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Molecular analysis facilitates the prediction of overall survival (OS) of breast cancer and decision-making of the treatment plan.
The current study was designed to identify new prognostic genes for breast cancer and construct an effective prognostic signature
with integrated bioinformatics analysis. Differentially expressed genes in breast cancer samples from The Cancer Genome Atlas
(TCGA) dataset were filtered by univariate Cox regression analysis. The prognostic model was optimized by the Akaike
information criterion and further validated using the TCGA dataset (n = 1014) and Gene Expression Omnibus (GEO) dataset
(n = 307). The correlation between the risk score and clinical information was assessed by univariate and multivariate Cox
regression analyses. Functional pathways in relation to high-risk and low-risk groups were analyzed using gene set enrichment
analysis (GSEA). Four prognostic genes (EXOC6, GPC6, PCK2, and NFATC2) were screened and used to construct a
prognostic model, which showed robust performance in classifying the high-risk and low-risk groups. The risk score was
significantly related to clinical features and OS. We identified 19 functional pathways significantly associated with the risk
score. This study constructed a new prognostic model with a high prediction performance for breast cancer. The four-gene
prognostic signature could serve as an effective tool to predict prognosis and assist the management of breast cancer patients.

1. Introduction

In 2020, over 2.26 million breast cancer cases were diag-
nosed, accounting for 11.7% of total cancer cases in that
year. Breast cancer as one of the most frequently diagnosed
cancers is also a major cause of death in women. According
to the Global Cancer Observatory (GCO) statistics, more
than 1.4 million breast cancer cases were newly diagnosed
in China in 2020, accounting for 10.3% of all cancer inci-
dences [1]. Molecular diagnosis subdivides breast cancer
into five subtypes, namely, basal-like, HER2, luminal A,
luminal B, and normal-like. Specific therapeutic treatment
of breast cancer varies with different subtypes and stages.

Here, the use of molecular prognostic biomarkers in clinical
practice could help optimize treatment and avoid unneces-
sary adjuvant treatment.

Compared with traditional prognostic factors such as
tumor size, lymph nodes, estrogen receptor (ER), and pro-
gesterone receptor (PR), molecular prognostic biomarkers
show an obvious advantage in guiding clinical decision-
making for managing breast cancer patients [2]. For exam-
ple, as one of the most commonly used commercial genetic
prognostic tests, Oncotype DX has also been proven to be
an effective tool to help predict the possibility of disease
recurrence and decision-making for adjuvant chemotherapy
[3–5]. A phase 3 trial SWOG-8814 demonstrates
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encouraging results in deciding whether tamoxifen-treated
patients should accept chemotherapy by recurrence score [3].

Currently, seven types of prognostic signatures (Onco-
type DX, MammaPrint, Prosigna/PAM50, EndoPredict,
Breast Cancer Index, Mammostrat, and IHC4) have been
included in the American Society of Clinical Oncology
(ASCO) guidelines (2017 edition) and National Comprehen-
sive Cancer Network (NCCN) guidelines [6–8]. Only Onco-
type DX and MammaPrint provide treatment guidance for
ER/PR-positive and HER2-negative patients [7]; however,
patients with intermediate recurrence score calculated by
Oncotype DX may not necessarily benefit from adjuvant
chemotherapy. According to the guideline of ASCO and
NCCN, Oncotype DX and MammaPrint cannot precisely
determine the treatment of HER2-positive or triple-
negative breast cancer [7, 8].

Genetic signatures play a significant role in predicting
prognosis and deciding treatment strategies for cancer
patients. Based on substantial clinical genomic data, deep
genetic information can be explored through bioinformatics
analysis. In this study, we identified a crucial gene cluster from
the public genomic database and established a prognostic sig-
nature for breast cancer applying bioinformatics analysis.

2. Materials and Methods

2.1. Data Source. Workflow of developing the prognostic
model is presented in Figure 1. The dataset of breast cancer
for extracting RNA-seq, copy number variation (CNV), single
nucleotide variation (SNV), and clinical follow-up informa-
tion was downloaded from The Cancer Genome Atlas
(TCGA) database (https://cancergenome.nih.gov/). The data-

set of breast cancer with mRNA expression profiles
(GSE20685) and corresponding clinical data with survival
information was obtained from the Gene ExpressionOmnibus
(GEO) database (http://www.ncbi.nlm.nih.gov/gds/?term=).

2.2. Data Preprocessing. Samples without clinical follow-up
information and survival information were excluded. For
RNA-seq dataset from TCGA, genes with a value of tran-
scripts per million (TPM) lower than 1.0 were eliminated.
According to the annotation files, probes in the GSE20685
dataset were converted to gene symbols. After excluding
probes matching multiple genes, multiple symbols matching
a gene were kept and calculated for the median of gene
expression value. After data preprocessing, 1014 TCGA
samples and 307 samples from GSE20685 were obtained.
The detailed clinical information of all samples is shown in
Supplementary Table S1.

2.3. Identification of Differentially Expressed Genes. CNV
segments with an absolute value of segment mean ≥ 0:2
were included in the following analysis. Each CNV segment
of the samples (cancer and normal) was subjected to the chi-
square test. False discovery rate (FDR) was calculated using
the multtest R package. CNV segments with a FDR < 0:05
were mapped and converted to differential expressed genes
using BEDTools [9]. The correlation between mRNA data
and survival data was analyzed by the univariate Cox regres-
sion model in the R package. Differential expressed genes
with p < 0:05 were filtered. In addition, genes showing
SNV data with a mutation rate higher than 1% were identi-
fied by the MuTect tool. Genes in the intersection of CNV,
SNV, and mRNA data were extracted as differentially
expressed genes.

TCGA-BRCA CNV dataset TCGA-BRCA SNV TCGA-BRCA exp dataset

Univariate survival analysis

TCGA-test set (n = 304)

Gene set enrichment analysis

Model evaluation and validation

4-genes model

TCGA-train set (n = 70)

Clinical feature analysis

Nomogram

Univariate and
multivariable analysis

Gene intersection (51 genes)

TCGA-all set (n = 1014)

GSE20685 set (n = 307)

Fisher test (tumor vs normal)

Figure 1: The workflow of the development and validation of the new prognostic model. 1014 samples from TCGA and 307 samples from
GEO were used for analysis.
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2.4. Dataset Processing for Establishing a Prognostic Model. A
total of 1014 samples from the TCGA dataset were divided
into the training group and the test group with a ratio
training group : test group = 7 : 3. To ensure model stability,
the samples were grouped by randomized sampling for 100
times. The division was performed based on the following
conditions: (a) balanced distribution of age, sex, clinical
follow-up time, and death rate between the two groups; (b)
similar quantity of samples of binary classification after clus-
tering expression profile. Divisions of the training group
(710 samples) and the test group (304 samples) are displayed
in Supplementary Table S2. There was no statistical
difference (p > 0:05) between the two groups after the chi-
square test.

2.5. Identification of Prognostic Signature within the Training
Dataset. In the training dataset, differentially expressed
genes significantly associated with clinical features were
identified through univariate Cox regression in the R pack-
age. The multivariate Cox regression model and stepAIC in
the R package were further applied to optimize the prognos-
tic model. The simplified model with the lowest value of
Akaike information criterion (AIC) was considered as the
prognostic signature.

2.6. Calculation and Classification of Risk Score. The risk score
of each sample was calculated by the prognostic model, and
the prognostic signature was evaluated with receiver operating
characteristic (ROC) curve. The timeROC in the R package
was applied to assess ROC, and the area under ROC curve
(AUC) was calculated to reflect the effectiveness of the prog-
nostic signature. z − score = 0 is the cut-off for sample catego-
rization into the low-risk group and the high-risk group.

2.7. Evaluating the Effectiveness of Prognostic Signature. The
consistence of the signature of the test dataset was evaluated
by comparing the performance of the test dataset with the
training dataset. The independent dataset GSE20685 was
chosen as the validation dataset for further validation. In
the test dataset and validation dataset, the correlation of
prognostic signature and clinical information including
age, stage (I, II, III, and IV), pathological stage (T, N, and
M stages), and status (PR status, ER status, and HER2 status)
was analyzed by univariate and multivariable Cox regres-
sions, ROC, and Kaplan–Meier survival curves.

2.8. Analyzing the Correlation between Risk Score and
Functional Pathways. The correlation between the risk score
and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways was investigated. Single-sample gene set enrich-
ment analysis (ssGSEA) in the R package was applied to ana-
lyze the gene expression profile of each sample [10, 11], and
the ssGSEA score in different functional pathways of each
sample was calculated to assess the correlation between
KEGG pathways and the risk score. When the ssGSEA
score > 0:25, KEGG pathways were defined as having a cor-
relation with the risk score.

3. Results

3.1. Identification of Differentially Expressed Genes. After
analyzing the CNV dataset of 1014 cancer samples from
TCGA, 5695 differential genes were filtered by the chi-
square test (FDR < 0:05, Supplementary Table S3). 3118
genes with a mutation rate greater than 1% were screened
based on SNV data (Supplementary Table S4). Furthermore,
1265 differential expressed genes were screened by
associating the mRNA data with survival data of 1014
samples using univariate Cox regression (p < 0:05,
Supplementary Table S5). In Figure 2(a), 51 genes in the
intersection of the screened CNV dataset, CNV dataset, and
mRNA dataset were defined as differentially expressed genes
(Supplementary Table S6). Figure 2(b) shows the mutation
information of these genes including mutation distribution,
types, and proportion. A great majority of missense and
other types of mutations can be found, and there was a great
proportion (about 20%) of frame shift indel in the RUNX1
gene. Univariate Cox regression revealed that 51 genes all
had a significant correlation with survival information
(Figure 2(c)). Only 4 genes (SEMA5B, NOTCH1, AHNAK2,
and GPC6) showed a hazard rate ðHRÞ > 1, indicating a
significant relation between higher expression and worse
prognosis (p < 0:05) (Figure 2(c)). The remaining 47 genes
were closely related to lower expression and worse prognosis
(p < 0:05) (Figure 2(c)).

3.2. Construction and Validation of the Four-Gene Prognostic
Signature. A total of 1014 samples were divided into the
training dataset (710 samples) and the test dataset (304 sam-
ples) by randomized sampling (Table S2), without statistical
difference (p > 0:05). In the training dataset, 6 out of 51
differential genes were detected by univariate Cox regression
(p < 0:05, Supplementary Table S7). The six genes were used
to construct a prognostic signature and further simplified by
the stepAIC method. Finally, four genes, EXOC6, GPC6,
PCK2, and NFATC2, were included in the prognostic
signature. Risk score was defined as follows:

Risk score = −0:242 ∗ EXOC6 + 0:255 ∗GPC6
− 0:227 ∗ PCK2 − 0:288 ∗NFATC2:

ð1Þ

According to the mRNA expression level, the risk score of
each sample in the training dataset was determined and
converted to the z-score for sample classification into the
high-risk group (339 samples) and the low-risk group (331
samples). z − score = 0 was the cut-off (Figure 3). As shown
in Figure 3(a), the samples were divided into two groups,
and the mRNA expressions of four genes (EXOC6, GPC6,
PCK2, and NFATC2) were consistent with the risk score.
With the increase of risk score, the mRNA expression of
EXOC6, PCK2, and NFATC2 was downregulated, while that
of GPC6 was upregulated (Figure 3(a)). ROC analysis
validated that the four-gene signature was an effective tool in
predicting one-year, three-year, and five-year prognoses,
with an AUC of 0.70, 0.62, and 0.65, respectively
(Figure 3(b)). From the Kaplan–Meier survival curves, it
could be found that the patient prognosis was significantly
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different between the high-risk group and the low-risk group
(Figure 3(c), p < 0:001).

Similarly, the results in the test dataset (304 samples)
and whole dataset (1014 samples) were consistent with
those in the training dataset (p < 0:05 and p < 0:0001,
respectively), pointing to a strong prognostic ability of the
four-gene signature in differentiating patients with high risk
and low risk (Supplementary Figure S1 and S2). Moreover,
the robustness of the prognostic signature was evaluating
using the independent dataset (GSE20685, with a total of
307 samples as the validation dataset). Likewise, the high-
risk group (162 samples) and the low-risk group (145
samples) were effectively divided by the four-gene
signature (p < 0:05, Supplementary Figure S3).

3.3. Correlation between the Four-Gene Prognostic Signature
and Clinical Features. The effectiveness of the four-gene
prognostic signature was analyzed based on the correla-
tion between the risk score and the clinical information

in the TCGA dataset. Univariate Cox regression analysis
showed that risk type (high risk and low risk) was associated
with OS (HR = 2:18, 95%CI = 1:47 – 3:23, p < 0:00001,
Figure 4(a)). Multivariate Cox regression analysis also dem-
onstrated a significant correlation between risk type and sur-
vival (HR = 2:34, 95%CI = 1:14 – 4:82, p < 0:05, Figure 4(b)).
The distribution of risk score in different clinical features
manifested a significant difference of risk score in the M stage
(M0 and M1), stages I to IV, ER status, PR status, HER2 sta-
tus, and subtypes (p < 0:05, Supplementary Figure S4). The
survival plots showed that patients in the low-risk group in
all clinical statuses all had a longer survival (Figure 5). In
particular, clinical features including age, T stage, N stage,
M0 stage, stages I to IV, ER-positive status, PR-positive
status, and HER2-negative status could be clearly divided
into the high-risk group and the low-risk group by the
prognostic signature (p < 0:05, Figure 5), but the risk score
system was not sensitive to M1 status, ER-negative, PR-
negative, or HER2-positive samples. Moreover, we compared

(c)

Figure 2: Identification of 51 differential expressed genes. (a) Venn diagram of 51 differentially expressed genes. SigCox_genes represent the
genes outputted using univariate Cox regression analysis. (b) The distribution of the mutation pattern of 51 genes. Five types of mutations
(frame shift indel, in frame indel, missense, nonsense, and other types) were listed. (c) Univariate Cox regression analysis of 51 differential
expressed genes. HR: hazard ratio; CI: confidential interval.
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Figure 3: Construction of the four-gene prognostic signature in the training dataset (710 samples). (a) Risk score (converted as z-score) of
all samples in the training dataset. Survival status (alive and dead) of 710 samples. Gene expression of prognostic genes PCK2, NFATC2,
GPC6, and EXOC6. Red and green colors represented high and low expressions, respectively. (b) ROC curve of 1-year, 3-year, and 5-year
survival, with AUC of 0.70, 0.62, and 0.65, respectively. (c) Kaplan–Meier survival curves of high-risk and low-risk groups classified by
the four-gene signature (95%CI = 1:31 − 2:01, p < 0:001). HR: hazard ratio; CI: confidential interval.
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the clinical difference between the high-risk group and
the low-risk group. Although there was no significant
difference of T, N, and M stages between the two groups, a
significant difference of stages I to IV was detected (p < 0:05,
Supplementary Figure S5). Additionally, a nomogram was
developed based on the risk score and cancer stage
(Figure 6(a)). The predicted death rate was positively
related to the survival time and total points (Figure 6(a)).
The predicted survival of 1 year, 3 years, and 5 years was
adjusted according to the observed survival data
(Figure 6(b)). Decision curve analysis (DCA) revealed that
risk score was effective in OS prediction, but the nomogram
showed greater advantages (Figure 6(c)).

3.4. Correlation between Risk Score and Functional
Pathways. GSEA analysis analyzed the relation between the
mRNA expression and functional pathways using the TCGA
dataset. The ssGSEA score of each sample was calculated to
evaluate the correlation coefficient with risk score. Func-
tional pathways with a correlation coefficient > 0:25 are
shown in Figure 7(a), in which 10 pathways had a positive
relation with risk score and 9 pathways had a negative rela-

tion with risk score. In particular, the p53 signaling path-
way and the Wnt signaling pathway were positively
related to the risk score, while the propanoate metabolism
pathway and the inositol phosphate metabolism pathway
were negatively related to the risk score (p < 0:00001,
Figure 7(b)). In addition, mutation frequency and pattern
were compared between the high-risk and low-risk groups
(Supplementary Figure S6). Three genes (TP53, PIK3CA,
and CDH1) showed significant difference between the two
groups. The mutation frequency of TP53 in the high-risk
group was higher than that in the low-risk group, and
those of PIK3CA and CDH1 were lower in the high-risk
group (Supplementary Figure S6).

4. Discussion

Prognostic signatures such as Oncotype DX and Mamma-
Print have been approved by the Food and Drug Adminis-
tration (FDA) and commercially applied in clinical
practice, but breast cancer patients had limited benefit from
them [7, 8]. Currently, there is no available effective prog-
nostic signature to guide decision-making of the treatment
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plan for patients with HER2-positive, node-positive, and
triple-negative breast cancer (TNBC).

In the present study, we used the available data of breast
cancer from two databases (TCGA and GEO) and applied a
new methodology combined with CNV, SNV, and mRNA
data to mine differentially expressed genes. Based on differ-
entially expressed genes and patients’ clinical information,
a prognostic model was developed and further optimized
with the Akaike information criterion. Finally, a four-gene
prognostic signature based on EXOC6, GPC6, PCK2, and
NFATC2 was established, which had a high performance in
classifying samples to two groups (high risk and low risk)

in the test dataset and the validation dataset. Clinical fea-
tures including T stage, N stage, M stage, stage, ER status,
and PR status were significantly associated with risk score.
The prognostic signature with only four genes involved
was more clinically friendly than current commercial signa-
tures of breast cancer.

Recent studies have proposed several prognostic signa-
tures of breast cancer. For instance, Alsaleem et al. devel-
oped a two-gene signature (ACSM4 and SPDYC) indicative
of poor prognosis of TNBC [12]; Joe et al. explored a prog-
nostic gene set with a total of 43 genes from the transcrip-
tomic dataset of breast cancer; and Deng et al. discovered
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six hub genes (CDK1, CCNA2, TOP2A, CCNB1, KIF11, and
MELK) associated with worse overall survival of breast can-
cer patients [13]. In a previous study, differentially expressed
genes were screened from 235 GEO samples, and 1105 sam-
ples from TCGA served as a validation dataset [13]. In
another study, using weighted gene coexpression network

analysis (WGCNA), five hub genes (CCNB2, FBXO5, KIF4A,
MCM10, and TPX2) consisted of a prognostic signature and
were correlated with poor prognosis [14], but only the tran-
scriptomic dataset was included in the study [14]. Previ-
ously, differentially expressed genes were filtered based on
mRNA expression data; however, current results generated
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by combined analysis of CNV, SNV, and mRNA data will be
more reliable and comprehensive. Furthermore, the R soft-
ware package CIBERSORT, Timer, and MCPcounter were
used to evaluate the infiltration score of immune-
infiltrating cells in each patient and observed that CD8 T
cells were significantly higher in the high-risk group than
in the low-risk patients (Supplementary Figure S7). PAM50
subtype analysis showed that the 4-gene model was more
suitable for predicting the prognosis in Her2 and LumB
subtypes (Supplementary Figure S8).

In the four-gene prognostic signature, EXOC6, GPC6,
and NFATC2 were correlated with aggression of breast
cancer. Pan cancer analysis indicated that in the expres-
sions of four genes, at least one significant difference in
the expression of these genes was observed in multiple
tumors, but four genes had significant differences in the
expression of breast cancer (Supplementary Figure S9). The
EXOC6 protein as one of the components of the exocyst
complex plays crucial role in exocytosis and is involved in
intracellular content delivery. The exocyst complex is
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implicated in some diseases including in kidney diseases,
neuropathogenesis, diabetes, and cancers [15]. EXOC6 has
been reported to be a predictive biomarker in the sensitivity
evaluation of treatment with SAHA (suberoylanilide
hydroxamic acid) and paclitaxel [16]. Research showed that
EXOC6 is upregulated in the paclitaxel-resistant combination
synergistic cell lines [16]. Winham et al. demonstrated that
the EXOC6 expression in breast cancer cases is higher than
that in control cases, thereby concluding that EXOC6 is a
predictive gene in breast cancer development [17].

GPC6, a member of the glypican family (six members of
GPC1-GPC6), plays an important role in development and
morphogenesis [18]. GPC1 has been discovered to have a
higher expression in breast cancer tissues and cells than nor-
mal breast tissues and may contribute to the progression of
breast cancer [19]. GPC6 is related to various tumors includ-
ing prostate cancer [20], non-small cell lung cancer [21],
colorectal cancer [22], gastric cancer [23], early stage ovarian
cancer [24], nasopharyngeal carcinoma [25], and breast can-
cer [26]. Notably, GPC6 promotes invasive migration
through inhibiting β-catenin and Wnt signaling pathways
and upregulating noncanonical Wnt5A signaling [26]. In
the current study, the Wnt signaling pathway showed a pos-
itive correlation with risk score (Figure 7). Based on the
analysis of 3951 breast cancer patients from a public data-
base, Grillo et al. suggested that glypicans could serve as
prognostic biomarkers for breast cancer patients [27] as they
found that low GPC6 was correlated with longer survival
time [27], which is consistent with our findings that the
low-risk group had lower GPC6 expression.

NFATC2 (also known as NFATP or NFAT1) belongs to
the nuclear factor of activated T cell (NFAT) family and reg-
ulates the expression of cytokine interleukin-2 (IL-2) in acti-
vated T cells [28]. Many researches demonstrated the critical
functions of NFATC2 in cancers such as colon cancer [29],
pancreatic cancer [30, 31], lung adenocarcinoma [32], mela-
noma [33], and other cancers [34]. Interestingly, Yiu et al.
proved that NFAT binds to three regulatory elements in
the GPC6 proximal promoter and stimulates breast carci-
noma invasion by inducing GPC6 [26]. Ding et al. indicated
that NFATC2 may act as a pivotal factor for OSW-1-
mediated effects on cell death, tumor growth, invasion, and
migration of triple-negative breast cancer [35]. Moreover,
it has been unveiled that NFATC2 is negatively correlated
with Stat5 and that these two transcription factors may sig-
nificantly influence the progression of breast cancer [36].
However, PCK2 gene has not been reported in breast cancer.
PCK2 encodes a mitochondrial isoform of phosphoenolpyr-
uvate carboxykinase (PEPCK) [37]. It was demonstrated
that PCK2 was involved in the tumor proliferation of lung
cancer [38–40], prostate cancer [41], and hepatocellular
carcinoma [42]. We also did a protein interaction network
analysis; the result showed that the four genes formed a small
world, with weak links between them (Supplementary
Figure S10) suggesting that the smaller bioinformatics
overlap between these genes, with greater biological
information between them complementary to each other.

In this study, we applied a new methodology to develop
a prognostic model for breast cancer. The four-gene prog-

nostic signature showed a satisfactory performance to some
extent, except that it was not sensitive to ER-negative, PR-
negative, and HER2-positive samples. In addition, we did
not consider epigenetic effects as DNA methylation has been
found to be correlated with particular breast cancer subtypes
[43, 44]. This novel prognostic signature could be expected
to guide the treatment decision-making and predict the
prognosis of breast cancer patients or even promote the dis-
coveries of new molecular drug targets. However, before
that, further clinical samples and evidence should be gath-
ered to validate these new prognostic genes.

5. Conclusion

In conclusion, our study developed a novel prognostic signa-
ture closely correlated with the overall survival in breast
cancer. All the samples were classified into a high-risk or a
low-risk group by the risk score system. In particular, the
risk score was sensitive to clinical features including the
tumor stage, ER-positive status, PR-positive status, and
HER2-negative status. Therefore, our four-gene signature
could serve as new prognostic biomarkers for breast cancer,
providing a new direction for exploring new drugs or thera-
pies of breast cancer.
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Supplementary Materials

Supplementary Figure S1: validation of four-gene prognostic
signature in the training dataset (304 samples). (A) Risk score
(converted as z-score) of all samples in the training dataset. Sur-
vival status (alive and dead) of 304 samples. Gene expression of
prognostic genes PCK2, NFATC2, GPC6, and EXOC6. Red and
green colors represented high and low expressions, respectively.
(B) ROC curve of 1-year, 3-year, and 5-year survival, with AUC
of 0.72, 0.61, and 0.66, respectively. (C) Kaplan–Meier survival
curves of high-risk and low-risk groups classified by the four-
gene signature (95%CI = 1:04 − 1:95, p < 0:05). HR: hazard
ratio; CI: confidential interval. Supplementary Figure S2: valida-
tion of four-gene prognostic signature in the TCGA dataset
(1014 samples). (A) Risk score (converted as z-score) of all sam-
ples in the training dataset. Survival status (alive and dead) of
1014 samples. Gene expression of prognostic genes PCK2,
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NFATC2, GPC6, and EXOC6. Red and green colors repre-
sented high and low expressions, respectively. (B) ROC curve
of 1-year, 3-year, and 5-year survival, with AUC of 0.70, 0.62,
and 0.65, respectively. (C) Kaplan–Meier survival curves of
high-risk and low-risk groups classified by four-gene signature
(95%CI = 1:30 − 1:86, p < 0:0001). HR: hazard ratio; CI: con-
fidential interval. Supplementary Figure S3: validation of
four-gene prognostic signature in the GSE20685 dataset (307
samples). (A) Risk score (converted as z-score) of all samples
in the training dataset. Survival status (alive and dead) of
1014 samples. Gene expression of prognostic genes PCK2,
NFATC2, GPC6, and EXOC6. Red and green colors repre-
sented high and low expressions, respectively. (B) ROC curve
of 1-year, 3-year, and 5-year survival, with AUC of 0.76, 0.72,
and 0.66, respectively. (C) Kaplan–Meier survival curves of
high-risk and low-risk groups classified by four-gene signature
(95%CI = 1:05 − 2:36, p < 0:05). HR: hazard ratio; CI: confi-
dential interval. Supplementary Figure S4: the distribution of
different clinical features (relapse, T stage, N stage, M stage,
stage, and age) in high-risk and low-risk groups in the TCGA
dataset (1014 samples). ∗p < 0:05. Supplementary Figure S5:
comparison of different clinical features in high-risk and
low-risk groups in the TCGA dataset (1014 samples).
Kruskal-Wallis test was used to compare the difference of T
stage (A), N stage (B), stage (D), and subtype (I). Wilcoxon
test was used to compare the difference of M stage (C), age
(E), ER status (F), PR status (G), and HER2 status (H). Supple-
mentary Figure S6. The mutation pattern of 15 genes in the
high-risk group (A) and the low-risk group (B). Different
colors represented different types of mutations. The right bar
and percentage represented the quantity and proportion of
mutations. Supplementary Figure S7: immune infiltration of
risk types. A: 22 immune cell infiltration scores in tumor sam-
ples assessed by CIBERSORT. B: 6 immune cell infiltration
scores in tumor samples evaluated by Timer software. C: 10
immune cell infiltration scores in tumor samples assessed by
MCPcounter software. Supplementary Figure S8: prognostic
ROC curve of the model in the PAM50 subtype. Supplemen-
tary Figure S9: differential expression analysis of four genes
in Pan carcinoma. Supplementary Figure S10: the interaction
network of 30 genes in the nearest neighbors of 4 genes.
Supplementary Table S1: TCGA dataset (1014 samples) and
GSE20685 dataset (307 samples) of breast cancer. RFS:
recurrence-free survival; ER: estrogen receptor; PR:
progesterone receptor. Supplementary Table S2: training
dataset and test dataset of total 1014 samples from the TCGA
dataset. RFS: recurrence-free survival; ER: estrogen receptor;
PR: progesterone receptor. Supplementary Table S3: 5695
differential genes identified from the CNV dataset using the
chi-square test. Supplementary Table S4: 1265 differentially
expressed genes identified from the mRNA dataset using
univariate Cox regression analysis. Supplementary Table S5:
3118 differential genes identified from the SNV dataset with
mutation rate > 1%. Supplementary Table S6: 51 differentially
expressed genes from the intersection of the CNV dataset,
SNV dataset, and mRNA dataset. Supplementary Table S7:
univariate Cox regression analysis of 6 differentially
expressed genes in the training dataset. HR: hazard ratio; CI:
confidential interval. (Supplementary Materials)
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