir-107, hsa-mir-181a-2-3p, hsa-mir-
484, hsa-mir-1-3p, and hsa-mir-129-2-3p) between BICC1
and EGFR (Figure 7).

3.7. Comparison of Key Gene Expressions. We submitted
the BICC1 and EGFR expression data from GSE116925
to Sangerbox and obtained the violin image (Figure 8).
BICC1 and EGFR were significantly upregulated in the
aged Sca-1+ BMSCs compared with the young Sca-1+
BMSCs.
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Figure 3: Top 10 significantly enriched KEGG pathway in DEGs. The gene ratio was represented by the x-axis, while the pathway name was
represented by the y-axis. The red color showed that the pathway’s FDR value was lower, and the larger the circle, the more genes the
pathway contained.
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Figure 4: Continued.
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Figure 4: Continued.
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Pathway

hsa04512: ECM-receptor interaction
hsa04510: focal adhesion
hsa04151: PI3K-Akt signaling pathway
hsa04933: AGE-RAGE signaling pathway in diabetic complications
hsa04926: Relaxin signaling pathway
hsa04621: NOD-like receptor signaling pathway
hsa05417: Lipid and atherosclerosis
hsa04623: Cytosolic DNA-sensing pathway
hsa04657: IL-17 signaling pathway
hsa04668: TNF signaling pathway
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Figure 4: Continued.

9Disease Markers



Pathway
R-HSA-1236394~signaling by ERBB4
R-HSA-6785807~interleukin-4 and interleukin-13 signaling
R-HSA-1280215~cytokine signaling in immune system
R-HSA-8857538~PTK6 promotes HIF1A stabilization
R-HSA-5638303~inhibition of signaling by overexpressed EGFR
R-HSA-5638302~signaling by overexpressed wild-type EGFR in cancer
R-HSA-2179392~EGFR transactivation by gastrin
R-HSA-212718~EGFR interacts with phospholipase C-gamma
R-HSA-449147~signaling by interleukins
R-HSA-179812~GRB2 events in EGFR signaling
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Figure 4: Three modules and enrichment analysis of PPI network. (a) Module 1 was made up of 39 nodes and 677 edges. (b) Module 2
included 31 nodes and 263 edges. (c) Module 3 contained 15 nodes and 33 edges. (d–f) Module enrichment outcomes.
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Figure 5: Identification of hub genes and key genes. (a) The subnetwork displayed ten hub genes according to the degree algorithm. (b) The
Venn diagram exhibited that the common gene was 0.3% of the total 291 DEGs.
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4. Discussion

Senile osteoporosis is a condition that occurs as a result of a
steady loss in systemic bone density caused by aging [25].
Their differentiation potential is critical for maintaining

bone metabolic balance. Osteogenic differentiation capacity
of BMSCs from human decreased [26–28]. Meanwhile, the
senescence-associated secretory phenotype (SASP), which
induces and enhances chronic inflammation in a multitude
of age-related diseases, may have a role in BMSCS osteogenic

Table 1: Topological result exploration for top ten hub genes in PPI of DEGs.

Huh gene Degree MNC EPC Closeness Betweenness Stress

EGFR 107 102 95.239 356.68333 74234.52841 672400

STAT1 91 89 109.877 326.1 24087.0854 308648

IRF7 73 73 106.82 291.9 7334.7781 129380

CCL2 73 73 97.514 324.71667 19443.04594 389412

COL1A1 73 73 81.424 307.58333 13754.01334 218046

IFIH1 67 66 105.53 286.35 3587.98409 63874
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differentiation [29]. This results in age-related bone mass loss,
which eventually leads to osteoporosis. Therefore, under-
standing the mechanisms that regulate the aging process and
the osteogenic differentiation direction of BMSCs related to
age is critical for the treatment of senile osteoporosis.

In recent years, geneticists have identified Bicc1 as a gene
that plays a key role in regulating bone mineral density [30].
However, little research has been conducted to determine
whether Bicc1 plays a role in the osteogenic differentiation
of aging BMSCs. Therefore, through the comprehensive
analysis of GEO data, we selected the gene expression pro-
files of Sca-1+ BMSCs from young and aged mice. The GO
and KEGG pathway enrichment analyses of differentially
expressed genes in the DAVID database revealed that DEGs
mostly activated the immune-related signal pathway and the
interferon pathway. We examined the PPI network of DEGs
and built functional modules. Then, we screened the hub
gene in the PPI network and built a prospective BICC1-
related miRNA-mRNA network in aged BMSCs.

A GSE116925 dataset including Sca-1+CD29+CD45–
CD11b–BMSC gene expression data from 3- and 18-
month-old mice was sorted for studies. Stem cell antigen-1
(Sca-1) proteins are biological markers that are found all
across stem cells [31]. Some researchers theorize that cells
with a low Sca-1 protein expression would naturally differ-
entiate. CD29, as a fibronectin receptor, participates in a
number of cell-cell and cell-matrix interactions [32]. It was
responsible for a wide range of vital biological tasks, includ-
ing embryonic development, wound healing, hemostasis,
and the prevention of programmed cell death. The expres-
sion of CD29 is linked to MSC migration.

Sca-1+ BMSCs have the properties of skeletal stem cells.
The development, maintenance, and bone remodeling are
jointly maintained by a variety of regional specific bone stem
cells (SSCs) [33]. Bone marrow, growth plate, and perios-
teum all contain SSCs, but their heterogeneity and functional
distinctions have not been adequately addressed. According
to research, Sca-1+ BMSCs were drawn to bone resorption
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sites by cytokines generated by osteoclasts during bone
resorption in order to finish the process of bone formation
[34]. At the initial absorption site, the exposed bone matrix
provides a protein-rich microenvironment for the osteo-
genic differentiation of BMSCs.

Multifunctional growth factors (BMPs, IGF-I, IGF-II,
and PDGF) have been released from bone matrix to regulate
the differentiation of skeletal stem cells into osteoblasts [35].
Growth factors are produced during osteoclast bone
resorption, ensuring that BMSCs do not differentiate into
osteoblasts before being recruited into the osteogenic micro-
environment [36]. This process ensures that new bone for-
mation always begins at the location of fresh absorption,
preserving the mechanical qualities of the bone microstruc-
ture. At the present time, most studies focus on the effect
of various factors on osteogenesis, but the specific molecular
regulation mechanism of the stem cell differentiation pro-

cess has rarely been reported, which has become the main
bottleneck for the clinical application of MSCs in the pre-
vention and treatment of osteoporosis.

We examined the hub gene detection module using the
PPI network. Hub genes were defined as those with a high
gene interaction rate or degree value, and we identified the
top ten hub genes based on degree value (EGFR, STAT1,
IRF7, CCL2, COL1A1, IFIH1, CXCL10, MX1, and IRF1).
We performed ceRNA analysis of BICC1 using TargetScan
and starBase v2.0 to determine the function of BICC1 and
DEGs in specific biological processes. The study discovered
that BICC1 is an endogenous competitive target gene of
EGFR. Recent research has revealed that members of the
EGF family play a key role in bone biology [37]. EGF
increased BMSC and osteoclast precursor cell proliferation
and migration while decreasing differentiation [38]. Stimu-
lating BMSCs with EGFR ligands might increase the
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Figure 8: Relative mRNA expression of BICC1 and EGFR in young and aged Sca-1+ BMSCs based on GSE116925.
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production of growth factors and cytokines such as vascular
endothelial growth factor (VEGF), platelet-derived growth
factor BB (PDGF-B-BB), and interleukin-6 and 8. The
RAS/MAPK, PLC/PKC, PI3K/AKT, and STAT signaling
pathways can all be activated by the EGFR signaling pathway
[39]. In EGFR mutant mice, the EGFR signal also governs
the early stage of BMSC proliferation prior to osteogenic dif-
ferentiation, which is linked to increased bone mass. The
EGFR signaling pathway suppresses the production of key
osteogenic factors such as Runx2 and Osterix [40]. Further-
more, EGFR signaling can improve osteoprogenitor survival
and antiapoptotic effects via activating the transcription fac-
tor EGR-2 [41]. Recently, researchers discovered that EGFR
signaling in BMSCs improves mechanical transduction,
implying that the EGF system functions as a mechanical sen-
sor in BMSCs [42]. Integrins and calcium channels connect
mechanical forces in the microenvironment to cell mem-
branes and primary cilia. BICC1 is coexpressed with
PKD2, which is encoded in osteoblasts, and it plays a role
in osteoblast development [43]. The polycystic protein 2
encoded by Pkd2 is a calcium ion channel protein that is
found on the cilia of osteoblasts. Primary cilia containing
PKD2/PC2 and PKD1/PC1 operate as osteoporosis-related
mechanoreceptors in osteoblasts and renal epithelial cells,
and BICC1 has been found in renal cell primary cilia [44].
Researchers also discovered that BICC1 plays a role in oste-
oblast development by suppressing miR-17 transcription
and silencing the Pkd2 gene [45]. Therefore, we speculated
whether BICC1 could regulate BMD of the elderly and oste-
ogenic differentiation of BMSCs through the EGFR pathway.

The protein encoded by STAT1 gene is the member of
STAT protein family, which is phosphorylated on tyrosine
and serine residues and responds to cytokines and growth hor-
mones such as IFN-α, IFN-β, PDGF, and EGF [46]. After type
I interferon (IFN-α and IFN-β) binds to cell surface receptors,
signal transduction via protein kinases activates Jak kinase
(TYK2 and JAK1) and phosphorylates tyrosine in STAT1
and STAT2 [47]. IRF7 is a transcriptional regulator of the type
I interferon dependent immune response and plays an impor-
tant role in the innate immune response against DNA and
RNA viruses. CXVL10, MX1, IRF1, and IRF7 are all involved
in bone immunity and interferon signaling.

BICC1 and EGFR miRNA and transcription factor analy-
ses found 11 transcription factors that could potentially be
coregulated. Smad3 and Smad4 are essential members of the
SMAD family, and Smad4 is the core molecule of the TGF
superfamily signalingmechanism [48]. The TGF-1/smad4 sig-
naling pathway is critical for osteoblast development, differen-
tiation, and death [49]. We discovered seven coregulated
BICC1 and EGFR miRNAs, with miR-484 being the ncRNA
most closely related to bone density and fracture [50]. We also
discovered that the expression of BICC1 and EGFRwas higher
in the aged Sca-1+ BMSCs than in the young.

5. Conclusion

In conclusion, our findings indicated that the immune sys-
tem and interferon signaling pathways are mostly active in
aged Sca-1+ BMSCs. BICC1, a critical gene for bone mineral

density, is linked to the hub gene EGFR, and their shared
transcription factors and miRNAs have been linked to
BMSCs activity. These findings suggested that BICC1 may
be important in the regulation of bone density and osteo-
genic differentiation in elderly osteoporosis. However, there
was no experimental evidence for differential gene predic-
tions, such as reverse transcription polymerase chain
reaction and western blot. As a result, more research was
required to uncover the potential regulatory mechanisms
of BICC1 in elderly osteoporosis.
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