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Objective. Tumor microenvironment as an important element of malignancy could help predict cancer prognosis and therapeutic
response; thus, a prognostic landscape map of the tumor microenvironment in luminal B breast cancers should be developed.
Methods. The GEO and TCGA databases were employed to retrieve clinical follow-up data and expression profiles of luminal
B breast cancer. CIBERSORT was applied to assess the infiltration of the tumor microenvironment of 209 patients and to
construct tumor microenvironment-based subtypes of luminal B breast cancer. We also conducted Cox multivariate regression
analysis to select features that could be used to develop a microenvironment signature for cancer. Samples were categorized as
having low and high TME scores according to the median TME score. The correlations of prognosis and TME score,
expression levels of immune factors and genomic variation, and clinical features were further investigated. Results. We found
that high TME scores were correlated with poor prognosis. The current findings showed that the expressions of multiple
immune-related genes, including CXCL9, CXCL10, GZMB, and PDCD1LG2, were upregulated in cancer with high TME
scores. The high-risk group showed lower TP53 gene mutation frequency as opposed to that of the low-risk group. For the
purpose of developing a TME scoring system, the TME infiltration levels of 209 patients with luminal B breast cancer from
TCGA were comprehensively analyzed. Conclusions. Our analysis revealed that the TME score was an indicator of patients’
response to immune checkpoint modulators and an effective prognostic biomarker. TME scoring improves current
immunotherapy on luminal B breast cancer.

1. Introduction

Statistics on breast cancer showed that in 2018, over 2.1
million cases of breast cancer were recorded, resulting in
about 630,000 breast cancer deaths [1]. Recent
advancements in genomics have greatly improved our
comprehension of the molecular basis that underlies breast
cancer. Based on the intrinsic gene expression of breast
cancer, the concept of molecular typing was first proposed
in 2000 [2, 3]. Four subtypes of cancer include HER-2
overexpression type, basal type, and luminal types A and B
[4, 5].Endocrine therapy is often implemented to treat most
luminal B-like breast cancer, the recurrence of which is often
fatal. The improvement of the treatment outcomes also
requires a better understanding of the development of new
prognostic markers.

Tumor microenvironments (TMEs) are created at
various stages of tumor growth. TMEs have been found to
support tumorigenesis, as they could influence immune cell
activation, which in turn promote tumor growth and
progression [6]. Multiple studies showed that TME is
involved in the progression of cancer and patients’
responsiveness to therapy [7, 8]. Previous cancer studies
detected differences in components of resident cell types in
TME, such as mesenchymal stem cells, tumor-associated
macrophages, cytotoxic T cells, dendritic cells (DCs), helper
T cells, and associated inflammatory pathways [9–12].
Assessment of patients’ TME at diagnosis may provide
insight into immune responses to cancer and cancer
response to chemotherapy [13]. Alterations in the
proportions of infiltrating macrophages, CD8+ T cells,
fibroblasts, and CD4+ T cells, in TME are associated with
clinical progression of cancer and may be prognostically
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significant in various cancers [12, 14–16]. Multiple
algorithms developed for estimating the abundance of
immune cells along with other cell types in TME [17–19]
were previously applied to explore the association between
TME infiltration and cancer progression [20, 21].
Nevertheless, no comprehensive investigations have been
performed on the TME landscape infiltration in luminal B
breast cancers.

In this research, we analyzed annotations of gene
expression profiles derived in clinical luminal B breast
cancer samples using the CIBERSORT algorithm. In this
way, we identified 22 immune cell types and cancer-
associated fibroblast proportion. After evaluating 209
patients with luminal B breast cancer, systematic
characterization of the TME phenotype, clinical pathologic
features, and the luminal B samples related to breast
cancer genome was performed. Here, we described a
strategy for quantifying the infiltration pattern of the
TME score, which showed prognostic significance and
had the potential to predict breast cancer response to
immune checkpoint inhibitors.

2. Materials and Methods

2.1. Data Acquisition and Processing. The expression profile
data of TCGA Affymetrix HT Human Genome U133a
microarray platform and accompanying prognostic
information were downloaded from the GDC API database
on 14th August 2019. We excluded samples that did not
contain clinical information or with follow-up durations that
were less than 30 days. A sum of 209 luminal B breast cancer
samples fulfilled the eligibility requirements for the final
research and were used as a training set. The chip datasets
(GSE21653 [22, 23] and GSE1456 [24, 25]) were downloaded
from the gene expression omnibus (GEO) [26]. The datasets
had clinical follow-up and expression data of 65 luminal B
breast cancer samples in total from Affymetrix Human
Genome U95 Version 2 array (http://www.affymetrix.com/
support/technical/byproduct.affx?product=hgu95),
Affymetrix Human Genome U133A Array (http://www
.affymetrix.com/support/technical/byproduct.affx?product=
hgu133-20), and Affymetrix Human Genome U133 Plus 2.0
Array (Affymetrix Human Genome U133 Plus 2.0 Array)
(the duration for follow-up was over 30 days). Next,
transcriptome quantification of the unified pipeline was
performed on each sample, and the overall abundance factor
was used for correction. All the samples analyzed in this study
were collected before standard treatment (Table 1); we
analyzed according to the workflow of Figure S1A.

The probe data were mapped into the GeneSymbol with
the R package hgu133plus2.db. In the case where multiple
probes were mapped into one gene, the median of the gene
expression was taken. The probes matching to multiple
genes were excluded.

2.2. TME Score for Infiltrating Cells. CIBERSORT, which is a
commonly utilized deconvolution algorithm, incorporates
reference gene expression levels considered to minimally
represent different cell types and uses the signatures to infer

various cell types in tumor samples. Combined with support
vector regression, CIBERSORT can identify 22 human
immune cells, including NK cells, macrophages, T cells,
myeloid subset cells, B cells, and DCs with high sensitivity
and specificity. As a reference, the LM22 gene signature
was applied to quantify immune cells in the cancer samples
in this study; then, to develop an LM22 signature,
CIBERSORT [17] (http://cibersort.stanford.edu/) was
applied to detect 22 different types of immune cells in TCGA
and GSE13041 datasets through uploading the gene
expression into the algorithm. 1000 times of permutation
were then performed and scored to identify the 22 immune
cell types.

2.3. Consensus Clustering-Derived Molecular Subtypes
Correlated with TME-Infiltrating Cells. Consensus clustering
was conducted utilizing the Consensus ClusterPlus software
in R to identify subgroups of patients with luminal B-type
breast cancer based on the presence of TME-infiltrating cells
[27]. As previously described [28], to ensure the stability of
the findings, the optimal number k of clusters ranged
between 2 and 10, while repeating the procedure 1000 times.
The R software program was used to visualize the results of
this investigation.

Table 1: Clinical information of the three sets of datasets after
pretreatment.

Characteristics
TCGA
datasets

GSE1456
(n = 23)

GSE21653
(n = 42)

Age (years)
≤60 109 — 28

>60 89 — 14

Survival status
Living 165 16 23

Dead 33 7 19

Pathologic_T

T1 37 — —

T2 127 — —

T3 24 — —

T4 10 — —

Pathologic_N

N0 77 — —

N1 74 — —

N2 33 — —

N3 10 — —

Pathologic_M
M0 168 — —

M1/
MX

28 — —

Tumor stage

Stage I 23 — 41

Stage
II

112 — 31

Stage
III

57 — 19

Stage
IV

4 — 3

Pathology

IDC 121 — 34

ILC 5 — 2

MIX 24 — 3

Others 25 — 1
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2.4. Differentially Expressed Genes (DEGs) Correlated with
the TME Phenotype. It was necessary to employ a linear
model to evaluate gene expression differences across TME
phenotypic subgroups in order to discover genes correlated
with TME cell infiltration patterns. In particular, the R
software tool DESeq2 was utilized [29] to compute
differential gene expression. We chose an FDR of less than
0.05. Fold change was not limited in order to allow the
inclusion of more potential genes.

2.5. TME Phenotype-Related Differential Gene Reclustering.
Nonnegative matrix factorization (NMF) is a widely utilized
unsupervised clustering approach that has been extensively
employed for the identification of tumor subgroups based
on genomic data [30, 31]. In this regard, NMF was utilized
to recluster samples based on their TME phenotypic and
differential gene expression profiles in order to assess the
association between phenotype and TME phenotype-
related differential gene expression. Subsequently, the
clinical characteristics of the reclustered samples were
examined. After 50 repetitions, NMF chose the standard
“brunet.” NMF, an R package, was used to compute an
averaged profile width of the common member matrix for
each of the clusters with a k value ranging from 2 to 10
[32]. Each subclass had a minimum membership of ten.

2.6. Establishing TME Gene Signatures and Reducing the
Dimension. To develop a robust TME gene signature, we
employed the random forest algorithm to evaluate the
significance of differentially expressed genes (DEGs). For
univariate survival analysis, the copth function of survival
in the R package was employed. A cutoff value of 0.05 was
set for the selection of DEGs. We used the random forest
R program to input genes with considerable prognostic value
into the random forest feature selection process. Each
segment was assigned a mtry of 1–235 as well as a ntree of
500. The value of mtry with the least error value was chosen
as the ideal factor for the random forest method, and an
ntree of 100 was chosen on the basis of the error rate of
the random forest. Lastly, the DEGs were ordered according
to their significance. DEGs with >95% cumulative
importance were selected as candidate feature genes. The
genes were then grouped into 5 categories according to K
-means [33]. The 5 categories were then analyzed utilizing
the R Psych package. After 100 repetitions, the signature
score was derived from the first principal component. For
gene type j, the following formula was used to calculate
scores of the signature:

Sj = 〠
nj

i=1
Pc1i ∗ Expi, ð1Þ

where j denotes the jth class of the 5 different kinds of genes,
nj denotes the count of genes of the jth gene, Pc1i denotes
the coefficient of the first principal component of the ith gene
of the jth gene, and Expi denotes the initial level of the ith

gene expression of the j-type gene.

Signatures G1, G2, and G3 were subjected to a PCA in R
utilizing the psych function. Principal component (PC)
scores were determined for each gene signature after 100
repetitions in order to acquire the optimal number of PCs.
The ultimate score was determined as the PC1 values for
G1, G2, and G3. Subsequently, Cox multivariate regression
was performed to compute the risk score coefficient for the
gene signature in each of the three groups (G1, G2, and
G3). TME scores for each sample were computed using the
following equation:

TME score =〠PC1∗∝ : ð2Þ

In this equation, each gene signature coefficient for mul-
tivariate regression is represented by ∝, while the PCI score
of each signature is represented by PCI.

2.7. Correlation between Clinical Characteristics and TME
Score. To clarify the relationship between TME score and
clinical phenotype, we classified the samples into two groups
according to their median TME score and compared the
prognostic differences between low and high TME scores.
The association between a lower or higher TME score and
the variables of age and gender was investigated.

2.8. Correlation between the TME Score and the Expression of
Immune-Related Genes. Three categories of immune-related
genes were chosen in order to examine the association
between TME score and these genes: (1) immune activation
genes, including CD8A, IFNG, GZMA, TBX2, PRF1,
CXCL9, TNF, GZMB, and CXCL10 [34]; (2) immune
checkpoint genes, including HAVCR2, LAG3, PDCD1LG2,
CD274, IDO1, CTLA4, and PDCD1 [35]; and (3) TGF/
EMT pathway genes, including TWIST1, COL4A1, SMAD9,
ZEB1, TGFBR2, CLDN3, ACTA2, and VIM [36]. In order to
further investigate the differences in the expression of the
three gene categories between low and high TME scores,
their expression profiles were investigated.

2.9. Relationship between TME Score and Tumor Genomic
Variation. In order to compare genomic differences across
samples with low and high TME scores, we obtained SNP
data from TCGA and deleted silent mutations and introns
before analyzing the results. Fisher’s exact test was then
performed to assess mutation differences between the two
sample classes by setting the selection threshold at p < 0:05.

2.10. Statistical Analysis. Unless otherwise stated, the
Shapiro-Wilk normality test [37] was utilized to determine
the normality of the variable. The unpaired Student t-test
was utilized to evaluate whether the normally distributed
variables had significance in the two groups. The Mann–
Whitney U test was employed to examine variables
exhibiting nonnormal distributions. To compare parametric
and nonparametric variables, one-way ANOVA and
Kruskal-Wallis test were employed [38]. The correlation
coefficients were obtained utilizing the distance and
Spearman correlation analyses. The contingency table
analysis was carried out utilizing a two-sided Fisher exact
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Figure 1: Continued.
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test. The p value was converted to the FDR by applying the
Benjamini-Hochberg technique. For each dataset, Kaplan-
Meier survival analysis was conducted on subgroups to
determine their survival. The log-rank test was employed

to examine the significance of the data. p value < 0.05 was
defined as statistically significant. In all cases, unless
otherwise stated, statistical analyses were performed in R
(version: 3.4.3) with default configuration.
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Figure 1: (a) Relationships of 22 different immune cell types in TME. The color and size of the dot indicate correlation, where white color
denotes insignificant, red color denotes positive correlation, and blue color denotes negative correlation. (b) Forest map showing the 22
distinct types of immune cells. (c) Heat map showing the 22 distinct types of immune cell scores in TME, with the lower score being
indicated by the basket whereas the higher score is indicated by the redder. (d) This KM curve shows the three different forms of TMEC
and their corresponding OS prognosis of patients. (e) The box plots depict the distribution of 22 immune cell scores across the three
TMEC categories; red∗ denotes obvious differences.
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3. Results

3.1. TME Landscape regarding the Luminal B Breast Cancer.
The functions of diverse immune cell types in luminal B
breast cancer TME were examined using CIBERSORT,
which could examine the association of 22 distinct immune
cell scores from 209 tumor tissues. A considerable positive
association between the four types, for instance, immune
activation cells, was observed, indicating a particular mode
of communication of immune cells (Figure 1(a)). The
relationship between breast cancer prognosis and 22
immune cell scores was analyzed by univariate Cox
regression. The results showed that the scores of M2
macrophages and activated mast cells were strongly
associated with an unfavorable prognosis (log-rank p < 0:05
, HR > 1). In contrast, the scores of activated CD4 memory
T cells and M1 macrophages were correlated with a
favorable prognosis (HR < 1, log-rank p < 0:05,
Figure 1(b)). Firstly, the scores for the 6 types of immune
cells showing a strong correlation with prognosis were
recruited into ConsensusClusterPlus to evaluate the opti-
mum clustering factor k ranging between 2 and 10. This
operation was repeated for a total of 1000 times. According
to the delta area and CDF value, the optimal clustering fac-
tor k was 3 (Figure S1B-D). TME scores were then
categorized into 3 classes (Supplementary Table 1),
TMEC1, TMEC2, and TMEC3. The results demonstrated
that immune cells, such as naïve B cells and regulatory T
cell (Treg) scores, were noticeably higher in TMEC1 and
that M1 macrophages M1 and CD4 T cells scores were
greatly higher in TMEC2. NK cells and M2 macrophages
showed elevated scores in TMEC3 (Figure 1(c)). The
results from the analysis on overall survival (OS) revealed

significant differences in OS among three TMECs (log-
rank p < 0:0001). Specifically, TMEC2 indicated the
optimal prognosis, TMEC3 was indicative of the poorest
prognosis, while TMEC1 was intermediate between the two
classes (Figure 1(d)). Statistically significant differences
between the prognostic significance of TMEC1, TMEC2,
and TMEC3 were observed, but no obvious differences
were found between TMEC2 and TMEC1 (Figure S2A–C).
In addition, we obtained mRNA-based molecular subtypes
from previous studies of Berger et al. [39]. By comparing
the intersection of TMEC1-3 and mRNA subtypes, we can
observe that the C7 subgroup of Berger et al. mainly comes
from TMEC3, and the C8 subgroup mainly comes from
TMEC1. In addition, there are significant differences in the
distribution of TMEC subtypes in C1 and C2 subgroups of
Berger et al. (Figure S2D). 12 out of 22 immune cell type
scores exhibited statistically significant differences in
prognosis (Figure 1(e)). Taken together, these data showed
that the TME scores may closely mirror the development
of cancer.

3.2. Functional Analysis and DEGs between TMEC.
Differences in gene expression of various TMECs were
analyzed with differential TMEC gene expression in TCGA
data. DEGs between TMEC1, TMEC3, and TMEC2 were
calculated using the DESeq2 tool. Current analyses detected
241 common DEGs between TMEC1/TMEC3 and TMEC2/
TMEC3 (Figure 2(a)). Next, from the 241 DEGs, scorings 0
in 50% of the samples were filtered; here, a total of 235 genes
were recruited into further analyses. NMF, which was then
used for reclassification analysis of the TCGA samples,
generated 2 stable classes, namely, Gene C1 and Gene C2
(Figure 2(b)). Survival analysis revealed significant
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Figure 2: (a) Venn diagrams illustrating upmodulated DEGs in response to TMEC1, TMEC2, and TMEC3. (b) Consistency matrix for the
NMF algorithm as depicted by a heat map. (c) OS prognostic KM curve for Gene C1 and Gene C2. (d) The box plot shows the scores for 22
immune cells in the Gene C1 and Gene C2 samples.
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differences in the survival between Gene C1 and Gene C2
(Figure 2(c)). The analysis of Gene C1 and Gene C2
distribution across the 22 immune cell types demonstrated
that their distribution in various TMEs was significantly
different. For example, Gene C1, which exhibited the poorest
prognosis, showed a substantially elevated score in
macrophages M2, macrophages M1, and macrophages M0,
when compared with Gene C2 (Figure 2(d)).

3.3. A TME Signature Development. The 235 DEGs shared
by the 3 TMECs were screened; their importance was

assessed using the random forest package on R. ntree = 100
was selected based on the random forest (Figure S3A), and
24 candidate genes were detected from DEGs with a
cumulative significance greater than 95% (Figure S3B-C).
GO term and KEGG analysis revealed that the 24 genes
were enriched to primary immunodeficiency, NF−kappa B
signaling, T cell activation, and some immune-related
pathways (Figures 3(a) and 3(b)). Next, the genes were
grouped into 3 signature clusters (Figure 3(c)), namely,
signature G1 (10 genes), G2 (6 genes), and G3 (8 genes),
by the K-means algorithm (Figure 3(c)). Signature cluster
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Figure 3: (a) 24 genes were enriched in GO terms. (b) 24 genes were enriched in KEGG. (c) Results of the K-means clustering of 24 genes.
(d) Gene expression heat maps for 24 genes. (e) TME score for Gene C1 and Gene C2. (f) Gene C1 and Gene C2 TME score distributions. (g)
OS prognosis in the risk-h and risk-l groups illustrated by KM curve.
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G1 was found in the intermediate group, G2 was found in
the group with low expression, while G3 was found in the
high expression group (Figure 3(d)).

The TME score of samples in the training set was
counted by developing a TME score system. A comparison
of the TME scores of Gene C revealed a significantly higher
proportion of worse prognosis of Gene C1 than the optimal
prognosis of Gene C2 (Figures 3(e) and 3(f)). Next, the sam-
ples were classified into two categories (risk-h and risk-l)
according to the median TME score (0.3657). The analysis
showed a considerably different prognosis between the
risk-l group and risk-h group (HR = 2:928, log-rank p =
0:0024) (Figure 3(g)).

3.4. Correlation among TME Score Clinical Features and
Immunological Gene Expression. The evaluation of the
correlation between clinical features and TME scores did not
reveal any significant correlation (Figure S4). To examine the
relationship between immunological status and different
TMEs, the correlation of TMEC and expression of immune
activation genes (TBX2, CXCL10, GZMB, IFNG, GZMA,

CD8A, PRF1, TNF, and CXCL9) of Gene C and TME scores
was analyzed. Here, the results demonstrated various distinct
patterns of expression in TME scores, Gene C, and TMECs.
Specifically, the expression of CXCL9 and CXCL10 in the
high-risk group, which was correlated with an unfavorable
prognosis, was noticeably elevated in the group with low-risk
(Figure 4(a)). Analysis of the correlation between the
expression of immune checkpoint genes (HAVCR2,
PDCD1LG2, CD274, LAG3, PDCD1, IDO1, and CTLA4)
and TME score, TMEC, Gene C revealed that although the
genes were not high-expressed, genes of different Gene Cs,
TME scores, and TMECs exhibited different expression
trends. IDO1 and HAVCR2 expressions in the risk-h were
noticeably elevated as opposed to those in the risk-l group
(Figure 4(b)). The analysis of expression of TGF/EMT
pathway factors (TWIST1, ACTA2, ZEB1, TGFBR2,
CLDN3, COL4A1, SMAD9, and VIM) in TME score,
TMEC, and Gene C showed limited differences in gene
expression in Gene C, TME score, and TMEC, with only
TGFBR2 showing a noticeably higher level in the risk-h
group when compared to the risk-l group (Figure 4(c)).
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Figure 6: Continued.
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Likewise, the same trend was identified in three distinct sets of
TME samples (Figure S5, S6). The above observations
indicated that the TME score was correlated with the level of
immune genes.

3.5. TME Features of a Tumor Genome. According to the
patients’ TME scores, they were categorized into risk-l and
risk-h groups. After investigating the correlation between
genomic variation and TME score, TME score-associated
genes were identified. After removing intron and silent
mutations, a Fisher test was performed to analyze genes
showing considerable differences in mutation frequency
between the two groups. Here, 14 genes with prominent
mutation frequencies were detected (Figure 5), and TP53
mutation frequency was elevated in risk-l as opposed to that
in risk-h; in luminal B breast cancer, these genes were closely
associated with TME.

3.6. Comparison of Risk Models with Other Models. We
selected 3 risk models associated with prognosis, namely, a
4-gene signature by Luthra et al. [40], a 4-gene signature
by Li et al. [41], and a 4-gene signature by Xie et al. [42].
The three previously developed gene signature systems were
compared with our TME score model. To promote the
comparability of the models, risk scores for the luminal B
breast cancer samples acquired from TCGA were calculated
by the same method; moreover, ROC of the model was
assessed by median risk score. Next, the samples were
categorized into risk-l and risk-h groups and we calculated
the OS differences. The analysis showed a 5-year AUC of
TME score of 0.82, with a ROC of the other three models,
and only the model developed by Li et al. showed a three-
year AUC higher than 0.61 (Figures 6(a)–6(d)). The risk-l
and risk-h groups did not exhibit considerable differences
in the prognostic KM curves for the three models
(Figures 6(e)–6(g)). To analyze the ability of these models
in recognizing samples of luminal B breast cancer and to
estimate the concordance index (C-index) of our TME
score model as well as the 3 models, we utilized the
RMS function in R. As illustrated in Figure 6(h), our

TME score model appeared to have the greatest C-index,
which indicated that it performed much better as opposed
to the other three models.

4. Discussion

Cancer is a leading cause of mortality worldwide. Previous
research has primarily focused on tumor cells. Paget [43]
put forward the “seed and soil” theory, bringing the concept
of TME into cancer research in 1989. Progress in cancer
research has now established that tumors are complete
tissues with unique homeostasis [44]. Over time, the focus
of cancer study has progressively changed from cancer cells
to tumors and their microenvironment.

In the tumor microenvironment, immune responses and
tumor-infiltrating immune cells have been paid great
attention for their potential of serving as therapeutic targets.
Recently, immune checkpoint inhibitors have exhibited
antitumor properties against advanced cancers, including
in breast cancer [45]. We analyzed the TME landscape in
luminal B breast cancer and discovered that various immune
cell types were correlated with an unfavorable prognosis of
patients with luminal B breast cancer and could be used
to molecularly stratify luminal B breast cancers. In
addition, as breast cancer is a nonimmune disease, few
immunotherapies are applied to breast cancer. In metastatic
breast cancer, tumor vaccine has shown good antitumor
activity, but objective remission rate is low. Recent studies
have shown that PAM50-typed lumb rather than luma
subtype has the characteristics of acquired immune response
activation. The tumors of lumb subtype show immune
microcyclic activation, which may be a potential benefit
group of immunotherapy [46]. In this study, we identified
three molecular subtypes of lumb, which had significantly
different immune infiltrations. These differences may
indicate different degrees of benefit from immunotherapy.
Moreover, this also indicated that the immune features of
cancers differed across various stages of breast cancer
development.
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Figure 6: (a–d) ROC curves for four different models. (e–g) The survival curves for three different models. (h) C-index of four models.
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Research reports have indicated that in the TME, T cells
are regulated by both inhibitory and stimulating signals. The
immune checkpoint is a molecular “switch” for inhibition.
Previous study [47] analyzed 1861 advanced melanoma
patients and showed that anti-CTLA4 antibody
(ipilimumab) could greatly prolong patients’ long-term
survival. Recently, anti-PD1 antibody (nivolumab) has been
found to be ineffective against metastatic renal cell
carcinoma, advanced squamous cell carcinoma, non-small-
cell lung cancer, melanoma, or luminal-like breast cancer
[48, 49]. Therefore, there is a need for developing novel
biomarkers predictive of whether cancer patients could
benefit from checkpoint immunotherapy. Research
indicated that TME is critical in checkpoint inhibitor
immunotherapy [50]. PDL1 blockade could be attenuated
by modulating the small cell lung cancer immune
microenvironment [51]. Ubago et al. found that >50% of
tumor-infiltrating lymphocytes in HER2 breast tumors
express PDL1, while about a third express PD1 [52]. The
memory of tumor immunotherapy and immune
microenvironment could be reshaped and enhanced by
multifunctional nanoregulator [53]. In this study, we
thoroughly examined the landscape interplayed between
TME infiltration cells and luminal B breast cancer clinical
features. Through using various computational tools, we
designed an infiltrating pattern of the TME-TME score.

The current findings discovered that the TME score was a
prognostic indicator of luminal type B breast cancer, with an
elevated TME score relating to an unfavorable prognosis of
breast cancer. After detecting the liver tissues of early-staged
HCC patients, a previous study demonstrated a higher risk
of HCC is correlated with the pattern of immune-related gene
expression [54]. A novel immunotyping and immune gene
signature was established for luminal B-like breast cancer
according to the immune gene expression profiles [55]. A
study reported the STAT1/NK axis activation in TME could
predict immune checkpoint blockade response of patients,
suggesting that a biomarker-driven treatment strategy can
predict whether patients might benefit from sensitizing thera-
peutics prior to immune checkpoint blockade [56]. Here, we
found that elevated levels of immune activation genes (e.g.,
CXCL10, GZMB, and CXCL9) and immune checkpoint genes
(e.g., PDCD1 and CTLA4) were correlated with high TME
scores. The results indicated that TME scores may predict
those patients who can benefit from immune checkpoint
blocking therapy. TP53 is frequently mutated in breast cancer
and is important for the treatment and prognosis of this dis-
ease [57]. Zhu et al. clustered luminal breast tumor subtypes
characterized by an elevation of TP53 somatic mutations
[58]. TP53 mutation frequencies in samples with a high
TME score were greatly lower than in those with low TME
scores. The results opened the new door for studying
mechanisms of TME formation as well as the role of each
mutation in immunity and immunotherapy of luminal B
breast cancer.

This research has identified potential immune gene
biomarkers for luminal type B breast cancer through
bioinformatics; further validation is needed to more
accurately specify the threshold values using a prospective

cohort of immunotherapies. Secondly, considering the
heterogeneity of tumors, analysis of the edge of the core
and evaluation of the immune cell infiltration are also
necessary because patients with high TME scores may
not all benefit from immunotherapy. Finally, our results
obtained from computational biology require experiments
for validation.

5. Conclusion

This study examined TME infiltration patterns from a sum
of 209 patients with luminal B breast cancer and generated
a pipeline for elucidating patterns of TME infiltration. We
discovered that the TME score was an excellent prognostic
predictor of breast cancer patients’ response to immune
checkpoint inhibitors.

Data Availability

The data used to support this research were included within
this manuscript.

Conflicts of Interest

The authors state that they have no competing interests in
this study.

Supplementary Materials

Supplementary 1. Figure S1: A: work flow chart. B: consensus
matrix for TME-infiltrating cell classification with the
corresponding heat map. The colour-coded heat map
corresponding to the consensus matrix for k = 3 obtained by
applying consensus clustering. The colour gradients were from
0 to 1, representing the degree of consensus, with white corre-
sponding to 0 and dark blue to 1. C: the cumulative distribution
function (CDF) curves in consensus cluster analysis. CDF
curves of consensus scores by different subtype numbers
(k = 2, 3, 4, 5, 6, 7, 8, 9, 10) were represented. D: delta area
curve of consensus clustering, indicating the relative change
in area under the cumulative distribution function (CDF) curve
for each category number k compared with k – 1. The horizon-
tal axis represents the category number k, and the vertical axis
represents the relative change in area under CDF curve.

Supplementary 2. Figure S2: A: prognosis KM curve of
TMC1 vs. TMEC2. B: prognosis KM curve of TMC2 vs.
TMEC3. C: prognosis KM curve of TMC1 vs. TMEC3. D:
the molecular subtypes of TCGA samples were compared
with the mRNA subtypes of Berger et al.

Supplementary 3. Figure S3: A: the distribution of random
forest error rate varying with tree parameters. B:
multidimensional scaling (MDS) plot for GeneCluster (Gene
C1 and Gene C2) data. C: random forest importance for
DEGs with mean decrease Gini index (blue) and mean
decrease accuracy (red).

Supplementary 4. Figure S4: the relationship between TME
scores and clinical characteristics found no significant
difference. A: the relationship between TME scores and T
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stage. B: the relationship between TME scores and N stage.
C: the relationship between TME scores and M stage. D:
the relationship between TME scores and stage. E: the
relationship between TME scores and age.

Supplementary 5. Figure S5: A: the expressions of immune
activation genes (CXCL10, CXCL9, GZMA, GZMB, PRF1,
IFNG, TBX2, TNF, and CD8A) in risk-l and risk-h samples.
B: the expressions of immune checkpoint genes (PDCD1,
CTLA4, LAG3, IDO1, CD274, PDCD1LG2, and HAVCR2)
in risk-l and risk-h samples. C: the expressions of TGF/EMT
pathway genes VIM, ACTA2, COL4A1, TGFBR2, ZEB1,
CLDN3, SMAD9, and TWIST1 in risk-l and risk-h samples.

Supplementary 6. Figure S6: A: the expressions of immune
activation genes (CXCL10, CXCL9, GZMA, GZMB, PRF1,
IFNG, TBX2, TNF, and CD8A) in TMEC. B: the expressions
of immune checkpoint genes (PDCD1, CTLA4, LAG3,
IDO1, CD274, PDCD1LG2, and HAVCR2) in TMEC. C:
the expressions of TGF/EMT pathway genes VIM, ACTA2,
COL4A1, TGFBR2, ZEB1, CLDN3, SMAD9, and TWIST1
in TMEC.

Supplementary 7. Supplementary Table 1: molecular
subtypes of TCGA samples.

References

[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre,
and A. Jemal, “Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers
in 185 countries,” CA: a Cancer Journal for Clinicians, vol. 68,
no. 6, pp. 394–424, 2018.

[2] C. M. Perou, T. Sørlie, M. B. Eisen et al., “Molecular portraits
of human breast tumours,” Nature, vol. 406, no. 6797,
pp. 747–752, 2000.

[3] A. Prat and C. M. Perou, “Deconstructing the molecular
portraits of breast cancer,” Molecular Oncology, vol. 5, no. 1,
pp. 5–23, 2011.

[4] A. Goldhirsch, W. C. Wood, A. S. Coates et al., “Strategies for
subtypes–dealing with the diversity of breast cancer: highlights
of the St Gallen International Expert Consensus on the
Primary Therapy of Early Breast Cancer 2011,” Annals of
Oncology, vol. 22, no. 8, pp. 1736–1747, 2011.

[5] F. M. Blows, K. E. Driver, M. K. Schmidt et al., “Subtyping of
breast cancer by immunohistochemistry to investigate a
relationship between subtype and short and long term
survival: a collaborative analysis of data for 10,159 cases from
12 studies,” PLoS Medicine, vol. 7, no. 5, article e1000279, 2010.

[6] J. Kim and J. S. Bae, “Tumor-associated macrophages and
neutrophils in tumor microenvironment,” Mediators of
Inflammation, vol. 2016, Article ID 6058147, 11 pages, 2016.

[7] D. Zeng, R. Zhou, Y. Yu et al., “Gene expression profiles for a
prognostic immunoscore in gastric cancer,” The British
Journal of Surgery, vol. 105, no. 10, pp. 1338–1348, 2018.

[8] Y. Jiang, Q. Zhang, Y. Hu et al., “ImmunoScore signature: a
prognostic and predictive tool in gastric cancer,” Annals of
Surgery, vol. 267, no. 3, pp. 504–513, 2018.

[9] A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, and
P. Allavena, “Tumour-associated macrophages as treatment
targets in oncology,” Nature Reviews. Clinical Oncology,
vol. 14, no. 7, pp. 399–416, 2017.

[10] R. Kalluri, “The biology and function of fibroblasts in cancer,”
Nature Reviews. Cancer, vol. 16, no. 9, pp. 582–598, 2016.

[11] W. H. Fridman, L. Zitvogel, C. Sautes-Fridman, and
G. Kroemer, “The immune contexture in cancer prognosis
and treatment,” Nature Reviews. Clinical Oncology, vol. 14,
no. 12, pp. 717–734, 2017.

[12] S. J. Turley, V. Cremasco, and J. L. Astarita, “Immunological
hallmarks of stromal cells in the tumour microenvironment,”
Nature Reviews. Immunology, vol. 15, no. 11, pp. 669–682,
2015.

[13] J. E. Rosenberg, J. Hoffman-Censits, T. Powles et al.,
“Atezolizumab in patients with locally advanced and
metastatic urothelial carcinoma who have progressed
following treatment with platinum-based chemotherapy: a
single-arm, multicentre, phase 2 trial,” Lancet, vol. 387,
no. 10031, pp. 1909–1920, 2016.

[14] M. Nishino, N. H. Ramaiya, H. Hatabu, and F. S. Hodi,
“Monitoring immune-checkpoint blockade: response
evaluation and biomarker development,” Nature Reviews.
Clinical Oncology, vol. 14, no. 11, pp. 655–668, 2017.

[15] S. Mariathasan, S. J. Turley, D. Nickles et al., “TGFβ attenuates
tumour response to PD-L1 blockade by contributing to
exclusion of T cells,” Nature, vol. 554, no. 7693, pp. 544–548,
2018.

[16] K. Lee, H. Hwang, and K. T. Nam, “Immune response and the
tumor microenvironment: how they communicate to regulate
gastric cancer,” Gut Liver, vol. 8, no. 2, pp. 131–139, 2014.

[17] A. M. Newman, C. L. Liu, M. R. Green et al., “Robust
enumeration of cell subsets from tissue expression profiles,”
Nature Methods, vol. 12, no. 5, pp. 453–457, 2015.

[18] E. Becht, N. A. Giraldo, L. Lacroix et al., “Estimating the
population abundance of tissue-infiltrating immune and
stromal cell populations using gene expression,” Genome
Biology, vol. 17, no. 1, p. 218, 2016.

[19] K. Yoshihara, M. Shahmoradgoli, E. Martínez et al., “Inferring
tumour purity and stromal and immune cell admixture from
expression data,” Nature Communications, vol. 4, no. 1,
p. 2612, 2013.

[20] H. Fu, Y. Zhu, Y. Wang et al., “Identification and validation of
stromal immunotype predict survival and benefit from
adjuvant chemotherapy in patients with muscle-invasive
bladder cancer,” Clinical Cancer Research, vol. 24, no. 13,
pp. 3069–3078, 2018.

[21] D. Zeng, M. Li, R. Zhou et al., “Tumor microenvironment
characterization in gastric cancer identifies prognostic and
immunotherapeutically relevant gene signatures,” Cancer
Immunology Research, vol. 7, no. 5, pp. 737–750, 2019.

[22] R. Sabatier, P. Finetti, N. Cervera et al., “A gene expression
signature identifies two prognostic subgroups of basal breast
cancer,” Breast Cancer Research and Treatment, vol. 126,
no. 2, pp. 407–420, 2011.

[23] R. Sabatier, P. Finetti, J. Adelaide et al., “Down-regulation of
ECRG4, a candidate tumor suppressor gene, in human breast
cancer,” PLoS One, vol. 6, no. 11, article e27656, 2011.

[24] Y. Pawitan, J. Bjöhle, L. Amler et al., “Gene expression
profiling spares early breast cancer patients from adjuvant
therapy: derived and validated in two population-based
cohorts,” Breast Cancer Research, vol. 7, no. 6, pp. R953–
R964, 2005.

[25] P. Hall, A. Ploner, J. Bjöhle et al., “Hormone-replacement
therapy influences gene expression profiles and is associated

19Disease Markers

https://downloads.hindawi.com/journals/dm/2022/5621441.f5.pdf
https://downloads.hindawi.com/journals/dm/2022/5621441.f6.pdf
https://downloads.hindawi.com/journals/dm/2022/5621441.f7.docx


with breast-cancer prognosis: a cohort study,” BMC Medicine,
vol. 4, no. 1, p. 16, 2006.

[26] Y. Lee, A. C. Scheck, T. F. Cloughesy et al., “Gene expression
analysis of glioblastomas identifies the major molecular basis
for the prognostic benefit of younger age,” BMC Medical
Genomics, vol. 1, no. 1, p. 52, 2008.

[27] T. Sorlie, C. M. Perou, R. Tibshirani et al., “Gene expression
patterns of breast carcinomas distinguish tumor subclasses
with clinical implications,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 98,
no. 19, pp. 10869–10874, 2001.

[28] S. Zhang, Y. Wang, Y. Gu et al., “Specific breast cancer
prognosis-subtype distinctions based on DNA methylation
patterns,” Molecular Oncology, vol. 12, no. 7, pp. 1047–1060,
2018.

[29] M. E. Ritchie, B. Phipson, D. Wu et al., “limma powers
differential expression analyses for RNA-sequencing and
microarray studies,” Nucleic Acids Research, vol. 43, no. 7,
article e47, 2015.

[30] A. Mirzal, “Nonparametric Tikhonov regularized NMF and its
application in cancer clustering,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 11, no. 6,
pp. 1208–1217, 2014.

[31] N. Yu, Y. L. Gao, J. X. Liu, J. Shang, R. Zhu, and L. Y. Dai, “Co-
differential gene selection and clustering based on graph
regularized multi-view NMF in cancer genomic data,” Genes,
vol. 9, no. 12, p. 586, 2018.

[32] C. Ye, K. Toyoda, and T. Ohtsuki, “Blind source separation on
non-contact heartbeat detection by non-negative matrix
factorization algorithms,” IEEE Transactions on Biomedical
Engineering, vol. 67, pp. 482–494, 2020.

[33] E. Boillaud and G. Molina, “Are judgments a form of data
clustering? Reexamining contrast effects with the k-means
algorithm,” Journal of Experimental Psychology. Human
Perception and Performance, vol. 41, no. 2, pp. 415–430, 2015.

[34] W. Shi, R. Zou, M. Yang et al., “Analysis of genes involved in
ulcerative colitis activity and tumorigenesis through
systematic mining of gene co-expression networks,” Frontiers
in Physiology, vol. 10, p. 662, 2019.

[35] T. B. Huffaker, S. H. Lee, W. W. Tang et al., “Antitumor
immunity is defective in T cell-specific microRNA-155-
deficient mice and is rescued by immune checkpoint
blockade,” The Journal of Biological Chemistry, vol. 292,
no. 45, pp. 18530–18541, 2017.

[36] M. Shao, Z. B. Wen, H. H. Yang et al., “Exogenous angiotensin
(1-7) directly inhibits epithelial-mesenchymal transformation
induced by transforming growth factor-β1 in alveolar
epithelial cells,” Biomedicine & Pharmacotherapy, vol. 117,
article 109193, 2019.

[37] A. Ghasemi and S. Zahediasl, “Normality tests for statistical
analysis: a guide for non-statisticians,” International Journal
of Endocrinology and Metabolism, vol. 10, no. 2, pp. 486–489,
2012.

[38] A. Hazra and N. Gogtay, “Biostatistics series module 3:
comparing groups: numerical variables,” Indian Journal of
Dermatology, vol. 61, no. 3, pp. 251–260, 2016.

[39] A. C. Berger, A. Korkut, R. S. Kanchi et al., “A comprehensive
pan-cancer molecular study of gynecologic and breast cancers,”
Cancer Cell, vol. 33, no. 4, article e699, pp. 690–705.e9, 2018.

[40] S. Luthra, U. Chandran, B. Diergaarde, M. Becich, A. V. Lee,
and C. A. Neumann, “Expression of reactive species related

genes is associated with patient survival in luminal B breast
cancer,” Free Radical Biology & Medicine, vol. 120, pp. 170–
180, 2018.

[41] Z. Li, Y. Zhang, Z. Zhang, Z. Zhao, and Q. Lv, “A four-gene
signature predicts the efficacy of paclitaxel-based neoadjuvant
therapy in human epidermal growth factor receptor 2–nega-
tive breast cancer,” Journal of Cellular Biochemistry, vol. 120,
no. 4, pp. 6046–6056, 2019.

[42] X. Xie, J. Wang, D. Shi et al., “Identification of a 4-mRNA
metastasis-related prognostic signature for patients with breast
cancer,” Journal of Cellular and Molecular Medicine, vol. 23,
no. 2, pp. 1439–1447, 2019.

[43] S. Paget, “The distribution of secondary growths in cancer of
the breast. 1889,” Cancer Metastasis Reviews, vol. 8, no. 2,
pp. 98–101, 1989.

[44] M. R. Junttila and F. J. de Sauvage, “Influence of tumour
micro-environment heterogeneity on therapeutic response,”
Nature, vol. 501, no. 7467, pp. 346–354, 2013.

[45] J. F. Miller and M. Sadelain, “The journey from discoveries in
fundamental immunology to cancer immunotherapy,” Cancer
Cell, vol. 27, no. 4, pp. 439–449, 2015.

[46] K. Krug, E. J. Jaehnig, S. Satpathy et al., “Proteogenomic
landscape of breast cancer tumorigenesis and targeted
therapy,” Cell, vol. 183, no. 1436-1456, article e1431, 2020.

[47] P. Sharma, S. Hu-Lieskovan, J. A. Wargo, and A. Ribas,
“Primary, adaptive, and acquired resistance to cancer
immunotherapy,” Cell, vol. 168, no. 4, pp. 707–723, 2017.

[48] A. H. Sharpe and K. E. Pauken, “The diverse functions of the
PD1 inhibitory pathway,” Nature Reviews. Immunology,
vol. 18, no. 3, pp. 153–167, 2018.

[49] C. Fremd, M. Hlevnjak, M. Zapatka et al., “Mismatch
repair deficiency drives durable complete remission by
targeting programmed death receptor 1 in a metastatic
luminal breast cancer patient,” Breast Care, vol. 14, no. 1,
pp. 53–59, 2019.

[50] R. Cristescu, R. Mogg, M. Ayers et al., “Pan-tumor genomic
biomarkers for PD-1 checkpoint blockade-based
immunotherapy,” Science, vol. 362, no. 6411, 2018.

[51] T. Sen, C. M. Della Corte, S. Milutinovic et al., “Combination
treatment of the oral CHK1 inhibitor, SRA737, and low-dose
gemcitabine enhances the effect of programmed death ligand
1 blockade by modulating the immune microenvironment in
SCLC,” Journal of Thoracic Oncology, vol. 14, no. 12,
pp. 2152–2163, 2019.

[52] J. M. Ubago, L. Z. Blanco, T. Shen, and K. P. Siziopikou, “The
PD-1/PD-L1 axis in HER2+ ductal carcinoma in situ (DCIS)
of the breast,” American Journal of Clinical Pathology,
vol. 152, no. 2, pp. 169–176, 2019.

[53] M. Yu, X. Duan, Y. Cai et al., “Multifunctional nanoregulator
reshapes immune microenvironment and enhances immune
memory for tumor immunotherapy,” Advancement of Science,
vol. 6, no. 16, p. 1900037, 2019.

[54] A. Moeini, S. Torrecilla, V. Tovar et al., “An immune gene
expression signature associated with development of human
hepatocellular carcinoma identifies mice that respond to
chemopreventive agents,” Gastroenterology, vol. 157, no. 5,
pp. 1383–1397.e11, 2019.

[55] J. Jiang, W. Pan, Y. Xu et al., “Tumour-infiltrating immune
cell-based subtyping and signature gene analysis in breast
cancer based on gene expression profiles,” Journal of Cancer,
vol. 11, no. 6, pp. 1568–1583, 2020.

20 Disease Markers



[56] R. M. Zemek, E. de Jong, W. L. Chin et al., “Sensitization to
immune checkpoint blockade through activation of a
STAT1/NK axis in the tumor microenvironment,” Science
Translational Medicine, vol. 11, no. 501, 2019.

[57] X. Wang, D. Su, Z. Qin, and Z. Chen, “RETRACTED:
Identification of FOXN4 as a tumor suppressor of breast
carcinogenesis via the activation of TP53 and deactivation of
Notch signalling,” Gene, vol. 722, p. 144057, 2020.

[58] B. Zhu, L. A. Tse, D. Wang et al., “Immune gene expression
profiling reveals heterogeneity in luminal breast tumors,”
Breast Cancer Research, vol. 21, no. 1, p. 147, 2019.

21Disease Markers


	Prognosis of Tumor Microenvironment in Luminal B-Type Breast Cancer
	1. Introduction
	2. Materials and Methods
	2.1. Data Acquisition and Processing
	2.2. TME Score for Infiltrating Cells
	2.3. Consensus Clustering-Derived Molecular Subtypes Correlated with TME-Infiltrating Cells
	2.4. Differentially Expressed Genes (DEGs) Correlated with the TME Phenotype
	2.5. TME Phenotype-Related Differential Gene Reclustering
	2.6. Establishing TME Gene Signatures and Reducing the Dimension
	2.7. Correlation between Clinical Characteristics and TME Score
	2.8. Correlation between the TME Score and the Expression of Immune-Related Genes
	2.9. Relationship between TME Score and Tumor Genomic Variation
	2.10. Statistical Analysis

	3. Results
	3.1. TME Landscape regarding the Luminal B Breast Cancer
	3.2. Functional Analysis and DEGs between TMEC
	3.3. A TME Signature Development
	3.4. Correlation among TME Score Clinical Features and Immunological Gene Expression
	3.5. TME Features of a Tumor Genome
	3.6. Comparison of Risk Models with Other Models

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Supplementary Materials

