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The crucial role of epigenetic regulation, especially the modifications of RNA N6-methyladenosine (m6A), in immunity is a
current research hotspot. However, the m6A modifications in primary Sjögren’s syndrome (pSS) and the immune infiltration
pattern they govern remain unknown. Thus, the patterns of 23 m6A regulator-mediated RNA modifications in parotid or
blood samples from pSS patients were evaluated by bioinformatics analysis in the current study. Comparing m6A regulators
between control and pSS patients showed that m6A regulators are associated with pSS, and regulators also had differential
correlations. Further clustering analysis and comparison of gene expression and immune cell infiltration between m6A
modification patterns revealed that each modification pattern had its own unique genetic and immune profile. Multiple
immune cell infiltrations were differentially expressed between the patterns. The enrichment of gene ontology between the two
patterns in parotid was concentrated on RNA metabolism and processing. The KEGG pathway enrichment and weighted
correlation network analysis further showed that the autophagy pathway might be involved in the m6A modification patterns
in pSS. Together, these findings suggest that m6A regulators play a certain role in the immune cell infiltration of parotid tissue
in pSS.

1. Introduction

Primary Sjögren’s syndrome (pSS) causes significant damage
to the exocrine glands, resulting in decreased lacrimal and
salivary production [1]. Dry mouth caused by salivary gland
dysfunction may further lead to a range of oral diseases such
as tooth decay, salivary gland inflammation, altered taste,
bad breath, and painful swallowing. In addition to the char-
acteristic glandular symptoms, other systemic symptoms,
like extra-glandular manifestations, are also seen in a small
percentage of individuals [2]. Numerous studies have shown
that immune cell infiltration is a prominent pathological
feature of pSS [3, 4]. For example, the number of CD4+-

CD25+ Treg cells and FoxP3 protein expression are signifi-
cantly reduced in salivary gland biopsies from patients
with pSS compared to healthy individuals, and the FoxP3
expression in peripheral blood is similarly reduced in this

patient population [5–7]. Routinely, the clinical diagnosis
of pSS is usually based on the presence of dry eyes and dry
mouth symptoms, usually with objective evidence of kerato-
conjunctivitis and/or reduced salivary flow, and the widely
accepted histological criteria for confirming pSS is massive
immune cell infiltration of the salivary glands [8]. From a
pathological point of view, the elimination of inflammatory
infiltrates and reversal of glandular dysfunction remain
significant challenges in the clinical management of this
disease. Hence, understanding the immune-related mecha-
nisms of pSS may be the key to uncovering its pathology
and may reveal some new immunotherapeutic approaches
for pSS, which may also further alleviate the development
of oral disease complications.

Traditionally, epigenetics includes reversible modifica-
tions of DNA and histones, which can be expressed indepen-
dently of DNA sequences for genes [9]. Recently, RNA
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modifications, such as RNA processing and metabolism,
have been considered a new layer of epigenetic phenomena
[10, 11]. RNA modifications are present in all organisms,
and more than 150 modifications have been identified, the
most abundant form of which is RNA N6-methyladenosine

(m6A) [12, 13]. m6A modifications are dynamic in eukary-
otic cells mediated by a combination of regulation by meth-
yltransferases, demethylases and binding proteins, which are
cited as “writers”, “erasers”, and “readers”, respectively [14].
Specifically, the methylation process of m6A is regulated by
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Figure 1: The expression profile of the m6A RNA methylation regulators in pSS is shown. (a) The m6A RNA methylation modifications of
“writers”, “erasers” and “readers” govern the dynamic reversible biological processes in pSS. (b) Protein-protein interactions for the 23 m6A
RNA methylation regulators were investigated. (c) Research flow chart for this study.
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methyltransferases, including METTL3, METTL14, WTAP,
ZC3H13, RBM15, RBM15B, CBLL1, and KIAA1429;
demethylases control the demethylation of m6A, including
ALKBH5 and FTO; and m6A readers are proteins that bind
to m6A to recognize its methylation pattern, and subse-
quently mediate the regulatory function of m6A, such as
the YTHDF and IGF2BP families [15].

m6A regulation can explain some of the basic mecha-
nisms of immune regulation of systemic autoimmune
diseases [16]. However, the role of m6A in the pathogenesis
of pSS, particularly the immune cell-mediated response in
the parotid tissue of patients, has not been reported. In this
study, a detailed examination of the immune cell’s alter-
ations among the various subtypes of m6A modification
patterns of pSS, as well as the elaboration of the biological
phenomena mediated between the patterns were performed
by bioinformatics analysis. These findings will help
researchers to better grasp the pathophysiology of pSS and
may shed light on the pathogenesis of pSS from a novel per-
spective, potentially revealing some new potential targets for
treating pSS.

2. Method

2.1. Data Processing. The data for this study came from two
different sample sets: parotid tissue and whole blood. The

parotid tissue study for pSS encompassed 18 control samples
(patients without subjective symptoms of dry mouth and dry
eyes) and 17 pSS samples. The whole blood sample study for
pSS included 30 healthy control samples and 30 pSS sam-
ples. Sample handling methods and RNA extraction proto-
cols have been described in previous studies [17, 18].
Affymetrix Human Genome U133 Plus 2.0 Array chips were
used to measure gene expression in the samples according to
the manufacturer’s recommendations. The serial numbers
GSE40611 for parotid samples and GSE84844 for blood
samples are stored in the GEO (Gene expression omnibus)
database. The acquired data were normalized with the “nor-
malizeBetweenArrays” order in the R software package
“limma” [19]. The R-4.1.1-win version of the R software
was used in the current study [20].

2.2. Analysis of Alterations in m6A Regulators between
Control and pSS in Parotid and Blood Samples. The 23
m6A regulators’ protein-protein interaction networks were
reviewed from the metascape database (https://metascape
.org) [21]. To discover densely coupled network compo-
nents and define their roles, the Molecular Complex Detec-
tion (MCODE) method was used [22]. For m6A studies in
pSS, the expression of m6A regulator-related genes was
obtained from parotid and whole blood datasets and used
to study the expression relationships of 23 m6A regulators
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Figure 2: The transcriptome expression status of 23 m6A regulators in the blood (a) and the parotid (b) was compared between control
(con) and Sjögren’s syndrome (treat) using a box plot and a heat map plot.
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Figure 3: Continued.
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in control and pSS groups. The differences in expression
status of the 23 m6A regulators between the two groups
were compared by Wilcoxon-Vorzeichen-Rang-Test. The
R packages “heat map”, “reshape2”, and “ggpubr” were
used for the illustration of heatmaps and box plots. Addi-
tionally, Spearman correlation analysis was used to examine
the correlation between “readers” and “erasers”.

2.3. Identification of m6A Modification Pattern in pSS. A
cluster analysis was performed on pSS samples to identify
different m6A modification patterns based on the expression
of 23 m6A regulators. To determine the number and
strength of clusters, consensus clustering techniques based
on the R package “ConsensusClusterPlus” were employed.
Based on the data of consensus clustering and the principal
component analysis (PCA), we further validated the expres-
sion of m6A regulators in different modification patterns.
The m6A regulators’ expressions were compared between
the two (blood and parotid) modification patterns.

2.4. Analysis of Immune Cell Infiltration in Different m6A
Modification Patterns. A single sample gene set enrichment
analysis (ssGSEA) [23] was applied to estimate the specific
immune cell populations, and an assessment of the activity
of specific immune responses infiltrated into different m6A
modification patterns was conducted. Further, the correla-
tion of m6A modulators with immune cell fractions was
determined by spearman correlation analysis. Based on the
comparison results of m6A regulators-related gene expres-
sion between the two patterns, the two genes with the rela-
tively highest significant differences in the blood (FMR1
and IGF2BP2) and the parotid (HNRNPC and FMR1) sam-
ples were selected for further analysis. The samples were
divided into two groups of high and low expression accord-

ing to the expression of the target genes, and the immune
cell infiltration was compared between the two groups.

2.5. Biological Enrichment Analysis for the m6A Modification
Pattern in Parotids. In response to the biological phenomena
regulated by the m6A modification pattern in the parotid
gland, differentially expressed genes of the two m6A modifi-
cation patterns were used for gene ontology (biological pro-
cesses, molecular function, and cellular components) and
KEGG pathway enrichment analysis. Analysis of variance
was set to adjust for an adjusted p value of <0.05 as a cut-
off criterion. “enrichGO” and “enrichKEGG” orders were
performed in R software for gene ontology and pathway
enrichment analysis. Circle charts, bar charts, and bubble
charts are used for the result exhibition.

2.6. Identification of Genes Mediated by m6A Regulators by
Weighted Gene Co-Expression Network Analysis (WGCNA).
The R package “WGCNA” was loaded and used to con-
struct a network of coexpression modules and to identify
genes mediated by the m6A regulator [24, 25]. In brief,
after constructing the coexpression similarity and the fam-
ily of adjacency functions, the adjacency matrix of genes is
converted into a topological overlap matrix (TOM) matrix,
and then the color modules are determined by the TOM-
based dissimilarity and similar module clustering. Finally,
relationships between m6A modification patterns and
color modules were determined. The bubble chart of the
module membership in the optimal module versus the
gene significance was illustrated. The top 100 interactions
of the nodes in the optimal module based on the weight
rank were analyzed and illustrated by Cytoscape software.
In addition, KEGG signaling pathway enrichment of
optimal module genes was performed, and the top 10
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Figure 3: Consensus clustering of 23 m6A regulators for blood or parotid samples in Sjögren’s syndrome. (a) The cumulative distribution
function (CDF), the relative change in area under the CDF curve, the heat map of the consensus matrix and the principal component
analysis (PCA) for blood samples in pSS. (b) The expression status of m6A regulators between the two m6A subtypes of modification
patterns in blood samples of pSS is shown as a box plot and a heat map plot. (c) CDF, the relative change in area under the CDF curve,
the heat map of the consensus matrix and the PCA for the parotid samples in pSS. (d) The expression status of m6A regulators between
the two m6A modification patterns in parotid samples of pSS is shown as a box plot and a heat map plot.
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genes in the optimal module were analyzed by the net-
work string_interactions (https://string-db.org/) [26] and
Cytoscape software [27].

3. Results

3.1. The Landscape of m6A Regulators. This investigation
involves 23 m6A regulators, comprising 8 writers, 13
readers, and 2 erasers. Figure 1(a) summarizes the functional
profile of m6A regulators in blood and parotid samples of
pSS patients. The protein-protein interaction enrichment
analysis of the 23 m6A regulators has been carried out in
the Metascape platform based on the Molecular Complex
Detection (MCODE) algorithm (Figure 1(b)). The regula-
tory interactions of m6A can be classified into MCODE_1
and MCODE_2 subtypes. The MCODE_1, which is centered
on the RBM15, is described as the regulation of the mRNA

metabolic process and the regulation of mRNA/RNA stabil-
ity. Meanwhile, MCODE_2 comprises RNA/mRNA methyl-
ation and RNA modification. In addition, the research flow
chart for this study is shown in Figure 1(c).

3.2. m6A Regulators Are Involved in pSS. To investigate the
possible contribution of m6A to pSS, we compared the
gene expression of 23 m6A regulators in normal control
(con) and patient (treat) groups. As far as the blood sam-
ples were concerned, the box plot and heat map showed
that except for the genes CBLL1, YTHDC1, LRPPRC,
HNRNPA2B1 and IGF2BP1, other genes in the 23 m6A
regulators were up- or down-regulated between the two
groups (Figure 2(a)). In addition, correlation analysis
between “erasers” and “writers” regulators showed a nega-
tive correlation between FTO and WTAP and a positive
correlation between FTO and RBM15B in the blood
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Figure 4: Differential analysis of immune cell infiltration from blood samples in the subtypes of m6A modification patterns. (a) Several
differences in immunocytotic infiltration were observed in two m6A modification patterns. (b) The correlation between infiltrating
immunocytes and m6A regulators, as well as a comparison of immunocytotic infiltrating between high and low expression groups for
FMR1 or IGF2BP2.
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samples of pSS. The box plot and heat map for the parotid
samples showed that RBM15, CBLL1, HNRNPC, and
FMR1 genes possess different expressions between control
and patient groups (Figure 2(b)).

3.3. The m6A Modification Patterns Mediated by 23
Regulators in pSS. In order to better understand m6A mod-
ification patterns in pSS samples based on the expression of
23 m6A regulators, we performed a consensus clustering
analysis. Two distinct modification patterns of pSS were
identified for the blood samples, including 12 samples in
subtype-A and 18 in subtype-B (Figure 3(a)). METTL14,
RBM15, RBM15B, YTHDF1, YTHDF3, FMR1, IGF2BP2,
and ALKBH5 showed a clear difference between the
subtypes, with the most notable differences in FMR1
(Figure 3(b)). In addition, two distinct modification patterns
of pSS have been identified in parotid samples, including 4
samples belonging to subtype-A and 13 samples belonging
to subtype-B (Figure 3(c)). The genes RBM15, HNRNPC,

and FMR1 are differently expressed between clusters A and
B in parotid samples, with the most notable differences in
HNRNPC and FMR1 (Figure 3(d)).

3.4. Immune Infiltration Characteristics in Distinct m6A
Modification Patterns. To identify immunomodulatory dif-
ferences between these different m6A modification patterns
in blood and parotid samples, we evaluated immune cells
infiltrated into different subsets. For the blood samples,
Activated CD4 T cell, Activated CD8 T cell, and Gamma-
delta T cell were differentially expressed between the two
m6A subsets (Figure 4(a)). The correlation analysis heat
map shows a varying positive (red) or negative (blue) corre-
lation coefficient between different immune cells and the
m6A genes (Figure 4(b)). In particular, RBM15 and
Activated CD8 T cell showed the highest positive correlation
(value: 0.77). YTHDF2 and Neutrophil, on the other hand,
showed the highest negative correlation (value: -0.72).
Further, the relationship analysis between Gene MFR1 and
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Figure 5: Differential analysis of immune cell infiltration from the parotid gland in the two m6A modification subtypes. (a) In two m6A
modification patterns, abundant disparities of immunocytotic infiltrating were observed. (b) The correlation between infiltrating
immunocytes and m6A regulators, and the comparison of immunocytotic infiltrating between the high and low expression groups for
gene FMR1 or HNRNPC.
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immune cells showed the differential infiltration of Activated
CD4 T cell, Activated CD8 T cell, Gamma-delta T cell,
and Monocyte are found between the two groups with high-
and low-MFR1 expression. Gamma-delta T cell was differen-
tially infiltrated between IGF2BP2 low- and high-expression
groups.

For the parotid samples, multiple immune cell infiltration
differences appear in subsets A or B (Figure 5(a)). Among
them, Activated CD8 T cell, Immature dendritic cell, Natural
killer cell, Type 2 T helper cell showed the most significant dif-
ferences in infiltration. The correlation analysis heat map also
shows a varying positive (red) or negative (blue) correlation

coefficient between immune cells and the RBM15, CBLL1,
HNRNPC, and FMR1 genes (Figure 5(b)). Of these, RBM15
and Type 2 T helper cell showed the highest positive correla-
tion (value: 0.86); FMR1 andmast cell had the highest negative
correlation (value: -0.66). Further relationship analysis
between HNRNPC/FMR1 and immune cells showed abun-
dant immune cell infiltration in different high- and low-
expression groups of the HNRNPC/FMR1 gene.

3.5. Biological Activities and Features of m6A Modification
Patterns in Parotids. To assess the biological reactions of
the m6A modification patterns in pSS, we enriched the
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Figure 6: Gene ontology and KEGG pathway enrichment analysis of significant genes associated with m6A modification patterns in the
parotid of Sjögren’s syndrome (a) The annular chart shows the total number (outer second loop) and the number of significant
differences (outer third loop) of genes enriched in biological processes, molecular functions, and cellular components (outer first loop).
(b) The barplot of gene ontology enrichment analysis (BP: biological process; CC: cellular component; MF: molecular function). (c) The
bubble diagram of gene ontology enrichment. (d) The barplot of KEGG signalling pathway enrichment.
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biological process, molecular function, and cellular compo-
nent of ontology in the significantly different genes between
the modification patterns A and B in the parotid. A compre-
hensive gene landscape of Circline showed that 94 obvious
different genes in a total of 434 genes were enriched in the
biological process GO0008380, 92 obvious different genes

in a total of 412 genes were enriched in molecular function
GO0016607, and 90 obvious different genes in a total of 489
genes were enriched in cellular component GO0003712
(Figure 6(a)). The barplot and bubble diagram illustrations also
showed that the RNA splicing, the nuclear speck and the
transcription coregulator activity/the cadherin binding were
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Figure 7: Gene clustering and gene modules related to the m6A-mediated patterns in the parotid of Sjögren’s syndrome based on the
weighted gene co-expression network analysis (WGCNA). (a) Sample dendrogram and trait heat map based on the m6A modification
patterns. (b) The cluster dendrogram based on the heat map of dynamic tree cutting and the merged dynamic. (c) The module-cluster
relationships between different color modules and the m6A modification pattern (cluster) A or B. (d) The scatter diagram for the gene
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the blue module. (f) Based on the weight rank, the top 100 interactions of the nodes in the blue module.
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enriched in BP, CC, and MF, respectively (Figures 6(b) and
6(c)). KEGG signaling pathway enrichment showed that genes
associated with m6A modification patterns showed minimal q
values on the pathway mitophagy-animal (Figure 6(d)).

In addition, the sample dendrogram, cluster dendro-
grams and module-treat relationships identified by WGCNA
showed that the blue module presents an obvious negative/
positive correlation with m6A modification pattern (cluster)
A/B (Figures 7(a), 7(b), 7(c), 7(d)). The scatter plot shows an
association value of 0.55 for the module membership in the
blue module with the gene significance for m6A regulator
modification pattern-B (Figure 7(d)). Meanwhile, KEGG
signalling pathway enrichment of blue module genes showed
protein processing in the endoplasmic reticulum and
autophagy were enriched (Figure 7(e)). Further, the top
100 interactions’ map of the nodes ranked by weight in the
blue module based on the weight rank showed an intricate
network of interactions (Figure 7(f)). Network string_inter-
action and Cytoscape analysis of all the genes in the blue
module showed that MYC, ESR1, HSPA5, EIF4E, PSMA3,
EIF2S1, SUMO1, HSPA9, NCBP2 and CYCS are the top
10 critical genes in the blue module.

4. Discussion

m6A is the prevalent RNA modification in coding and non-
coding RNAs, which may regulate immune cells such as B
cells and Tregs to enhance or protect against autoimmune
diseases to varying degrees [28–31]. In this study, bioinfor-
matics analysis showed that m6A regulators were involved
in pSS, while there were different correlations between regu-
lators. The clustering analysis and immune cell infiltration
analysis also showed that each m6A modification pattern
has its unique immune profile.

The m6A regulators were differentially expressed in the
normal and pSS groups. Among them, WTAP interacts with
METTL3 and METTL14 and is required for their recruitment
and localization [32], while by interacting with METTL3 in a
WTAP-dependent manner, RBM15/15B binds to Uracil
enrichment regions and may facilitate the methylation of spe-
cific RNAs [33, 34], which has been demonstrated by studies.
Therefore, the negative/positive correlations between the eraser
FTO gene and the writer WTAP/RBM15B gene in this study
suggest that the “eraser” FTO may have potential relevance in
the interaction between WTAP/RBM15B and METTL3.

Clustering analysis showed that different m6A modifica-
tion patterns possess differential gene expressions, with
FMR1 being the most significant in blood samples and
FMR1 and HNRNPC in parotid samples. These suggest that
FMR1 may be the critical differential gene between the dif-
ferent m6A modification patterns in both blood and parotid
samples of pSS. FMR1 contains three KH structural domains
and one RGG structural domain, which has the potential to
influence RNA transfer and stabilization by interacting with
YTHDF1 and YTHDF2 [35, 36]. Further, we also observed
that the YTHDF1 gene was differentially expressed between
different m6A modification patterns. Therefore, the binding
of FMR1 and YTHDF1 mediated by m6A modification pat-
terns can be further investigated, which may contribute to

understanding the m6A bonding mode in pSS development.
In addition, differential infiltration of different immune cells
in the high and low expression groups of the FMR1 gene
(blood) or HNRNP/FMR1 gene (parotid) also confirmed
that the FMR1 regulator is acting as an immune modifier
in pSS.

In immune infiltration analysis, each modification pat-
tern also has its unique immune profile. Correlation analysis
of immune cells and genes showed the highest negative cor-
relation for YTHDF2/neutrophil in blood samples; consis-
tent with one study that found METTL3 cooperating with
YTHDF2 can inhibit papillary thyroid cancer progression
via m6A/c-Rel/IL-8-mediated neutrophil infiltration [37].
Interestingly, mast cells can induce tissue fibrosis in develop-
ing pSS [38, 39]. The correlation between mast cell and
FMR1 showed the highest negative value, suggesting an
m6A regulator-FMR1 mediated parotid tissue inflammatory
fibrosis remission in pSS.

Mitochondrial dysfunction is involved in pSS. A study
has shown that there is a close correlation between mito-
chondrial dysfunction and the immune microenvironment
of salivary glands in patients with pSS [40]. In our study,
KEGG signaling pathway enrichment of the differential gene
between two m6A modification patterns is enriched in mito-
chondrial autophagy, which suggests m6A may affect pSS by
mediating mitochondrial autophagy. In addition, WGCNA
identified genes of the blue synthesis module were enriched
for protein processing in the endoplasmic reticulum and
the autophagy-related signaling pathways, which is consis-
tent with the enrichment results for the differential genes
between m6A patterns. This suggests that these genes may
be closely related to mitochondrial autophagy, which is con-
sistent with a study that showed m6A mRNA methylation
could control autophagy by targeting Atg5 and Atg7 [41].
Therefore, the top 10 genes in the blue synthesis module
may provide potential targets for exploring the mechanisms
related to autophagy regulation by m6A modification.

However, this study has some shortcomings that need to
be clarified. These results are based on bioinformatics analy-
sis; many are theoretical and have not been experimentally
validated, so their accuracy needs improvement. Additional
genetic engineering methods and immunodeficient mice
can be used to reasonably further explore and analyze these
computational inferences. However, combining consistent
results from multiple bioinformatics analyses and related
literature reviews, we propose that these computational
predictions can provide a valuable reference for understand-
ing the m6A-related mechanisms of pSS development.
Nevertheless, experiments are the optimal criteria for verify-
ing a hypothesis, so we will follow up with further validation
through experiments.

5. Conclusion

The results of our bioinformatics analysis reveal potential
regulatory mechanisms of m6A regulators in the immune
infiltration of primary Sjögren’s syndrome, which may pro-
vide new insights into therapeutic approaches for primary
Sjögren’s syndrome.
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