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Objectives. To differentiate the primary site of brain metastases (BMs) is of high clinical value for the successful management of
patients with BM. The purpose of this study is to investigate a combined radiomics model with computer tomography (CT) and
magnetic resonance imaging (MRI) images in differentiating BMs originated from lung and breast cancer. Methods. Pretreatment
cerebral contrast enhanced CT and T1-weighted MRI images of 78 patients with 179 BMs from primary lung and breast cancer
were retrospectively analyzed. Radiomic features were extracted from contoured BM lesions and selected using the Mann–
Whitney U test and the least absolute shrinkage and selection operator (LASSO) logistic regression. Binary logistic regression
(BLR) and support vector machine (SVM) models were built and evaluated based on selected radiomic features from CT alone,
MRI alone, and combined images to differentiate BMs originated from lung and breast cancer. Results. A total of 10 and 6
optimal radiomic features were screened out of 1288 CT and 1197 MRI features, respectively. The mean area under the curves
(AUCs) of the BLR and SVM models using fivefolds cross-validation were 0.703 vs. 0.751, 0.718 vs. 0.754, and 0.781 vs. 0.803
in the training dataset and 0.708 vs. 0.763, 0.715 vs. 0.717, and 0.771 vs. 0.805 in the testing dataset for models with CT alone,
MRI alone, and combined CT and MRI radiomic features, respectively. Conclusions. Radiomics model based on combined CT
and MRI features is feasible and accurate in the differentiation of the primary site of BMs from lung and breast cancer.

1. Introduction

With the improvements in cancer management over the past
few decades, the survival of cancer patients has been
increased [1]. This leads to an increasing incidence and
detection of brain metastases (BMs) with the availability of
more precise and innovative neuroimaging modalities [2,
3]. BM has become the most common intracranial tumor
and an important cause of morbidity and mortality in adults,
which occurs in up to 30% of adult cancer patients [4].
Occasionally, BMs are detected before diagnosing their pri-
mary tumor sites. Previous studies demonstrated that about
2–15% of patients with BMs do not have an existing cancer

diagnosis and their primary cancer cannot be identified
despite investigations [5].

The differentiation of the primary sites is of high clinical
importance for the successful management of patients with
BMs, as the treatment and prognosis of BMs are highly
dependent on the molecular characteristics of the primary
tumors [6], especially for targeted therapies and immuno-
therapy [7, 8]. With the emergence of radiomics, extracting
quantitative features from clinical imaging arrays has
become a promising noninvasive differentiation method
for BMs [9]. Kniep et al. demonstrated an area under curve
(AUC) of 0.64 and 0.82 in the prediction of BMs from non-
small-cell lung cancer (NSCLC) and melanoma using
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magnetic resonance imaging (MRI) radiomics, respectively
[10]. Ortiz-Ramón et al. also used MRI images to classify
BMs by their primary sites using radiomic approach and
achieved AUCs of 0:963 ± 0:054, 0:936 ± 0:070, and 0:607
± 0:180 in the differentiating BMs from lung vs. breast can-
cer, lung cancer vs. melanoma, and breast cancer vs. mela-
noma, respectively [11, 12].

MRI is the preferred modality for detecting brain lesions
and differentiation, but with mixed differentiation accuracy
for BMs. Computer tomography (CT) is also an accepted
primary modality for BMs screening, and it is extremely use-
ful for screening new neurological signs or symptoms with
or without a history of malignancy [13]. In previous studies,
only the random forest was applied for model construction
with single image modality. The purpose of this study is to
investigate the feasibility and accuracy of a combined radio-
mics analysis with multiple images of MRI and CT in the
differentiating BMs originated from primary lung cancer
and breast cancer.

2. Materials and Methods

2.1. Patients and Images. By searching the electronic medical
records, patients with confirmed BMs originated from lung
cancer and breast cancer treated in the authors’ institute
between January 2016 and June 2020 were retrospectively
reviewed and analyzed. The study was conducted in accor-
dance with the Declaration of Helsinki and approved by
the Ethics Committee in Clinical Research (ECCR) of the
authors’ hospital (ECCR#2019059). The need of written
informed consent was waived with confirmation of patient
data confidentiality by ECCR for this retrospective study.

All the enrolled patients had pretreatment cerebral
CECT and contrast-enhanced T1-weighted MRI images.
Cerebral CT images were acquired by a CT simulator with
a 16-detector row (Brilliance, Phillips) under identical scan-
ning parameters: 100 kV, 180–280mA at 3mm slice thick-
ness. BM patients were immobilized with a thermal plastic
in supine position for radiotherapy simulation with 100mL
iodinated contrast material injected intravenously at a rate
of 3.0 to 4.0mL/s via a high-pressure injector before CT
scans. T1-weighted MRI was performed using a 1.5T
(MAGNETOM Avanto, Erlangen, German) or 3.0T MRI
scanner (Philips Achieva 3.0T, Ohio, United States) with
intravenously injected iodinated contrast material before
MRI scans. CT images were not normalized with a pixel
spacing resampled to 1 × 1 × 1mm3 as they were acquired
by the same CT simulator. MRI images were normalized
with scale equal to 100 because they were acquired by two
different MRI scanners. The pixel spacing of MRI image
was resampled to 2 × 2 × 2mm3 in this study.

2.2. Feature Extraction. Brain tumors in the CT and MRI
images were manually contoured by a same junior radiation
oncologist and verified by a senior radiation oncologist
through 3D Slicer software (version 4.2.1, https://www
.slicer.org) (CT images) and ITK-SNAP (version 3.6.0,
https://www.itksnap.org) (MRI), respectively. For patients
with 2 or more metastases, all tumors and all slices of tumor

were contoured. Radiomic features were extracted and ana-
lyzed for individual BM lesion. Typical contours in CECT
and MRI are shown in Figure 1.

Radiomic features were extracted from contoured
regions of interest (ROIs) from the CT and MRI using the
Python package (PyRadiomics) [14]. Extracted features
comprised of first-order features, shape features, and texture
features, such as grey-level co-occurrence matrix (GLCM),
grey-level run-length matrix (GLRLM), grey-level size-zone
matrix (GLSZM), and grey-level dependence matrix
(GLDM) features. Based on the adding sigma levels Lapla-
cian of Gaussian (Log) filters and Wavelet filters, a total of
1288 features and 1197 features were extracted from each
lesion in CT and MRI, respectively, according to the scor-
ing/selection criteria of PyRadiomics (http://pyradiomics
.readthedocs.io/). The extraction parameters for the radio-
mic features of CT and MRI images are shown in Supple-
mentary Material.

2.3. Feature Selection and Model Building. The enrolled
patients were randomly divided into a training dataset
(70%) and a testing dataset (30%) according to individual
tumors. In the training dataset, potential informative radio-
mic features were selected firstly by the Mann–Whitney U
tests for those with a P < 0:05. Then, the “elastic net” was
used to select the optimal features by combining the least
absolute shrinkage and selection operator (LASSO) and the
Ridge Regression [15]. A tenfold cross-validation was
applied to avoid overfitting, and the parameter of the elastic
net (λ) was tuned to maximize the AUC of receiver operat-
ing characteristic (ROC) curve to select key features.

Logistic regression models and support vector machine
(SVM) models were built and evaluated based on selected
radiomic features from CT alone, MRI alone, and combined
images. The performance of the radiomic models was assessed
by the mean AUCs of fivefold cross-validation in the training
dataset and independently validated on the testing dataset.

2.4. Statistical Analysis. The Mann–Whitney U test was per-
formed with SPSS software (version 19.0, IBM, Armonk,
NY, USA). The LASSO logistic regression and logistic
regression model were performed using R analysis platform
(version 3.0.1) along with the “glmnet” package (http://www
.Rproject.org). The SVM model was achieved by the “e1071”
package. The ROC curve was performed by python module
(scikit-learn). For all tests, P < 0:05 was considered as stati-
cally significant.

3. Results

3.1. Patients’ Characteristics. The flowchart for patient selec-
tion is shown in Figure 2. A total of 78 patients with BM
treated from January 2016 to June 2020 with primary lung
and breast cancer were reviewed, in which 53 (38 males, 15
females) patients originated from lung cancer with a total
of 95 BMs with a median age of 62 years old (range from
46 to 79) and 25 patients (1 male, 24 females) originated
from breast cancer with a total of 84 BMs with a median
age of 52 years old (range from 33 to 77). Table 1 shows
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the demographic and clinical characteristics of the enrolled
patients according to individual tumors. The clinical charac-
teristics of the patients according to individual patient are
shown in Table s1 of the Supplementary Material.

3.2. Selected Features. There were 116 and 132 features
selected from 1288 and 1197 features and correlated with
primary site in the CECT images and MRI, respectively,
according to the Mann–Whitney U test with a P < 0:05. As
shown in Figure 3, a total of 10 and 6 optimal radiomic fea-
tures were screened out of 116 CT features and 132 MRI fea-
tures, respectively, based on the LASSO logistic model and
the tune of λ. The selected 10 features from CT included 2
first-order features, 3 GLCM features, 3 GLSZM features,

and 2 GLRLM features. The selected 6 features from MRI
included 2 first-order features, 1 GLCM features, and 3
GLSZM features, as shown in Table 2.

3.3. Performance of Models. Three logistics regression
models and three SVM models were built according to fea-
tures extracted from CT alone, MRI alone, and combined
CT and MRI, respectively. In the training dataset, the
achieved mean AUCs with fivefold cross-validation of the
three logistic regression models and three SVM models in
the differentiation BMs from lung and breast cancer were
0.703 vs. 0.751, 0.718 vs. 0.754, and 0.781 vs. 0.803 for CT
alone, MRI alone, and combined CT and MRI, respectively.
In the testing dataset, the achieved AUCs of the three logistic

(a) (b)

Figure 1: Typical contours of brain metastases on CT and MRI images.

Exclude

Exclude

Patient with lung cancer ot breast cancer brain metastases
between January 2016 and June 2020 (n = 695)

Patients without brain CECT images (n = 471)

Patients with brain CECT images (n = 224)
(lung; n = 160, breast; n = 64)

Patients enrolled (n = 78)

Patients without MR images and time of
acquisition exceed 15 days (n = 146)

Patients with lung cancer
brain metastases (n = 53)

Patients with breast cancer
brain metastases (n = 25)

Figure 2: Flowchart of patient selection for this study.

Table 1: Demographic and clinical characteristic of the training and testing datasets according to individual tumors.

Characteristics Training dataset (N = 125) Testing dataset (N = 54) P value
Primary site Lung (N = 64) Breast (N = 61) Lung (N = 31) Breast (N = 23)
Gender, no (%) 0.77

Male 46 (71.9%) 2 (3.3%) 22 (71.0%) 0 (0.0%)

Female 18 (28.1%) 59 (96.7%) 9 (29.0%) 23 (100.0%)

Age, mean ± SD (years) 63:3 ± 8:7 47:7 ± 11:1 62:4 ± 1:5 49:2 ± 2:1 0.63

Median age (years) 62.5 (46-79) 46.0 (33-77) 62.0 (46-78) 49.0 (33-74)

3Disease Markers



–10

0.45

0.50

A
U

C
0.55

0.60

0.65

0.70

0.75 70 68 68 65 61 57 55

Log (𝜆)

42 27 21 17 10 469 69

–8 –6 –4 –2

(a)

0

Co
effi

ci
en

ts

2000 4000 6000

–500

0

500

1000

0 63 69 68

L1 norm

(b)

–6

0.4

0.5

0.6

0.7

A
U

C

52 47 41 35 34 32 25 17 15 14 8 7 6 5 4 2 0

Log (𝜆)
–5 –4 –3 –2

(c)

Figure 3: Continued.
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regression models and three SVM models in the differentia-
tion BMs from lung and breast cancer were 0.708 vs. 0.763,
0.715 vs. 0.717, and 0.771 vs. 0.805 for CT alone, MRI alone,
and combined CT and MRI, respectively. The ROC curves of
these six models are shown in Figure 4. A detailed compar-
ison among these six models in the testing dataset is pre-
sented in Table 3.

4. Discussion

In this study, the feasibility and accuracy of differentiating
the primary lung and breast cancer for patients with BM

based on combined radiomic features extracted from brain
CECT and MRI were investigated. A best AUC of 0.805
was achieved for models built on combined CT and MRI
radiomic features in the differentiation between BMs origi-
nated from lung and breast cancer.

BM is the most common type of brain tumors in adults
with relatively poor prognosis [16, 17]. It was reported that
over 70% BM patients have multiple brain lesions at the time
of diagnosis [18]. In this study, the average number of brain
metastasis was 2.3 for the enrolled patients, with an average
number of 1.8 and 3.4 BMs for patients originated from lung
cancer and breast cancer, respectively. Lung cancer and
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Figure 3: Optimal radiomic features screening using the elastic net method (a) and (c) tuning parameter (λ) in the elastic net using tenfold
cross-validation via maximum area under curve and criterion of minimum standard deviation (b) and (d) the coefficient profiles of selected
radiomic features against the L1 norm (inverse proportional to log (λ). (a) and (b) for CT images and (c) and (d) for MRI images.

Table 2: List of selected radiomic features from CT and MRI images.

Image modality Filter Features P value

CT

Original firstorder_10Percentile 0.005

Original glszm_LowGrayLevelZoneEmphasis 0.016

Log-sigma-2-0-mm glrlm_ShortRunEmphasis 0.007

Log-sigma-3-0-mm glrlm_ShortRunEmphasis 0.007

Wavelet-HHL firstorder_90Percentile 0.034

Wavelet-HHL glcm_Imc2 0.006

Wavelet-HLH glcm_Contrast 0.008

Wavelet-LHH glcm_Contrast 0.003

Wavelet-LHH glszm_SizeZoneNonUniformityNormalized 0.029

Wavelet-LLL glszm_GrayLevelNonUniformityNormalized 0.018

MRI

Log-sigma-4-0-mm firstorder_Kurtosis 0.024

Log-sigma-4-0-mm glszm_SizeZoneNonUniformityNormalized 0.027

Log-sigma-5-0-mm glszm_LargeAreaHighGrayLevelEmphasis 0.032

Wavelet-HHL glcm_DifferenceAverage 0.009

Wavelet-HLH glszm_SizeZoneNonUniformityNormalized 0.036

Wavelet-HLL firstorder_InterquartileRange 0.014

5Disease Markers



breast cancer are the two most common origins of BMs [19,
20]. The differentiation of pathological types of primary lung
and breast are of critical value in the management of BMs [7,
21].

Although, histopathological examination is still the stan-
dard for diagnosis of brain tumors [22], the procedure-
related complications of biopsy [23], the heterogeneity, and
biological diversity of brain tumors had promoted noninva-

sive differentiation methods with imaging and radiomics
[24]. Radiomics has been widely applied in neurooncology
to improve the understanding of the biology and treatment
in brain tumors by extracting quantitative features from
clinical imaging arrays [25]. Kniep et al. used MRI radiomics
and achieved an AUC of 0.64 and 0.82 in the prediction of
BM originated from NSCLC and melanoma, respectively
[10]. Only the machine learning method of the random
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Figure 4: Models evaluation with mean receiver operation characteristic curves and values of area under curves for CT radiomic features
alone, MRI radiomic features alone, and combined CT and MRI radiomic features in the training (a, c) and testing dataset (b, d).
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forest was used for model construction in previous studies.
In this study, the LR model and SVM model were used
and a best AUC of 0.717 was achieved with MRI in the dif-
ferentiation BM from NSCLC and breast cancer. Studies
indicated that 3D MRI texture features may improve the dif-
ferentiation accuracy in some situation with a highest AUC
of 0:963 ± 0:054 and 0:947 ± 0:067 were achieved in the dif-
ferentiation BMs originated from lung cancer and mela-
noma, and lung cancer and breast cancer, respectively, but
the differentiation BM from melanoma and breast cancer
was unsuccessful (AUC = 0:607 ± 0:180) [11, 12].

Multimodality imaging has been frequently applied in
the clinics to overcome the limitations of the independent
techniques. Multimodal radiomics had also been investi-
gated to add value in the diagnosis and treatment evaluation
[26, 27]. In one of our previous study, we found that CT
radiomics was able to differentiate the primary adenocarci-
noma (AD) and squamous cell carcinoma (SCC) for BM
patients originated from NSCLC with a highest AUC of
0.828 [28]. In this study, a similar AUC of 0.763 was
achieved with CT images in the differentiating BMs from
lung cancer and breast cancer. As we can see from the results
of this study, the combined CT and MRI radiomics greatly
improved the model performance in the differentiating
BMs from lung cancer and breast cancer (best AUC =
0:805).

One limitation of this study is that the image data are
from a single center. A large sample from multiple centers
is needed to further improve the generalizability and stability
of our models. Another limitation is that only BMs origi-
nated from lung cancer and breast cancer were analyzed in
this study, BMs from melanoma, colorectal cancer, and
other origins were excluded due to the limited cases avail-
able. Moreover, although a highest AUC of 0.805 was
achieved in the final testing dataset with the combined
model, the lower bound of the AUC in the testing dataset
is not ideal, which indicated further validation is needed to
confirm model stability. To our knowledge, this study is a
first attempt to differentiate BMs according to its primary
site of origin based on CT texture features. Multimodal
radiomics by integrating more imaging modalities, such as
PET and MRI, should be considered in our future studies.

In conclusion, radiomics based on both CT features and
MRI features are feasible to differentiate the primary site of
origin for BM patients. The combination of CT and MRI
radiomics improved the performance in the differentiation
BMs originated from lung cancer and breast cancer.
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