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Background. There have been countless studies to date assessing specific oncogenic pathways in a range of tumor classes, but the
role of N6-methyladenosine- (m6A-) related long noncoding RNAs (lncRNAs) in colorectal cancer (CRC) remains to be defined.
Methods. We analyzed such m6A-related lncRNAs by conducting analyses of the Pearson correlation with information originating
from the databank of The Cancer Genome Atlas (TCGA). The prognostic relevance of these lncRNAs in CRC was then assessed
through a series of univariate Cox regression analyses, leading to the identification of two different m6A modification patterns;
they are associated with clinical outcomes and have been used to estimate tumor immune microenvironment (TIME) by the
CIBERSORT and ESTIMATE algorithms. We tested the expression of m6A-related lncRNAs in twelve pairs of colorectal
cancer tissues and adjacent normal tissues from patients by qRT-PCR. Results. We discovered the prognostic risk signature
composed of six m6A-related lncRNAs based upon TCGA data. When the overall survival of cases in the dataset of TCGA was
investigated, the low-risk cases survived longer than the high-risk CRC cases in both the training and testing cohorts. ROC
curves further indicated that m6A-related lncRNA prognostic signature (m6A-LPS) can effectively estimate the survival
outcomes of patients in both of these cohorts. We found that lncRNAs AC156455.1 and AC104532.2 were upregulated in
twelve colorectal cancer tissues compared with adjacent normal tissues using qRT-PCR. Conclusions. This data highlights that
the lncRNAs AC156455.1 and AC104532.2 in CRC can be used as biomarkers for diagnostics and prognosis in CRC,
demonstrating their potential as targets when designing novel immunotherapeutic regimens.

1. Introduction

Colorectal cancer (CRC) is well known as one of the most
widespread and deadly cancers all around the globe, with
roughly 400,000 and 212,000 new diagnoses and deaths
annually, respectively [1]. Novel immunotherapy-based reg-
imens developed in recent years can engage or enhance nat-
ural immunological pathways and cells within a treated host
to aid in tumor cell clearance, and many of these immuno-
therapies have been effective when applied in combination
with other treatments in individuals with a range of tumor

classes [2–4]. However, immunotherapy is commonly bene-
ficial to a poorly defined subset of cases, and therefore, novel
strategies must be devised to determine which CRC patients
are likely to respond to such treatment [2–5].

The most commonly found epigenetic modification on
mRNAs and noncoding RNAs (ncRNAs) is N6-
methyladenosine (m6A), which can alter the stability, transla-
tion, and splicing of modified RNAs in biologically important
contexts [6, 7]. As a reversible and dynamic process, the modi-
fication of m6A is controlled through three primary classes of
m6A-regulating proteins: “writers” (methyltransferases),
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“readers” (signal transducers), and “erasers” (demethylases) [8].
According to the latest studies, m6A modification has been
identified as a mechanism capable of modulating oncogenesis
in a range of tumor types. For example, METTL14 can drive
cancer advancement and maintenance in acute myeloid leuke-
mia by enhancing the self-renewal of leukemia stem cells [9],
while knocking down FTO can compromise lung squamous cell
carcinoma cell proliferative and invasive activity and the self-
renewal of glioblastoma stem cells [10, 11]. Furthermore,
YTHDF2 can decrease the EGFRmRNA stability in cancer cells
of the liver, thereby compromising their proliferation [12].

Recent research has underscored the relevance of ncRNAs
in the context of CRC both through the therapeutic delivery of
small interfering RNAs (siRNAs) as well as through in-depth
analyses of the functional importance of long ncRNAs
(lncRNAs) [13–18]. How m6A-related lncRNAs function in
the regulation of CRC onset and progression, however, has
yet to be defined, and there have been few studies exploring
the impact of m6A modification on lncRNA-mediated CRC
development. By studying the association between m6A mod-
ifications and lncRNAs in this tumorigenesis-related setting, it
may be possible to define novel biomarkers that can guide
therapeutic targeting efforts.

Herein, we leveraged the dataset of The Cancer Genome
Atlas (TCGA) and conducted a series of bioinformatics anal-
yses to clarify the prognostic relevance of m6A-related
lncRNAs in CRC cases. The overall aim of the current inves-
tigation is to conduct a systematic assessment of the rela-
tionship among m6A-related lncRNAs and CRC patient
prognosis, the composition of tumor immune microenvi-
ronment (TIME), and expression of programmed death

ligand 1 (PD-L1). Through clustering analyses and risk
modeling, we were able to initiate an m6A-related lncRNA
prognostic signature (m6A-LPS). Associations among clus-
tering subgroups, PD-L1 status, immune scores, and
immune cell infiltration were analyzed in light of m6A-LPS
as a means of further understanding the association between
this risk signature. We analyzed and confirmed m6A-related
lncRNAs AC156455.1 and AC104532.2 as biomarkers for
diagnostics and prognosis in CRC, which will provide a
new foundation for future efforts to develop effective immu-
notherapeutic treatments for CRC.

2. Materials and Methods

2.1. Data Selection. Transcriptomic and clinical outcomes
from cases with CRC were acquired from the database of
TCGA (https://portal.gdc.cancer.gov/). Initially, 23 regula-
tors of m6A RNA methylation were selected based upon
prior reports [19, 20], including 8 writers (RBM15, VIRMA,
METTL3, WTAP, METTL14, RBM15B, METTL16, and
ZC3H13), 2 erasers (FTO and ALKBH5), and 13 readers
(IGFBP2, YTHDC1-2, LRPPRC, YTHDF1-3, FMR1,
HNRNPA2B1, IGF2BP1, IGFBP3, HNRNPC, and RBMX).

2.2. lncRNA Annotation. The GRCh38 lncRNA annotation
file was downloaded from GENCODE to aid in TCGA data
annotation. In total, 14,086 lncRNAs were identified in this
dataset based upon Ensemble IDs.

2.3. Bioinformatics Analysis. Initially, m6A-related lncRNAs
were identified in each dataset via a series of Pearson’s
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Figure 1: m6A-related lncRNA identification in patients with CRC. (a) Research flow chart. (b) Gene expression heatmap for 101
prognostic m6A-related lncRNAs in pairs of tumor and paracancerous tissues. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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Figure 2: Continued.
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correlation analyses (jPearson’s Rj > 0:5 and p < 0:001).
Prognostic m6A-related lncRNAs were subsequently identi-
fied through univariate Cox regression analyses, with 101
shared m6A-related prognostic lncRNAs being identified
through comparison of overlap among TCGA datasets.

CRC patients were classified into two cohorts via a k-
means clustering approach based upon the expression of
23 m6A-modulating genes using the R “kmeans function”
using the ConsensusClusterPlus package, with 1,000 compu-
tational permutations being performed to guarantee stability
and reliability [21].

The ESTIMATE algorithm was implemented to compute
immune scores with the “estimate” R package [22]. The
CIBERSORT algorithm was further employed to approximate
the levels of intratumor infiltration via 22 various immune cell
populations according to the expression data of RNA (https://
cibersort.stanford.edu/), with 1,000 permutations of this anal-
ysis being performed and samples with a CIBERSORT p <
0:05 being retained for comparisons of differential immune
cell infiltration among CRC patient subgroups defined accord-
ing to risk scores and clustering subtypes.

The “h.all.V6.2.symbols.gmt” hallmark gene set from
MSigDB was employed for a GSEA approach conducted
using the JACA program to compare differences among
CRC patient subtypes with respect to survival outcomes.
For this analysis, 1,000 random sampling permutations were
employed. Gene set enrichment was described according to
the false discovery rate ðFDRÞ < 0:05 and NES.

An analysis of LASSO regression was performed within
the TCGA training cohort to define m6A-related lncRNA-

based prognostic risk signatures [23], with the most appro-
priate signature being selected via choosing the optimal pen-
alty criterion (l) associated with the minimum 10-fold cross-
validation. LASSO regression algorithm-derived coefficients
were employed to develop a risk score model with the fol-
lowing general equation: risk score = sum of coef f icients × e
xpression level of m6A regulator. Risk scores were individu-
ally computed for each case in the training and testing
cohorts, and cases were stratified into low- and high-risk
groups, with median risk score values serving as the cutoff
for patient stratification. Comparisons of patient outcomes
were then made through Kaplan-Meier survival curves,
while the sensitivity and specificity of this prognostic model
were established through the use of receiver operating char-
acteristic (ROC) curves.

Associations between immune cell infiltration and m6A-
related lncRNAs were further assessed by utilizing the
Tumor Immune Estimation Resource (TIMER) tool
(https://cistrome.shinyapps.io/timer/), which assessed four
types of immune cells (activated mast cells, memory B cells,
T follicular helper cells, and resting memory CD4+ T cells).
GISTIC 2.0 outcomes were implemented in the analyses of
TIMER.

2.4. RNA Isolation and qRT-PCR. We collected twelve pairs
of colorectal cancer tissues and adjacent normal tissues from
patients who recently underwent surgical treatment in the
Department of Gastrointestinal Surgery, Shanghai Changhai
Hospital. Fresh tissues were frozen and stored at −80°C. This
research was approved by the Medical Ethics Committee of
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Figure 2: m6A-related lncRNA identification and evaluation of the CRC-related intratumoral immune cell landscape. (a) Consensus
clustering matrix at k = 2. (b) Consensus clustering cumulative distribution functions (CDFs) and relative area under CDF curve from k
values of 2 through 9. (c) PD-L1 expression in normal/tumor samples and in the cluster1/2 subtypes. (d) ESTIMATE, immune, and
stromal scores in the cluster 1/2 subtypes. (e) Levels of predicted the infiltration of immune cells for 22 different immune cell subtypes
in the cluster 1/2 subtypes. ∗p < 0:05 and ∗∗p < 0:01.
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Changhai Hospital of the Second Military Medical Univer-
sity. Informed consent was acquired from each involved
patient. Total RNA from tissues of CRC patients was
extracted using TRIzol reagent (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s protocol. For comple-
mentary DNA (cDNA) synthesis, 1μg of total RNA and the
PrimeScript RT reagent kit (Takara, Otsu, Shiga, Japan) were
utilized. The SYBR Green assay (Takara) was used to per-
form qRT-PCR, and the progression was executed on a
CFX-96 system (Bio-Rad Laboratories, Inc., Hercules, CA,
USA). The GAPDH was used as an internal reference, and
the relative lncRNA expression was calculated using the 2
−ΔΔCq method. Primer sequences for qRT-PCR used in this
study are shown in Supplementary Table S1.

2.5. Statistical Studies. GraphPad Prism 8.0, R v 3.60, and
SPSS 24.0 (IBM, NY, USA) were employed for statistical
assessments. Mann-Whitney U tests were employed to com-
pare lncRNA expression in normal and tumor tissue sam-
ples. Data in different subgroups or groups were
thoroughly evaluated via Student’s t-test and one-way ANO-
VAs. Chi-square experiments were employed to assess cate-
gorical variables. The curves of Kaplan-Meier and log-rank
assessments were utilized to compare survival outcomes.
Pearson correlation analyses were used to explore the rela-
tionships among risk scores, PD-L1 status, levels of infiltra-
tion of immune cells, clinicopathological factors, and
subtypes. The independent prognostic relevance of the
scores of risk and other clinical traits was analyzed through
the analyses of the multivariate and univariate Cox regres-
sion. ROC curves were implemented to appraise the predic-
tive efficiency of m6A-related lncRNA signatures when
estimating CRC patient OS. p < 0:05 was the significance
threshold for the current research.

3. Results

3.1. m6A-Related lncRNA Identification in Patients with
CRC. We began by identifying and evaluating 14,086
lncRNAs present within the selected TCGA dataset. Initially,
expression matrices for 23 m6A-associated genes were
downloaded from the TCGA database, and those lncRNAs
that correlated with the expression of one or more of these

genes were defined as m6A-related lncRNAs
(jPearson Rj > 0:5 and p < 0:001). Clustering analysis was
conducted to separate cases in the TCGA-CRC cohort into
different groups on the basis of their expression of m6A-
related lncRNAs. The prognostic relevance of these m6A-
related lncRNAs was then further evaluated through a series
of univariate Cox regression analyses based upon a p < 0:05
cutoff within the analyzed TCGA datasets. A LASSO Cox
analysis of the resultant 101 m6A-related prognostic
lncRNAs was identified via this approach, with the overall
workflow being detailed in Figure 1(a). Patterns of prognos-
tic m6A-related lncRNA expression in CRC and normal tis-
sues are shown in Figure 1(b).

3.2. m6A-Related lncRNA Identification and Evaluation of
the CRC-Related Intratumoral Immune Cell Landscape. For
this analysis, cumulative distribution functions (CDFs) were
generated for consensus clusters for k values from 2-9
(Figure 2(a)), with the maximal area under the curve
(AUC) value for this CDF function being evident at k = 2,
at which time there was a clear difference in the expression
of m6A-related lncRNAs between the two defined clusters
(Figure 2(b)). The associations among m6A-related
lncRNAs and PD-L1 expression were next assessed, reveal-
ing that the expression of PD-L1 was considerably greater
in cluster 2 relative to cluster 1; there was also a trend toward
increased PD-L1 expression in CRC tumor tissues relative to
vicinal normal tissues (Figure 2(c)). Next, the algorithm of
ESTIMATE was employed to measure stromal and immune
scores for CRC case and tumor samples; these immune
scores differed significantly between clusters, with higher
immune ESTIMATE and stromal scores in cluster 2 patients
relative to those in cluster 1 (Figure 2(d)). The CIBERSORT
algorithm was utilized to evaluate the discrepancies in the
levels of 22 populations of immune cells in these CRC
tumors, revealing that there were high levels of M0 macro-
phages, CD8+ T cells, naïve B cells, and resting memory
CD4+ T cells in cluster 2 patient tumors (Figure 2(e)).

3.3. Validation and Construction of a Prognostic m6A-
Related lncRNA Risk Model. Risk scores were then measured
based the regression coefficients derived from the LASSO
algorithm for cases in both the TCGA testing and training
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Figure 4: Continued.
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cohorts (Figures 3(a) and 3(b)). Median risk score values
were subsequently used to separate cases into high- and
low-risk groups, and the patterns of OS and the expression
of the six m6A-related lncRNAs composing the risk score
were next assessed (Figures 3(c) and 3(d)). We found that
low-risk CRC cases exhibited a longer OS relative to high-
risk cases in either of the training and testing cohorts
(Figures 3(e) and 3(f)). ROC curves further indicated that
the developed m6A-LPS was able to reliably predict the OS
of cases in both cohorts (Figures 3(g) and 3(h)). Univariate
and multivariate analyses were then conducted, which con-
firmed that stage, age, and risk score values were all indepen-
dent predictors of patient outcomes within the TCGA
testing and training cohorts (Figures 3(i) and 3(j)).

3.4. Assessment of the Prognostic Utility of Risk Scores in
Different CRC Patient Subgroups. Next, we examined the
relationship between risk scores and CRC patient clinical
features. Heatmaps were used to evaluate the patterns of
expression of the six m6A-related lncRNAs in low- and
high-risk cases (Figure 4(a)). This revealed that
AL137782.1 and AC104819.3 were expressed at lower levels
within the high-risk group relative to the low-risk group,
whereas AC245041.1, AC138207.5, AC156455.1, and
AC104532.2 exhibited the opposite trend. To more fully
understand the prognostic values of these risk scores, we
stratified CRC cases based upon their disease status and
found that compared to low-risk cases, those in the high-
risk group exhibited worse OS for both individuals with
stage I-II and stage III-IV disease (Figure 4(b)). Similarly,
these prognostic m6A-related lncRNAs were also able to
estimate the OS of cases irrespective of age (>65 vs. ≤65
years) (Figure 4(c)), gender (female vs. male) (Figure 4(d)),

T status (T1-2 vs. T3-4) (Figure 4(e)), N status (N0 vs. N1-
3) (Figure 4(f)), and M status (M0 vs. M1) (Figure 4(g)).

3.5. Association between Risk Scores and Immune Cell
Infiltration. We explored the associations between risk
scores and intratumoral infiltration by four different
immune cell types to meticulously discover the influence of
the 6 m6A-related lncRNAs composing our risk signature
and the TIME in CRC. Risk scores are considerably nega-
tively related to infiltration by resting memory CD4+ T cells
(p = 0:023) and activated mast cells (Figures 5(a) and 5(b)),
whereas they are positively correlated with infiltration by
memory B cells (p = 0:032) and T follicular helper cells
(Figures 5(c) and 5(d)).

3.6. Validation of the Expression Levels of lncRNAs
AC156455.1 and AC104532.2 with Prognostic Signature. To
further verify the accuracy of the m6A-related lncRNA sig-
nature, the expression levels of lncRNAs AC156455.1 and
AC104532.2 were measured in twelve colorectal cancer tis-
sues and twelve adjacent normal tissues using qRT-PCR.
lncRNAs AC156455.1 and AC104532.2 were upregulated
in colorectal cancer tissues compared with corresponding
normal tissues (Figures 6(a) and 6(b)). Meanwhile, the same
results were analyzed; lncRNAs AC156455.1 and
AC104532.2 were also upregulated in colorectal cancer tis-
sues compared with corresponding normal tissues from
TCGA database (Figures 6(c) and 6(d)).

4. Discussion

Several prior reports have explored the link between m6A
modifications and the regulation of cancer pathogenesis
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Figure 4: Assessment of the prognostic utility of risk scores in different CRC patient subgroups. (a) Low- and high-risk patient group
clinicopathological findings and heatmaps. (b) Comparison of the survival of low- and high-risk cases in the dataset of TCGA (cases > 65
years old: p < 0:001 and cases ≤ 65 years old: p = 0:032). (c) Comparison of the survival of low- and high-risk cases in the dataset of
TCGA (males: p = 0:004 and females: p < 0:001). (d) Comparison of the survival of low- and high-risk cases in the dataset of TCGA
(cases with stage I-II disease: p < 0:001 and cases with stage III-IV disease: p = 0:004). (e) Comparison of the survival of low- and high-
risk cases in the dataset of TCGA (cases with T1-2 disease: p = 0:140 and cases with T3-4 disease: p < 0:001). (f) Comparison of the
survival of low- and high-risk cases in the dataset of TCGA (cases with N0 disease: p < 0:001 and cases with N1-3 disease: p = 0:004). (g)
Comparison of the survival of low- and high-risk cases in the dataset of TCGA (M0 cases: p < 0:001 and cases with M1: p = 0:015). All
survival outcomes were compared through curves of Kaplan-Meier and log-rank experiments.
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[24–28], but the mechanisms whereby lncRNAs may shape
this relationship are yet to be defined. KIAA1429 has been
indicated to drive the progression of liver cancer through
the m6A modification of the lncRNA GATA3 [29]. In glio-
blastoma stem cells, the lncRNA FOXM1-AS has been illus-
trated to influence interactions among FOXM1 and
ALKBH5 to shape cell maintenance [24]. In light of the
above results, we speculate that m6A modifications of spe-
cific mRNAs may shape oncogenesis, and as such, further
study of the impact of such m6A modifications on lncRNA
function is warranted to better identify key therapeutic tar-
gets or prognostic biomarkers associated with particular
cancers. LINC00265 has been shown to predict undesirable
findings in cases with AML [30], while LINC00665 has been
associated with enhanced activation of the pathway of PKR/
NF-κB hepatocellular carcinoma and with concomitant
increases in malignancy [31], while in gastric cancer, this
same lncRNA can activate the Wnt pathway to promote
tumor progression [32]. In our study, we explored the prog-
nostic relevance of m6A-related lncRNAs by analyzing data
from 437 CRC patients in the TCGA database. We ulti-
mately defined 101 prognostically relevant m6A-related
lncRNAs, of which 6 were employed to establish an m6A-
related lncRNA prognostic signature (m6A-LPS) capable of

estimating the OS of patients with CRC. When stratified into
low- and high-risk groups following the median risk score
values, high-risk CRC patients survived for significantly
shorter periods relative to low-risk patients. Multivariate
analyses further indicated that these m6A-LPS values were
independent predictors of CRC patient OS. While several
of the lncRNAs within our risk signature have been studied
in oncogenic contexts, they have not been analyzed in the
context of CRC, and there have been few reports regarding
interactions between these lncRNAs and m6A-associated
genes. As such, our findings offer novel insights regarding
lncRNAs targeted by m6A regulators in the context of
CRC, potentially shedding new light on their ability to pro-
mote CRC onset and progression.

The heterogeneous tumor microenvironment (TME)
often harbors a diverse array of immunosuppressive signals,
shaping tumor development, patient prognosis, and thera-
peutic responses [33–36]. The TME consists of an assorted
immune cells, vascular structures, and stromal cells, all of
which can impact the oncogenic progression associated with
a given tumor type. Immune cell infiltration within the TME
can predict patient outcomes and is often correlated with
tumor grade, stage, and metastasis [37, 38]. For example,
tumor-associated macrophages (TAMs) can generate
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Figure 5: Associations between risk scores and immune cell infiltration. (a–d) Memory B cells (a), activated mast cells (b), resting CD4
memory T cells (c), and T follicular helper cells (d).
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immunosuppressive cytokines including TGF-B and IL-10
for example, which can drive preferential tumor outgrowth
and contribute to poor patient outcomes [39–41]. More
potent tumor infiltration by CD4+ and CD8+ T cells, on
the contrary, is often related to better patient survival and
a higher response rate to immunotherapy [42]. We observed
that PD-L1 expression levels in cluster 2 were considerably
greater relative to cluster 1, and a trend towards increased
PD-L1 expression in CRC tissues relative to normal tissues.
It is critical that consensus criteria be established in order
to determine the CRC cases that are most probable to
respond to immunotherapeutic treatment. We found that
the ESTIMATE, stromal, and immune scores of cluster 2
were greater than those in cluster 1. This strongly suggests
a close relationship between patterns of m6A-related
lncRNA expression and the ability of particular immune
cells to enter or persist within the TIME, thereby altering
patient responses to immunotherapeutic intervention. Risk
scores were all negatively associated with activated mast cell
and resting memory CD4+ T cell infiltration in this study,
whereas they were positively associated with memory B cell
and T follicular helper cell infiltration. We reported that
lncRNAs AC156455.1 and AC104532.2 were upregulated

in colorectal cancer tissues compared with corresponding
normal tissues using qRT-PCR, compared with previous
studies. Therefore, lncRNAs AC156455.1 and AC104532.2
can be used as biomarkers for diagnostic and prognosis in
CRC, to provide new targets for future immunotherapy.

5. Conclusions

In summary, we herein conducted a systematic assessment of
the prognostic relevance of m6A-associated lncRNAs in CRC
and explored their associations with PD-L1 expression and the
TIME. Risk scores derived from m6A-associated lncRNA-
based expression signatures were also found to be indepen-
dently related to CRC patient prognosis, and further predictive
analyses suggested that these lncRNAs may be associated with
the regulation of the TIME in CRC tumors. As such, lncRNAs
AC156455.1 and AC104532.2 associated with tumor immune
responses have the potential to guide the design of modern
immunotherapeutic treatments for CRC.
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TIME: Tumor immune microenvironment
TCGA: The Cancer Genome Atlas
CRC: Colorectal cancer
LASSO: Least absolute shrinkage and selection operator
M6A-LPS: m6A-related lncRNA prognostic signature
siRNA: Small interfering RNAs
lncRNAs: Long noncoding RNAs
PD-L1: Programmed death-ligand 1
ROC: Receiver operating characteristics
FDR: False discovery rate
TIMER: Tumor Immune Estimation Resource
CDFs: Cumulative distribution functions
AUC: Area under the curve
GSEA: Gene set enrichment analysis
OS: Overall survival
TAMs: Tumor-associated macrophages.
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