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The metabolic dysregulation is a hallmark of cancers including KIRC, specifically caused by alterations in metabolic genes.
Currently, a lack of consensus exists between metabolic signatures in the tumor microenvironment. Here, in this study, we
observed the significant correlations of differentially expressed metabolic genes (DEmGs) between KIRC and the related
normal samples. Briefly, we collected sets of metabolic genes through RNA-seq data of KIRC and normal tissues from TCGA,
followed by the identification of KIRC-related DEmGs. Next, patients were classified into three clusters, and using WGCNA,
we identified metabolic genes involved in the survival among different clusters. Furthermore, we investigated survival and
clinical parameters along with immune infiltration in the clusters. At the same time, we constructed and validated a prediction
model based on these DEmGs. These analyses revealed that the patients having high expression of DEmGs showed poor
survival, while infiltration of less-immune cells was associated with the metastasis of KIRC. In the end, we identified NUDT1
as a hub gene as it showed significantly high expression in KIRC samples as well as associated with the survival and prognosis
of the patients. Further analysis revealed the oncogenic role of NUDT1 in 786-O and ACHN cells. Thus, we conclude that
NUDT1 could be a potential diagnostic and prognostic marker for KIRC.

1. Introduction

Kidney renal clear cell carcinoma (KIRC) is a type of renal
cell carcinoma (RCC), considered as one of the common
cancers which accounts for 70–80% of cases [1], ranked as
the 16th most common cause of cancer-related mortality
worldwide [2]. Renal cell carcinoma (RCC) is the most com-
mon type of renal cancer and accounts for 90% of the kidney
cancer cases [3]. Recently, bioinformatics-based identifica-
tion of the potential markers in cancers is being widely used
but only few reliable biomarkers of KIRC have been identi-
fied or most of the markers are so far not fully validated.
Thus, bioinformatics analyses coupled with experimental
validations are necessary to elucidate the potential mecha-

nism of the biogenesis and progression of KIRC [4]. Deep
exploration of the tumor microenvironment and the devel-
opment of immunotherapy have made it possible to study
the interaction between tumor and the immune system [5].
Yet, many of the identified biomarkers have not been stud-
ied for their effect on the cellular phenotype and respective
underlying molecular mechanisms in the KIRC [6]. How-
ever, the prognosis of KIRC patients is poorly understood
and the overall 5-year survival is less than 10% after first
diagnosis [7, 8]. Generally, the normal tissues predominantly
contain high levels of the antiangiogenic factors. The distur-
bance in the level of these factors may activate the proangio-
genic factors which further increase the division of cells at an
abnormal rate leading to tumor formation [9]. In this
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process, tumor cells express a high level of proangiogenic
growth factor and this effect supports the development of
new blood vessels in the tumors [10]; thus, the development
of the tumor begins. Hence, many other factors are involved
in the tumorigenesis, including infiltration of the immune
cells and the expression of various metabolic genes. It has
been well known that the presence of different types of the
immune cells in the tumor microenvironment largely affects
the tumor progression and immunotherapy; thus, alterations
of immune-related genes also affect the proportion and
function of immune cells in the tumor microenvironment
[11]. For example, the infiltration of immune cells in the
tumor microenvironment significantly affects the develop-
ment of glioma [12]. Despite the lacking interest in meta-
bolic genes that influence cancers, the current studies have
renewed that awareness of cancer as a metabolic disorder
[13, 14]. These studies provide the base for including meta-
bolic reprogramming as a new hallmark of malignant trans-
formation [15]. However, the expression of all metabolic
genes or pathways among different tissues including tumors
and normal tissues differs from each other and it is largely
unexplored especially in KIRC.

Overall, there is a smaller number of reliable biomarkers
available for the prediction of prognosis and immunothera-
peutic responses in the KIRC; thus, it is hard to have a
complete clinical success. Therefore, comprehensive bioin-
formatics studies coupled with experimental validations
could elucidate the potential mechanisms of the biogenesis
and progression of KIRC. Thus, the current study is aimed
at comprehensively assessing the effects of the metabolic
pathways on the metabolic transcriptional profiles in KIRC
compared with their matched normal tissues. Here, we suc-
cessfully not only segregated the different disease sites or dif-
ferent molecular subtypes of the same disease but also
predicted the response to metabolism-targeted therapy. This
represents a new way of identifying a mechanism by which
metabolic pathways are disturbed in the malignancy and
offers novel targets for clinical interventions.

2. Material and Methods

2.1. Data Acquisitions. The RNA sequencing data (FPKM)
relevant to KIRC were directly downloaded from The Can-
cer Genome Atlas (TCGA). Subsequently, the data were
processed according to desired downstream applications.
In addition, clinicopathologic data for the corresponding
KIRC patients, including gender, race, age, tumor location,
histology classification, differentiation grade, tumor stage,
and survival information, were obtained from UCSC Cancer
Browser. To gain insights of metabolic heterogeneity of
KIRC patients, the metabolic genes’ sets were taken from
previous publications [16, 17]. The graphical abstract of this
study is shown in supplementary Figure 1, and the detailed
work flow of data acquisition and downstream process
study is shown in supplementary Figure 2.

2.2. Identification of the Differentially Expressed Metabolic
Genes (DEmGs). The sets of the metabolic genes were iden-
tified by intersections of two datasets and used for DEG

analysis between tumor and normal samples. Later, we also
identified DEmGs using WGCNA, and based on survival
modes, patients classified them into three clusters. In short,
the patients were divided into three clusters, namely, cluster
C1, cluster C2, and cluster C3. To identify DEGs, linear
models were used by employing R package limma. A false
discovery rate (FDR) adjusted p value < 0.05 combined with
a simultaneous absolute value of log2 fold change, logFC > 1,
and logFC < −1 were set as the threshold for DEG identifica-
tion. The volcano plots were made using ggplot2. The genes
with logFC > 1 were considered upregulated, and those with
logFC < −1 were assigned as downregulated genes.

2.3. Functional Enrichment Analyses and Protein-Protein
Interaction. The enrichment analyses by GO and KEGG
terms were performed through the R package Cluster profile.
The GO terms were divided into three categories including
molecular functions (MF), cellular components (CC), and
biological processes (BP). To determine the significant dif-
ferences and correlations of DEmGs between tumor and
normal tissues, we used computational software GSEA (gene
set enrichment analysis). KEGG and GO (Gene Ontology)
enrichment analyses of the DEGs were performed to identify
potential pathways and functions. Furthermore, the cysto-
scope application was used to construct the protein-protein
interaction (PPI) network of DEmGs. The initial PPI was
obtained from the STRING database. The highest confi-
dence limit was set to 0.9.

2.4. Survival Analysis. The differentially expressed genes in
renal cancer patients were identified through the limma
package, and the differentially expressed genes were ana-
lyzed by using WGCNA package to perform coexpression,
to construct a coexpression network which identified a total
of 6 modules. β = 5 and the network is a scale-free network.
The prognostic significance of DEmGs identified by
WGCNA in survival mode was determined by Kaplan-
Meier (KM) plots with the logrank test.

2.5. Immune Infiltration Analysis. The immune and stromal
cells were calculated using the R package, “xCELL; ” samples
with p < 0:05 were selected for further analysis. Furthermore,
the immune cells containing biological markers were analyzed
by the R package GSVA.Moreover, to analyze the purity of the
tumor, we used ESTIMATE algorithm to estimate the stromal
and immune scores of a series of KIRC tissues.

2.6. Construction of the Prediction Model. The differentially
expressed metabolic genes were obtained from RNA
sequencing data of KIRC tumors with survival information,
and the patients were randomly divided into training and
testing cohorts using the R package “caret;” then, univariate
survival analysis was performed on the DEmGs. Further-
more, LASSO analysis was performed by R package
“glmnet;” and for optimization of the prediction model, a
stepwise proportional hazards model was used.

2.7. Cell Culture. The human renal cancer cell lines 786-O
and ACHN were purchased from the American Type Cul-
ture Collection (ATCC) (Manassas, VA, USA). The 786-O
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cell lines were cultured in RPMI 1640 medium (cat. no.
11875093, Invitrogen, Carlsbad, CA, United States) supple-
mented with 10% fetal bovine serum (cat. no. 04-001-
1ACS, Biological Industries, Israel). The ACHN cell lines
were cultured in MEM medium (cat. no. 41500034, Invitro-
gen, Carlsbad, CA, United States) supplemented with 10%
fetal bovine serum. All cultures were incubated at 37°C and
5% CO2 in a humidified incubator.

2.8. Real-Time Quantitative PCR. Total RNA from the KIRC
cell lines and tissues was isolated by using TRIzol (cat. no.
9109; TaKaRa, Tokyo, Japan) according to the manufactur-
er’s protocols. RT-qPCR was performed using QuantiNova
SYBR Green PCR Kit (cat. no. 208054, QIAGEN, Duessel-
dorf, Germany). Relative gene expression was calculated by
the 2−ΔΔCt method. The primer sequences are listed in
Supplementary Table 1.

2.9. Cell Viability Assay. The cytotoxicity after NUDT1
siRNA transfection in 786-O and ACHN was determined
using a Cell Counting Kit-8 (CCK-8) assay (cat. no. C0038,
Beyotime Biotechnology Co. Ltd., China). The NUDT1
siRNA sequences are provided in Supplementary Table 1.
They were synthesized from GenePharma (Shanghai,
China). Briefly, both cell lines 786-O and ACHN in the
logarithmic growth phase (24 h after siRNA transfection)
were collected and dispensed into 96-well cell culture
plates (1000 cells/well). The following day, 10μl of CCK-8
was added to each well. After incubation at 37°C for a
further 2 h, the optical density (OD) at 450nm of cells was
detected via a microplate reader (Bio-Rad Laboratories,
Richmond, CA, USA).

2.10. Cell Migration, Invasion, and Apoptosis Assay. KIRC
cells 786-O and ACHN were transfected for siRNA-
mediated knockdown of the NUDT1. After 24h of the trans-
fection, cells were seeded into the 6-well plates for wound
healing assay. After cells obtained 100% confluence, the
wounds were generated in the cells as a monolayer using a
plastic pipette tip. The cells were then rinsed with PBS and
cultured for another 48 h. The distance of wound closure
was visualized by a microscope and photographed for mea-
suring the effect of NUDT1 knockdown on KIRC 786-O
and ACHN cells. Cell migration & invasion were performed
using transwell 24-well plates (Corning, New York, NY). In
short, an equal number of the cells were cultured in the
FBS-free media in the upper chamber and migration of the
cells was observed in the lower chamber of the transwell
where media was supplemented with 10% FBS. Transwell
chambers were carefully washed and stained with 0.2% crys-
tal violet, visualized, and photographed; later on, differences
between migrated cells between negative control and
NUDT1 knockdown were determined by simply cell count-
ing. Apoptosis assay was performed after 72 h of the trans-
fection, cells were harvested, washed, and resuspended in
ice-cold PBS. Cells were then detected by the Apoptosis
Detection Kit (cat. no. KGA1013, KeyGen BioTech, Nanjing,
China) according to the manufacturer’s instructions and

examined by flow cytometry (FACScan; BD Biosciences).
All experiments were performed in triplicate.

2.11. Statistical Analysis. All the statistical analyses were per-
formed at GraphPad prism (V7.0) and R (3.6.4), the Wilcox
test was used to compare the infiltration of immune cells in
normal and tumor tissues, and the chi-square test was per-
formed for studying the correlation between immune cell
infiltration and pathological parameters. Analysis of the var-
iance was used to compare the immune score, stromal score,
and tumor purity among the three clusters. For the survival
analysis, the p value was calculated using the logrank test. A
p value of <0.05 was considered statistically significant.

3. Results

3.1. Identification of Differentially Expressed Metabolic Genes
in KIRC. In order to explore the metabolic dysregulation in
KIRC, we explored the available TCGA data to get deep
insights for metabolism-targeted therapeutics in the clinic.
For this purpose, we selected a set of 1916 metabolic genes
that were intersected from two different datasets [16, 17]
and screened out the 1100 differentially expressed genes in
tumor vs normal tissues (Supplementary Table 2). These
differentially expressed metabolic genes were plotted in
volcanoes and heat maps (Figures 1(a) and 1(b)). Out of
1100 differentially expressed metabolic genes, 78 genes were
upregulated and 163 genes were downregulated. Moreover,
there were 859 genes were unchanged. The heat map
represents the individual expression index of those
differential metabolic genes in tumor and normal samples
(Figure 1(b)). Next, we identified the top 10 differentially
expressed metabolic genes; among them, ENPP3, NNMT,
CYP2J2, SCD, and HK2 were upregulated and HSD11B2,
HMGCS2, HPD, HS6ST2, and ALDOB were downregulated.
The box plots of these DEmGs are shown in Figure 1(c).
Among the upregulated genes, ENPP3 is ~7-fold expressed
in tumors. Alternatively, the gene ALDOB is ~5-fold
downregulated in analyzed tumor samples.

In addition, we evaluated KEGG pathway and GO anal-
yses of DEmGs. KEGG pathway analysis revealed that the
upregulated genes were significantly enriched in carbon
metabolism, HIF1 signaling, and glycolysis/gluconeogenesis
with a higher gene ratio (8–9 number of genes in each path-
way) (Figure 1(d)). Similarly, among downregulated
DEmGs, we found that carbon metabolism and valine, leu-
cine, and isoleucine degradation were the top pathways
affected by metabolically active genes (Figure 1(e)). The
pathways related to peroxisome organelle were also signifi-
cantly enriched in a downregulated group of gene tumor
samples. Noteworthy, compared with those in the upregu-
lated genes, the pathways involved in downregulated genes
have higher significant p values. It is worth mentioning that
most of the KEGG pathways enriched in downregulated
gene categories were related to amino acid metabolism. To
further dissect the involvement of DEmG in tumorigenesis,
the GO functional analyses of upregulated and downregu-
lated genes were performed. We divided the GO ontology
in three functional subontology groups, BP (biological
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process), CC (cellular component), and MF (molecular func-
tion) (Figures 1(f) and 1(g)). In addition, GSEA analysis
revealed a significant increase in enrichment of genes associ-
ated with BENPORATH_MYC_TARGETS_WITH_EBOX
in tumors (Supplementary Figure 3(a)), while BROWN_
MYELOID_CELL_DEVELOPMENT_UP, KEGG_ALPHA_
LINOLENIC_ACID_METABOLISM and KEGG_ETHER_
LIPID_METABOLISM were found to be negatively
enriched (Supplementary Figures 3(b)-3(d)). In the next
stage, we constructed a protein-protein interaction PPI
network with up- and downregulated DEmGs. A number
of the genes showed interaction with each other. Through
these genes’ interactions, we isolated hub genes. As shown
in supplementary Figure 4(a), each node is discrete from
the other based on the degree value; further, we isolated
the top 7 hub genes for PPI (Supplementary Figure 4(b)).
We also explored the correlation between these hub gene
expression and clinicopathological features of KIRC in
TCGA datasets (Supplementary Table 3).

3.2. Network Analysis Reveals Basic Metabolic Changes in
Various Tumor Ontologies. Next, the expression data of
DEmGs were selected and used as the input data for
WGCNA, which identified 6 distinct coexpression modules
containing a different number of genes for each module
(Figure 2(a)). We correlated differential genes with external
traits and identified the modules that were significantly asso-
ciated with clinical traits (Figure 2(b)). Based on the correla-
tion coefficient, we found that MEturquoise modules were
negatively correlated with the survival status. GO and KEGG
pathway enrichment analyses were performed using genes
from these modules (Figures 2(c) and 2(d)). The most
enriched KEGG pathways were valine, leucine, and isoleu-
cine degradation; carbon metabolism; propanoate metabo-
lism; fatty acid metabolism; fatty acid degradation;
peroxisome and butanoate metabolism; glyoxylate and
dicarboxylate metabolism; and tryptophan metabolism
(Figure 2(c)). The genes related to BP terms were predomi-
nantly enriched in small molecule, carboxylic acid, and

organic acid catabolic processes. The genes related to CC
terms were mainly enriched in the mitochondrial matrix.
The differentially expressed genes related to MF were mainly
enriched in coenzyme binding (Figure 2(d)). In addition, we
performed a survival analysis of 8 genes in the survival mod-
ule. Patients with higher ACADSB, PANK1, SLC25A4,
PCCA, HADH, AUH, ACAT1, and ALDH6A1 expression
had a longer survival rate than those with lower expression
of these genes (p = 0) (Figures 2(e)–2(l)).

3.3. Clustering of the KIRC Patients.We selected top DEmGs
for cluster analysis; the KIRC patients were grouped into
three clusters based on the differential expression of meta-
bolic genes. Figure 3(a) shows the heat maps of DEmGs in
the KIRC patients. The color scale indicates the expression
value (light-blue indicates lower expression value; darker-
blue indicates higher gene expression values).

KM curves were plotted to compare the overall survival
of the three clusters for KIRC patients. The overall survival
rates differed significantly across the three clusters
(p < 0:01 Figure 3(b)). Cluster 1 showed a worse survival rate
compared with cluster 2 and cluster 3. The PFS survival rate
also differed significantly among the 3 clusters (p < 0:001,
Figure 3(c)), and cluster 1 exhibited a worse PFS survival
rate compared with cluster 2 and cluster 3.

Different colors in our model represent clinical parame-
ters and underlying pathological stages (Figure 3(d)). Cluster
3 has lower Mo ratios and higher M1 value as compared
with clusters 1 and 2 suggesting higher cancer metastasis
and more advanced stage of tumors in cluster 3 than clusters
1 and 2. Similarly, in cluster 3, cancer has spread more to the
lymph nodes (higher N1) as compared with those in clusters
1 and 2. Most of the KIRC patients were diagnosed at stages
III and IV (Figures 3(e) and 3(f)), suggesting larger or
expanded tumors, as well as moving through the blood or
lymphatic system to a distant region in the body.

3.4. Immune Status of Three Clusters. We used the ESTI-
MATE algorithm to estimate the stromal and immune
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scores of a series of KIRC tissues based on their metabolic
transcriptional profiles (Figure 4(a)). Later, these scores were
taken into account to develop a stromal-immune score-
based metabolic genes signature for prognosis stratification
in KIRC. As shown in Figure 4(a), three cluster groups
(C1, C2, and C3) were stratified in box plots based on their
stromal-immune score. Among three clusters, C1 showed
the higher significant score in both stromal and immune
classifications.

Furthermore, three clusters were analyzed by CIBER-
SORT with a p value < 0.1 (Figure 4(b)). The tumor purity,
immune score, and stromal score along with the pathological
stages of 3 clusters are shown at the top of heat map. In this
analysis, we majorly found that regulatory T cells (Tregs)
were enriched in cluster C1 and patients in C1 were mainly
at pathological stages III and IV. Moreover, the activated NK
cells, CD8+ T cells, T follicular helper cells, and M0 macro-
phages in the C1 cluster; CD8+ T cells and T follicular
helper cells in the C2 cluster; and resting mast cells, M2
macrophages, resting memory CD4 T cells, monocytes,
naive B cells, and M1 macrophages in the C3 cluster were
also detected (Figure 4(b)).

Apart from CIBERSORT, we employed other algorith-
mic packages to check the status of immune infiltration.
The hierarchical heat map of MCP analysis is shown in
Figure 4(c). The key findings of MCP analysis were neutro-
phil infiltration and endothelial cell infiltration in cluster
C3 that were missing in cluster C1. This analysis also
revealed NK cell, monocytic lineage, and myeloid dendritic
cell infiltration in cluster C3. Other immune cell populations
were mixed in three analyzed clusters (Figure 4(c)).

To complement CIBERSORT and MCP analyses, we
applied ssGSEA to quantify infiltration levels for immune
cell types implemented in R package GSVA. Three clusters’
data were fed to ssGSEA package and obtained richness of
28 immune-related cells and types in KIRC samples. Results
revealed that C1 and C2 had more immune infiltration;
some innate immune cells, including NK, neutrophils, and
eosinophil, were mixed in 3 clusters (Figure 4(d)).

3.5. Construction and Validation of the Predicting Model
Based on DEmGs. Lastly, we constructed and validated the
prediction model based on the differential expression of
the metabolic genes. We calculated the immune-related risk
score of DEmGs based on overall survival. For this purpose,
we devised two groups for evaluating the correlation of the
risk score; one is for the training cohort and the other for
the testing cohort. We found that overall survival was low
and scattered across the risk score (Figures 5(a) and 5(b)).
Next, based on the median risk score, we assigned KIRC
patients into high- and low-risk groups for further evalua-
tion. We then performed survival analysis of these two risk
groups in training and testing cohorts. As expected, the
high-risk groups were found to have a low survival as com-
pared with the low-risk groups (Figures 5(c) and 5(d)). Fur-
thermore, ROC curve analysis was performed for training
and testing cohorts. We observed a ROC score of 0.68 at 5
years in testing cohorts, which indicates a good performance
in predicting the prognosis of KIRC (Figures 5(e) and 5(f)).
In addition to the ROC curve analysis, we also executed the
LASSO COX regression model to validate our prognostic
model as indicated by partial likelihood deviance
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Figure 2: Enrichment analyses of the differentially expressed metabolic genes. (a) Cluster tree of WGCNA. (b) Heat map showing the
correlation between the module and clinical parameters. (c, d) KEGG and GO enrichment analyses of genes in the survival module. (e–l)
Survival analysis of top metabolic genes in KIRC.
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(Supplementary Figure 5(a)) and regression coefficient of the
DEmGs (Supplementary Figure 5(b)). Lastly, five genes
(ABCG1, CRYL1, FDX1, PANK1, and SLC44A) were
predicted to be potential prognostic factors with HR < 1
(Supplementary Figure 5(c)).

3.6. Underlying Mechanisms of the KIRC Progression. To
investigate further the underlying mechanism for KIRC pro-
gression, we conducted differential expression analysis
among all clusters and utilized a heat map plot to visualize
the results (Figure 6(a)). To identify the signaling pathways
of the DEmGs, we performed KEGG and GO enrichment

analyses of the DEGs in three clusters. In short, these results
revealed that DEGs of three clusters were mainly enriched in
focal adhesion, the Foxo signaling pathway, and the Apelin
signaling pathway for cluster C3 and mineral absorption,
neutrophil extracellular trap formation, and staphylococcus
aureus infection for cluster C2 (Figure 6(b)). In addition,
GO functional analysis of DEGs uncovered MF-, CC-, and
BP-related ontologies shown in Figure 6(c). Interestingly,
the differential expression analysis disclosed abnormal
behavior of genes’ regulation in three clusters. Mostly,
NUDT1 was highly expressed in C1, which had the worst
survival. Further investigation revealed that NUDT1
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on the expression of genes in MEturquoise module. (b, c) OS and DFS of three clusters. (d, e) Difference of clinical parameters of three
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expression was significantly downregulated through the pro-
gression from C1 to C3 (Figure 6(d)). Moreover, the
NUDT1 was found to be upregulated in KIRC tumor sam-
ples (Figure 6(e)). Next, we highlighted the NUDT1 expres-
sion in each tumor’s stages (Figure 6(f)). Overall survival
analysis was also performed by the Kaplan-Meier plotter,
and we found that patients with higher expression of
NUDT1 had worse overall survival (HR = 1:82 (1.34–2.48),
logrank p = 0:00012) (Figure 6(g)).

Lastly, we performed KEGG and GO functional enrich-
ment analyses for genes interacting with NUDT1. The genes

were divided into two groups—positively correlated with
NUDT1 and negatively correlated with NUDT1. KEGG
pathway analysis showed that positively correlated genes
were mainly enriched in the ribosomal pathway, Huntington
disease, amyotrophic lateral sclerosis, and Alzheimer’s dis-
ease. On the other hand, the negatively correlated genes were
enriched mainly in hepatitis B and Foxo signaling
(Figure 6(h)). Moreover, the GO ontology of three different
groups MF, CC, and BP for both positively and negatively
correlated genes was shown in Figure 6(i). In addition, we
found that the expression of NUDT1 was highly correlated
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with the infiltration of immune cells (Supplementary
Figure 6) and different clinical features of the KIRC
patients (Table 1).

3.7. Loss of NUDT1 Inhibits Renal Cancer Cell Proliferation
and Migration. Next, we compared the expression level of
NUDTI in KIRC tissues and their associated normal tissues,
which revealed that NUDT1 highly expressed in KIRC tis-
sues (Figure 7(a)). Furthermore, we determined the effects
of NUDT1 loss on renal cancer cell lines by using siRNA
mediated inhibition. NUDT1 was targeted for siRNA knock-
down in two cell lines 786-O and ACHN and the NUDT1
mRNA levels were successfully inhibited as evidenced by
qPCR analysis (Figure 7(b)). Following the siRNA-
mediated knockdown of NUDT1, cell viability assay showed

reduced cell viability in both cell lines (Figures 7(c) and
7(d)). Afterwards, cell migration assay upon knockdown of
NUDT1 showed significantly reduced cell migration in
NUDT1-depleted 786-O and ACHN cells (Figures 7(e) and
7(f)). The migration capacity of 786-O cells was reduced to
about 50%, and 70% reduction was observed in ACHN cells
upon NUDT1 knockdown (Figure 7(f)). The cell invasion
was also inhibited in both cell lines when the NUDT1 gene
was knocked down (Figures 7(g) and 7(h)). To complement
the migration, we also performed wound healing assay when
NUDT1 was depleted from 786-O and ACHN cell lines and
we observed similar results of reduced wound healing capa-
bility in both cell lines lacking NUDT1 (Figures 7(l)–7(n)).
Based on these results, we hypothesized that loss of NUDT1
could lead to apoptosis in renal cancer cells. Therefore, we
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Figure 6: Genes involved in KIRC progression and underlying mechanisms. (a) Heat map showing the DEGs among three clusters. (b, c)
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measured the percentage of the apoptotic cells upon
silencing of NUDT1. Interestingly, we discovered that the
percentage of apoptotic cells was significantly increased in
NUDT1-depleted cells (Figures 7(i)–7(k)).

4. Discussion

Kidney renal clear cell carcinoma (KIRC) is one of the top
commonly occurring cancers worldwide, generally showing
no early symptoms until the tumor becomes large enough;
therefore, the mortality rate is relatively high [18–20]. Thus,
it is necessary to investigate the carcinogenesis of KIRC and
to identify useful biomarkers for its early diagnosis. How-
ever, limited knowledge so far is established about the path-
ogenesis and carcinogenesis of KIRC. In addition, not many
molecular markers for clinical practice have been validated.
Advanced high-throughput sequencing and bioinformatics
technology make it possible to select effective biomarkers
[21]. The RNA sequencing data and clinical annotations of
over five hundred KIRC cases are freely available on the
TCGA database. Taking advantage of this freely available
data from TCGA, we analyzed RNA sequence data for differ-
entially expressed metabolic genes in tumor vs normal tissue
samples. Among upregulated and downregulated genes, we
identified the top 10 differentially expressed metabolic genes
(DEmGs). We believe that metabolic genes have diverse
functions in KIRC; still, finding suitable diagnostic and ther-
apeutic markers could be a challenge from the pool of genes
with diversified functions.

Previously, studies have estimated immune cell infiltra-
tion in the tumor microenvironment of several cancers. A

relationship between tumor immune cells and angiogenesis
in KIRC samples’ data obtained from TCGA was studied,
and RFX2, SOX13, and THRA were identified as the top
three MTF in regulating angiogenesis signature in KIRC
patients [4]. Moreover, two independent m6A modification
patterns control biological functions, immunological charac-
teristics, and prognoses of KIRC [22]. Autophagy-related
protein 5 (ATG5) has been linked with the progression of
several cancers including KIRC [23]. In the current analysis,
some of the differentially expressed genes including PBRM1,
SET2, VHL, and BAP1 showed significant correlation with
metabolic pathways in KIRC data. For further deep investi-
gation, we clustered the patients based on the DEmGs; clus-
ter 1 showed a worse overall survival rate as compared with
the other clusters; anyhow, the KIRC patients in cluster 3
have advance tumor stages and have high lymph nodes
(higher N1) as compared with those in clusters 1 and 2,
showing cancer metastasis and expansion of tumors in clus-
ter 3. It shows a lesser number of metabolic genes in clusters
associated with the cancer metastasis.

In addition, immune infiltration scores in different clus-
ters show C1 with high scores in stromal and immune clas-
sifications. Noteworthy, C1 patients at pathological stages III
and IV have high infiltration of T cells along with CD8+ T
cells, T follicular helper cells, and macrophages. While also
have abundant Tregs. The Tregs have a vital role in the
immune tolerance and homeostasis [24]. In many cancers
such as colon cancer, breast cancer, and pancreas cancer,
the increased percentage of the Tregs is associated with the
poor prognosis of cancer [25, 26]. The M0 macrophage
induces the invasion and proliferation of cells [27], and ele-
vated levels of the macrophages are associated with poor
prognosis in RCC [28]. Likewise, CD8+ T cells are known
as the key antitumor cells and top choice of the targeted
immune cell therapy for the cancers [29]. Although C1 has
a highest infiltration of CD8+ T cells than other clusters, it
had the worst overall survival.

We used three methods CIBERSORT, MCP, and
ssGSEA to study the immune cell infiltration in the KIRC
tumor microenvironment. The traditional method to mea-
sure the tumor immune infiltration is through histology on
tissue sections and immune subsets inferred by immunohis-
tochemistry of individual markers. However, there are sev-
eral limitations where immunohistochemistry cannot
identify many immune populations and performs poorly at
capturing functional phenotypes (e.g., activated vs. resting
lymphocytes). Therefore, we utilized CIBERSORT, a compu-
tational approach developed by [30] that addresses the
challenges faced by immunohistochemistry. Apart from
CIBERSORT, we employed other algorithmic packages to
check the status of immune infiltration. This is because
CIBERSORT measures only intrasample proportions of
immune cell populations that can be resolved by another
package such as the MCP-counter which can estimate the
cells' population in abundance that enables an intersample
comparison of infiltrating cells in the tumor microenviron-
ment [31]. To complement CIBERSORT and MCP analyses,
we applied ssGSEA to quantify infiltration levels for immune
cell types implemented in R package GSVA [32, 33]. The

Table 1: Correlation between NUDT1 expression and
clinicopathological features of KIRC in TCGA datasets.

Characteristics n
NUDT1 relative

expression p value
Low (n) High (n)

Age (years)

<65 329 169 160
0.137

≧65 197 88 109

Gender

Male 342 156 186
0.042

Female 184 101 83

T stage

0, 1, 2 269 147 122
0.007

3, 4 257 110 147

LN meta

With 16 3 13
0.010

Without 239 124 115

Distant metastases

With 78 27 51
0.004

Without 416 218 198

Stage

I, II 319 177 142 <0.001
III, IV 205 80 125
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ssGSEA is a rank-based method that computes an overex-
pression for a genes’ list of interest relative to all other genes
in the genome. The CIBERSORT showed better results as
compared to the other two methods; thus, further analyses
were performed from data obtained from CIBERSORT.

Moreover, we focused on the underlying mechanism of
the KIRC progression by differential expression analysis
based on the RNA-seq data. Overall, we targeted abnormal
differential expression of the common genes among three
clusters. Most of the genes were downregulated except
NUDT1 in C1; however, its expression significantly down-
regulated through the progression from C1 to C3. Thus,
NUDT1 was further validated for its role in KIRC progres-
sion. The siRNA-mediated inhibition of NUDTI gene
expression in two KIRC cell lines (786-O and ACHN)
reduced the cell viability and cell migration and increased
apoptosis, which confirm its role in tumor progression. Pre-

viously, it has been reported that the level of NUDT1 expres-
sion correlated with the tumor grade, stage, size,
differentiation, degree of vascular invasion, overall survival
(OS), and disease-free survival (DFS) in HCC patients, also
predicted as a prognostic marker with therapeutic potentials
in HCC patients [34]. Overexpressing NUDT1 in pulmo-
nary arterial hypertension reduces the oxidative stress and
DNA damage, hence promoting cell proliferation and reduc-
ing apoptosis [35]. It has been shown that patients with oral
squamous cell carcinoma (OSCC) having high expression of
NUDT1 have shown a poor survival rate [36]. Based on the
fact that not enough literature is available about NUDTI’s
role in cancers and, so far, no study has ever reported its role
in KIRC, therefore, we are reporting for the first time the
role of NUDTI in KIRC progression. The current study
had some limitations; although our research found that the
signature might be associated with immunotherapy of KIRC,
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Figure 7: NUDT1 regulate renal cancer cell proliferation and migration. (a) NUDT1 relatively express higher in the KIRC tissues as
compared to normal tissues. (b) siRNA-mediated knockdown of NUDTI in 786-O and ACHN cells. (c, d) Cell proliferation assay
showing reduced proliferation of KIRC cells in siRNA-mediated silencing of the NUDTI cells. (e–h) Cell migration and cell invasion
reduced in 786-O and ACHN cells after NUDTI knockdown. (i–k) Number of apoptotic cells significantly increased in knockdown cells.
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the efficacy of the signature could not be validated due to the
lack of data, the potential underlying mechanisms, and func-
tional roles of NUDT1 in KIRC and clinical practice need
further exploration.

5. Conclusions

We screened dysregulated metabolic genes between normal
and tumor tissues and explored their function. WGCNA
analysis identified a group of genes correlated with the sur-
vival status of KIRC. Consensus clustering based on
survival-related genes demonstrated three clusters with dif-
ferent survival rates and immune infiltration patterns.
NUDT1 negatively correlated with survival, and further
analyses revealed that knockdown of NUDT1 inhibits prolif-
eration and migration of tumor cells. Of note, a prediction
model was constructed based on survival-related genes,
which showed high efficiency in predicting the survival of
KIRC. In conclusion, we performed an exhaustive analysis
of metabolic genes in KIRC and identified NUDT1 as onco-
gene which could be used as a therapeutic and prognostic
target.
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