
Research Article
Construction of a Novel Oxidative Stress Response-Related Gene
Signature for Predicting the Prognosis and Therapeutic
Responses in Hepatocellular Carcinoma

Junjie Hong and Xiujun Cai

Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run
Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China

Correspondence should be addressed to Xiujun Cai; caixiujunzju@163.com

Received 2 March 2022; Revised 24 August 2022; Accepted 25 August 2022; Published 12 September 2022

Academic Editor: Atif Ali Hashmi

Copyright © 2022 Junjie Hong and Xiujun Cai. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with poor outcomes, and the assessment of its prognosis
as well as its response to therapy is still challenging. In this study, we aimed to construct an oxidative stress response–related
genes–(OSRGs–) based gene signature for predicting prognosis and estimating treatment response in patients with HCC. We
integrated the transcriptomic data and clinicopathological information of HCC patients from The Cancer Genome Atlas
(TCGA) and the International Cancer Genome Consortium (ICGC) databases. LASSO Cox regression analysis was utilized to
establish an integrated multigene signature in the TCGA cohort, and its prediction performance was validated in the ICGC
cohort. The CIBERSORT algorithm was employed to evaluate immune cell infiltration. The response rate to immune
checkpoint inhibition (ICI) therapy was assessed using a TIDE platform. Drug activity data from the Cancer Genome Project
and NCI-60 human cancer cell lines were used to predict sensitivity to chemotherapy. We successfully established a gene
signature comprising G6PD, MT3, CBX2, CDKN2B, CCNA2, MAPT, EZH2, and SLC7A11. The risk score of each patient,
which was determined by the multigene signature, was identified as an independent prognostic marker. The immune cell
infiltration patterns, response rates to ICI therapy, and the estimated sensitivity of 89 chemotherapeutic drugs were associated
with risk scores. Individual prognostic genes were also associated with susceptibility to various FDA-approved drugs. Our
study indicates that a comprehensive transcriptomic analysis of OSRGs can provide a reliable molecular model to predict
prognosis and therapeutic response in patients with HCC.

1. Introduction

Hepatocellular carcinoma (HCC) ranks fifth among all
malignancies worldwide and is the second most common
cause of cancer-associated deaths [1]. Despite advances in
therapeutic measures, the prognosis of HCC has improved
very little over the last two decades, and owing to the
absence of specific signs and clinical symptoms, most often,
HCC is diagnosed when it is already at advanced stages,
implying that many patients miss out on the opportunity
to receive surgery, which is more effective as a therapeutic
measure at the earlier stages of the disease. However, for
patients with advanced HCC, comprehensive treatment,

including chemotherapy, targeted therapy, and immuno-
therapy, are crucial for improving prognosis, and in these
cases, physicians have limited tools that can help guide the
treatment decision-making process. Specifically, in actual
clinical contexts, prognosis prediction and treatment recom-
mendation highly depend on patients’ clinical characteristics
and pathological features. For instance, the Barcelona clinic
liver cancer (BCLC) staging system, which is based on the
Child-Pugh score, tumor size, and performance status, is
one of the most used staging algorithms for HCC with prog-
nostic and therapeutic significance. However, its rigidity
limits its accuracy and effectiveness due to the high interpa-
tient heterogeneity of HCC [2]. Hence, novel prognostic
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markers that can better inform treatment strategies and ade-
quately predict the prognosis are urgently needed. The
recent technological progress in microarray and RNA
sequencing has allowed the integration of multiple
prognosis-related genes into a single prognostic model, pro-
viding a powerful approach to improve prediction accuracy
in prognosis and treatment response.

It is well known that cancer cells are generally under
stressful biological conditions, among which oxidative stress
is one the most representative [3]. Increased oxidative stress
is a hallmark of the cancer microenvironment, reflected by
the elevated intracellular levels of reactive oxygen species
(ROS) [4, 5]. ROS are highly reactive oxygen chemicals com-
prising peroxides, superoxide, hydroxyl radicals, and hydro-
gen peroxide. Dysregulated ROS in cancer cells may be
attributed to the activation of the oncogene, hypoxia, and
extracellular stimuli, such as chemotherapy and radiother-
apy [6–8]. Excessive generation of ROS can be lethal to can-
cer cells, as it induces cell apoptotic death via DNA repair
disorders, protein damage, and lipid peroxidation [9]. From
the early stage of carcinogenesis, cancer cells utilize endoge-
nous adaption to survive oxidative stress, including tran-
scriptomic and proteomic modulation [10]. Earlier studies
reported that multiple genes, known as oxidative stress
response-related genes (OSRGs), are involved in the above
biological process and are essential for the proliferation, pro-
gression, and migration of HCC cells [5]. For instance, the
proteins encoded by MGST1/3, G6PD, GSR, and GPX2/4
play vital roles in glutathione synthesis, which serves as an
antioxidant defender in cancer cells [11]. Besides, TXN,
together with PRDXs, reduces intracellular hydrogen perox-
ide and oxidized proteins [12]. Generally, these genes are
upregulated in tumor tissues and indicate a poor prognosis,
making them promising therapeutic targets.

Even though OSRGs are essential for the survival of
HCC cells, the prognosis prediction and therapy recommen-
dation value of OSRGs have not yet been sufficiently eluci-
dated. Therefore, in this study, our aim was to investigate
the prognosis prediction and therapy recommendation value
of OSRGs. Thus, we successfully developed a novel eight
OSRGs-based gene signature for HCC. First, we integrated
transcriptomic profiling data and clinicopathological infor-
mation related to HCC from The Cancer Genome Atlas
(TCGA) and the International Cancer Genome Consortium
(ICGC) databases. Next, we filtered the OSRGs related to
overall survival (OS) in the TCGA cohort and established
an eight-gene signature, whose robustness was then vali-
dated using the ICGC cohort. We also analyzed the correla-
tion between tumor-infiltrating immune cells and risk
scores. Further, immune checkpoint expression, immune
checkpoint inhibition (ICI) therapy response rate, and
tumor mutation burden (TMB) scores were evaluated to
identify potentially valid immunotherapies. Finally, chemo-
therapeutic susceptibility was estimated according to the risk
scores obtained and the expression levels of the individual
prognostic genes. In summary, our work not only developed
a practical prognostic tool but also provided a novel and reli-
able gene signature for selecting appropriate therapeutic
methods for HCC. These innovative discoveries offer prom-

ising prospects for enhancing antitumor effects as each
patient can receive individualized treatment guidance
through our developed gene signature.

2. Materials and Methods

2.1. Databases. We downloaded the transcriptomic and clin-
ical data of HCC from the Liver Hepatocellular Carcinoma
(TCGA-LIHC) dataset in the TCGA database and the
LIRI-JP cohort in the ICGC database. Both TCGA and
ICGC databases are publicly available; hence, an ethical
review is not required for their use. OSRGs were retrieved
from the MSigDB database v7.4 (https://www.gsea-msigdb
.org/gsea/msigdb/) (Table S1). The expression intensity and
distribution of specific proteins in HCC and normal liver

Table 1: Clinicopathological characteristics of the patients with
HCC.

Characteristics
TCGA ICGC

Number of case % Number of case %

Age

≥60 204 54.1 210 80.8

<60 172 45.6 50 19.2

Unknown 1 0.3 0 0

Gender

Male 255 67.6 192 73.8

Female 122 32.4 68 26.2

Grade

1 55 14.6

2 180 47.7

3 124 32.9

4 13 3.4

Unknown 5 1.3 260 100

Stage

1 175 46.4 40 15.4

2 87 23.1 117 45.0

3 86 22.8 80 30.8

4 5 1.3 23 8.8

Unknown 24 6.4 0 0

T

1 185 49.1

2 95 25.2

3 81 21.5

4 13 3.4

Unknown 3 0.8 260 100

N

0 257 68.2

1 4 1.1

Unknown 116 30.8 260 100

M

0 272 72.1

1 4 1.1

Unknown 101 26.8 260 100
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Figure 1: Continued.
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tissue were evaluated using clinical specimens from the
Human Protein Atlas (HPA) database (https://www
.proteinatlas.org/).

2.2. Construction and Validation of the Prognostic Oxidative
Stress Response Genes Signature. We identified the differen-
tially expressed genes (DEGs) between the normal liver tis-
sue and HCC tissues in the TCGA cohort using the
“limma” package in R software Version 4.0.2 with the fol-
lowing threshold values: jlog 2FCj ≥ 1 and adj:p < 0:05. The
shared candidate genes of DEGs and OSRGs were analyzed
using univariate Cox regression analysis, genes with adj:p
< 0:001 were preserved. Then, LASSO Cox regression anal-
ysis was adopted to construct a prognostic gene signature,
using R software with “glmnet” package. The risk score of

each patient was determined as follows: Risk score =∑ð
CoefðiÞ ∗ Expression of geneðiÞÞ. The Kaplan-Meier (K-M)
curve was plotted using the “survminer” and “survival”
packages in R software. We delineated the receiver operating
characteristic (ROC) curves with the “timeROC” package in
R software to assess the accuracy of the prognostic gene
signature.

2.3. Nomogram Establishment. A forecast nomogram was
developed by incorporating risk scores, age, gender, stage,
and TNM classification using the R package “RMS.” The
one-, two-, and three-year OS probabilities were estimated
using the total points. Calibration curves were used to eval-
uate the accuracy.
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Figure 1: Construction of oxidative stress response genes (OSRGs) model. (a) Heatmap of the 30 up- and downregulated genes with the
most significant differences. (b) Volcano plot of the differentially expressed genes (DEGs) in normal and HCC tissues. (c) Venn diagram
of the shared genes of DEGs and OSRGs. (d) Screening of the candidate OSRGs using univariate Cox regression analysis. (e),(f) The
LASSO Cox regression yielded a prognostic gene signature. Ten-fold cross-validation was used for the parameter chosen.
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2.4. Assessment of Immune Cell Infiltration. We used the
CIBERSORT algorithm to quantify the subsets of infiltrating
immune cells in the tumor environment of HCC samples.
CIBERSORT is a deconvolution algorithm that uses the gene
expression matrix to calculate the proportion of specific
types of immune cells [13].

2.5. Prediction of Immune Checkpoint Inhibition Therapy.
The tumor immune dysfunction exclusion (TIDE) analysis
platform was utilized to generate the TIDE score of each

patient, which could serve as a surrogate biomarker to pre-
dict the responses to ICI therapy, mainly including anti-
PD1 and anti-CTLA4 therapy (http://tide.dfci.harvard.edu/
) [14]. A high TIDE score indicates a low response rate to
ICI therapy.

2.6. Calculation of TMB Scores. TMB is a measure of gene
mutation frequency in a cancer cell. We obtained the VarS-
can processed somatic mutation data of HCC from TCGA
database. Strawberry-Perl version 5.30.1 based on the
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Figure 2: Prognostic performance of the gene signature. (a), (c), (e), (g), (i) TCGA cohort and (b), (d), (f), (h), (j) ICGC cohort. (a), (c) The
distribution of patients with high- or low-risk scores. (b), (d) The survival status of each patient. (e), (f) Kaplan-Meier curve shows the
different overall survival between the high- and low-risk groups. (g), (h) Heatmap shows the expression level of each gene in the gene
signature. (i), (j) 1,2,3-year ROC curves and AUC for overall survival.
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JAVA8 platform was used to determine the TMB score
depending on the genome mutation information of each
HCC sample.

2.7. Chemotherapy Response Estimation. The R package
“pRRophetic” was adopted to calculate the half-maximal
inhibitory concentration (IC50 value) of widely used chemo-
therapy drugs for each patient. This package was constructed
based on the chemical screening data from the Cancer
Genome Project (CGP) dataset [15]. To explore drug
response prediction by individual prognostic genes, we ana-
lyzed the pharmacological activity data of 218 FDA-
approved drugs (Table S2) from the NCI-60 cancer cell
lines that were downloaded from the CellMiner database
Version2021.2 (https://discover.nci.nih.gov/cellminer).

2.8. Statistical Analysis. We identified DEGs among HCC
and normal liver tissues using Wilcoxon signed-rank test.
The K-M curve and the log-rank test were used to assess
the difference in OS between groups. The correlation analy-
sis was performed using the Pearson correlation coefficient.
GraphPad Prism Version 7.0.4 and R software Version
4.0.2 were utilized to generate diagrams. P value < 0:05 was
considered statistically significant.

3. Results

3.1. Construction of a Prognostic Gene Signature in the
TCGA Cohort. The TCGA-LIHC dataset contains 374
HCC patients, and the ICGC-LIRI-JP dataset contains 260
HCC patients. The clinical characteristics of these patients
are displayed in Table 1. As illustrated in Figures 1(a) and
1(b), 2107 DEGs were identified in the TCGA cohort,
among which 55 genes were OSRGs (Figure 1(c)). Thirteen
OSRGs were verified to be significantly related to shorter
OS (Figure 1(d)). After LASSO Cox regression analysis, an
eight-gene prognostic signature was constructed
(Figures 1(e) and 1(f)). To calculate the risk score of each
patient, the following formula was used: risk score = 0:069
∗ expression level of G6PD + 0:177 ∗ expression level of MT
3 + 0:206 ∗ expression level of CBX2 + 0:063 ∗ expression
level of CDKN2B + 0:078 ∗ expression level of CCNA2 +
0:164 ∗ expression level of MAPT + 0:248 ∗ expression level
of EZH2 + 0:213 ∗ expression level of SLC7A11 (Figure S1).
The above eight-gene expression was upregulated in HCC
tissue compared with that in normal liver tissue in the
TCGA cohort (Figure S2). We further validated the
expression pattern of the proteins encoded by the above
genes using clinical specimens in HPA database. All
proteins except SLC7A11 were found to be elevated in
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Figure 3: Identify the independent risk factors for OS and establishment of nomograms. (a), (b), (e), (g) TCGA cohort, (c), (d), (f), (h)
ICGC cohort. (a), (c) Identify the OS-related risk factors using univariate Cox regression analysis. (b), (d) Multivariate Cox regression
for assessing the independent risk factor for OS. (e), (f) Construction of nomograms with the risk scores and clinicopathological
parameters. (g), (h) Calibration curves to evaluate the precision of nomograms.
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Figure 4: Continued.
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HCC tissues. No conclusion could be drawn about SLC7A11
due to a lack of data. G6PD, MT3, and MAPT were
exclusively located in the cytoplasm, CDKN2B was located
in both the cytoplasm and nucleus, while CBX2, CCNA2,
and EZH2 were located in the nucleus (Figure S3).

3.2. Validation of the Prognostic Gene Signature. We next
classified the patients into the high-risk score and low-risk
score subgroups according to the median cut-off value of
risk score in the TCGA and ICGC cohorts (Figure 2(a)).
Patients in the high-risk group had a higher mortality rate
than those did in the low-risk group (Figure 2(c)). In line
with this, the K-M curve revealed a significantly shorter OS
in the high-risk group (Figure 2(e)). The expression heatmap
of the eight genes is displayed in Figure 2(g). Time-
dependent ROC curves were used to assess the predictive
accuracy of the prognostic gene signature. The area under
the ROC curve (AUC) for the one-, two-, and three-year
OS probabilities was 0.79, 0.75, and 0.73, respectively, which
confirmed the effectiveness of this prognostic gene signature
(Figure 2(i)). We then verified the robustness of the prog-
nostic gene signature using the independent ICGC cohort.
The results of patient distribution, K-M curve analysis, and
AUC analysis were in line with those of the TCGA cohort,
further supporting the robustness of the prognostic gene sig-
nature (Figures 2(b), 2(d), 2(f), 2(h), and 2(j)).

3.3. Evaluation of the Independent Prognostic Value of Risk
Score and Nomogram Establishment. We subjected the clin-
icopathological characteristics and risk scores into univariate
and multivariate Cox regression analyses to identify inde-
pendent prognostic predictors. Univariate Cox analysis of

TCGA cohort revealed that stage, T, M, and risk score were
significantly correlated with OS (Figure 3(a)). In the ICGC
cohort, univariate Cox analysis suggested that female gender,
stage, and risk score were strongly associated with OS
(Figure 3(c)). After multivariate Cox analysis, risk score
emerged as the only independent factor for efficiently pre-
dicting prognosis in both cohorts (Figures 3(b) and 3(d)).
We then constructed nomograms combining clinical vari-
ables and risk scores to calculate the total score of each
patient with HCC, which could predict the one-, two-, and
three-year OS (Figures 3(e) and 3(f)). The calibration curves
showed the excellent predictive accuracy of the nomograms
(Figure 3(g) and 3(h)).

3.4. Immune Infiltration and ICI Therapy Prediction. Next,
we employed the CIBERSORT algorithm to calculate the
proportion of each type of infiltrated immune cell in indi-
vidual HCC samples (Figure S4). As illustrated in
Figure 4(a), the memory B cells, activated memory CD4
+T cells, follicular helper T cells, and M0 macrophages
were more abundant in the high-risk group than the
low-risk group. However, naïve B cells, CD8+T cells,
resting memory CD4+ T cells, monocytes, and
eosinophils were reduced in the low-risk group. In
addition, there was a positive correlation between the
immune checkpoints expression level and risk scores
(Figure 4(b)). TIDE analysis revealed that the risk scores,
and TIDE scores were negatively correlated (Figure 4(c)).
Consistently, the response rate to ICI therapy was
expected to be higher in patients suffering from HCC
with high risk scores (62% vs. 37%) (Figure 4(d)).
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Figure 4: Association of the risk scores and the infiltration of immune cells and the response to ICI therapy. (a) The waterfall plot showed
the fraction of infiltrating immune cells in high- and low-risk groups. (b) Association between the risk scores and expression level of
indicated immune checkpoints. (c) Risk scores positively correlated to TIDE scores. (d) Responsive rate to ICI therapy in high- and low-
risk groups. ICI: immune checkpoints inhibition.
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3.5. Associations of TMB with Risk Score in HCC Patients.
Further, we investigated the associations of TMB with
the risk score. As mentioned before, we stratified HCC
patients into high- or low-risk groups in the TCGA
cohort. The comprehensive mutation data for each group
were represented using a waterfall plot (Figure 5(a)). The
five most frequently mutated genes were TP53 (44%),
CTNNB1 (24%), TTN (23%), MUC16 (18%), and APOB
(11%) in the high-risk group, while CTNNB1 (27%),
TTN (23%), ALB (13%), TP53 (12%), and MUC16 (11%)
were the top five in the low-risk group. In addition, the
overall genome mutation occurrence rate was 86.71% and
82.49% in the high- and low-risk group, respectively. As
displayed in Figure 5(b), the TMB scores were positively
correlated with the risk scores. The K-M curve analysis
revealed that the patients in the high-TMB group had
shorter OS than those in the low-TMB group.
(Figure 5(c)).

3.6. Analysis of the Correlation between Risk Score and
Chemotherapy Sensitivity. First, we evaluated the chemo-
therapeutic response using the drug activity and transcripto-
mic data from the CGP cell lines. In the high-risk group,
HCC patients were sensitive to 45 chemotherapy and tar-
geted therapy drugs and were resistant to other 44 drugs,
as indicated by the variation of the IC50 (Figures 6(a) and
6(b)). For each prognostic gene in the gene signature, the
corresponding expression level was analyzed in the tran-
scriptomic data of NCI-60 cell lines. The top two FDA-
approved drugs with the strongest positive or negative asso-
ciation with each gene are shown in Figure 7. The elevated
expression of G6PD,MT3, CBX2, CDKN2B, CCNA2,MAPT,
and EZH2 was associated with increased resistance to mito-
mycin, teniposide, 6-thioguanine, and fulvestrant, etc. By
contrast, elevated CBX2 and SLC7A11 expression is a hall-
mark of increased sensitivity to dasatinib, ixazomib citrate,
and arsenic trioxide.
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Figure 6: Continued.
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Figure 6: HCC patients with high risk scores were sensitive (a) or resistant (b) to indicated chemotherapy drugs (∗P < 0:05, ∗∗P < 0:01, and
∗∗∗P < 0:001).
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4. Discussion

Surgery is the first choice therapeutic strategy for HCC;
however, most patients lose out on the opportunity to
undergo tumor resection due to late diagnosis and large
tumor sizes at the advanced stage. To overcome such chal-
lenges, in some studies, solutions, such as the use of novel
synthetic materials to promote liver cell regeneration, have
been proposed [16]. However, the bench-to-bedside transla-
tion of these technologies is still associated with considerable
challenges. For unresectable HCC, selecting the appropriate
strategy for comprehensive treatment, including chemother-
apy, targeted therapy, and immunotherapy, is particularly
vital for prolonging the survival of patients. Additionally,

in this era of precision oncology, the conventionally used
BCLC and AJCC staging systems do not enable the applica-
tion of the precise prognostic and therapeutic recommenda-
tions for HCC. Therefore, exploring effective biomarkers for
improving prognosis and providing excellent treatment
strategies has become more important than ever. Therefore,
in this study, for the first time, we developed a novel OSRG
signature that could efficiently help clinicians predict HCC
prognosis and choose a proper treatment strategy for indi-
vidual patients.

In this study, we first identified DEGs between HCC tis-
sues and normal liver tissues in the TCGA cohort. Then, the
55 genes shared by OSRGs and DEGs were analyzed using
univariate Cox regression, which revealed that 13 of these
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genes were related to OS. An eight-gene signature was then
established using the LASSO Cox regression analysis. The
gene signature achieved excellent performance in predicting
the OS rate in the TCGA and ICGC cohorts. In addition, the
nomograms constructed with risk scores and clinicopatholo-
gical factors showed good predictive ability for OS, and mul-
tivariate Cox analysis identified the risk score as an
independent predictor of prognosis. The eight OSRGs con-
tained in this signature are G6PD, MT3, CBX2, CDKN2B,
CCNA2, MAPT, EZH2, and SLC7A11. Compared with nor-
mal tissue, these genes are highly expressed in HCC tissue
and are associated with an unfavorable prognosis. G6PD
encodes the protein glucose-6-phosphate dehydrogenase,
which can resist damage by oxidative stress in cells [17].
Abnormal activation of G6PD contributes to the progression
of many cancers [18]. MT3 encodes the protein metallothio-
nein3, which displays a solid ROS-scavenging capacity in
oxidative stress-conditioned cells [19]. However, the exact
role of MT3 in cancer cells remains controversial [20, 21].
As an oncogenic gene [22, 23], CBX2 is strongly associated
with genome-scale DNA methylation in various types of
cancer cells, which is a response to micro-environmental
stresses, particularly oxidative stress [24]. Recently, H-A
Lee et al. reported that oxidative stress enhances CDKN2B
expression and causes cell cycle arrest in HCC cells [25].
Nonetheless, the correlation between CDKN2B expression
levels and prognosis is still unclear [26, 27]. CCNA2 encodes
Cyclin A2, which is a suppressor of intracellular oxidative
stress [28] that is upregulated in colorectal and breast cancer
tissues and is associated with poor prognosis [29, 30]. The
MAPT encodes the protein Taus, which plays a significant
role in the antioxidative response in neurons [31]. Elevated
tau has been associated with a poor prognosis in prostate
cancer [32]. EZH2 is an oncogene that is upregulated under
oxidative stress induced by H2O2 [33, 34]. Finally, SLC7A11
encodes a cystine/glutamate transporter that has been
reported to suppress the expression of P-glycoprotein in
breast cancer cells induced by ROS [35]. In addition,
SLC7A11 was overexpressed in numerous cancers and is
correlated with poor survival [36]. The above previous stud-
ies showed that all eight genes in our gene signature are
related to oxidative stress response and most participate in
the occurrence and development of tumors. These results
also provide certain basic support for our study.

For unresectable HCC, immunotherapy plays a vital role in
improving clinical outcomes. Unfortunately, current statistics
show that response rates to immunotherapy remain low [37].
It is well recognized that the immune cells and immunosup-
pressive immune checkpoint molecules in the TME can greatly
affect the effect of immunotherapy. However, the interaction
between the tumor microenvironment and oxidative stress
has barely been studied. In this study, we observed that the gene
signature was closely associated with infiltrating immune cells
in the tumor microenvironment as memory B cells, activated
memory CD4+T cells, follicular helper T cells, and M0 macro-
phages were abundant in patients with high risk scores.We also
identified various immune checkpoints that positively correlate
with risk scores, among which PD1, PD-L1, and CTLA4 are
common targets for ICI therapy in clinical application. Preclin-

ical studies showed that IDO1, TIGIT, LAG3, and TIM-3 are
promising therapeutic targets [38]. Although patients with high
expression levels of immune checkpoints tend to experience
immune evasion and the consequent poor prognosis, the ele-
vated expression of PD1, PD-L1, TIM-3, and IDO1 may result
in a higher response rate to ICI therapy [39–41]. The results of
TIDE analysis further supported these findings because patients
with HCC having high risk scores were also associated with low
TIDE scores, thereby indicating their high response rates to ICI
treatment. Previous studies reported that high TMB indicates a
better response to immunotherapy, which could be explained
by the fact that mutant proteins encoded by mutated genes in
cancer cells make tumors more immunogenic [42, 43]. This
study found that the total gene mutation rate was higher in
the high-risk group and that patients with high TMB scores
had lower OS rates. Interestingly, the TP53 mutation rate in
the high-risk group was much higher than that in the low-risk
group (44% vs. 27%). Some research findings suggested that
the mutant p53 protein usually loses antioxidant function and
increases intracellular ROS, which drives a function switch from
a cancer suppressor protein to a cancer promoter protein [44].
Indeed, the existing research on how oxidative stress and
OSRGs affect the immune components in the TME and the
outcome of immunotherapy is still in the initial stage and worth
further investigating.

Likewise, traditional cytotoxic chemotherapeutic drugs
and targeted therapy drugs can still bring benefits for improv-
ing the prognosis of advanced HCC. In general, HCC cells are
resistant to intravenous cytotoxic chemotherapy. Instead,
transarterial chemoembolization and oral administration of
sorafenib/lenvatinib are the globally accepted standards for
treating advanced HCC. Doxorubicin and cisplatin are the
frequently-used drugs in transarterial chemoembolization
[45]. In the present study, the patients with HCC in the
high-risk group exhibited elevated sensitivity to doxorubicin,
afatinib, etoposide, and gemcitabine. Inversely, they were
more likely to acquire resistance against sorafenib, the most
extensively used multi-targeted tyrosine kinases inhibitor for
treating late-stage HCC [46]. Using the NCI-60 data, we veri-
fied that each member of the gene signature could potentially
indicate susceptibility to several FDA-approved chemothera-
peutic drugs. Sensitivity towards some of these drugs has
already been proved [30, 47–52]. For most of the prognostic
genes, elevated expression levels are associated with increased
drug resistance, making them potential targets to overcome
this crisis. However, in HCC, the biological function of the
OSRGs in drug response is not well studied; hence, more in-
depth mechanistic research is worth exploring in a laboratory
setting. For example, J. Sun et al. reported that cisplatin treat-
ment induces ROS production in ovarian cancer and ROS
promotes EZH2 expression, which inactivates AKT/ERK
pathways that confers cisplatin resistance [53].

Presently, an increasing number of studies involving the
use of multigene signatures for predicting the prognosis of
HCC have been reported. In these studies, the researchers
used m6A-related genes, energy metabolism-related genes,
inflammation-related genes, immune response-related
genes, and ferroptosis-related genes to construct their prog-
nostic models [54–58]. Similar to this study, these five
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previous studies were conducted based on the expression
data of the desired genes and involved the use of LASSO-
COX regression to establish the optimal prognostic model.
Further, in these studies, the AUC of the prognostic model
for predicting 3-year OS was 0.65, 0.69, 0.61, 0.62, and
0.67, respectively, while in our study, the 3-year OS AUC
reached 0.73. Given that AUC is an important indicator
for measuring the sensitivity and specificity of diagnostic
models, we believe that our gene signature showed better
performance in terms of prognostic prediction. Moreover,
we previously identified a 10-gene TME-related-gene signa-
ture as a prognostic classifier for HCC, with an AUC of 0.75
for 3-year OS [59]. However, in this present study, we
achieved a similar performance using fewer genes, implying
that this novel gene signature will be more attractive for clin-
ical implementation. More importantly, the novelty of this
study is not only in the fact that we describe a practical prog-
nostic tool for HCC, but also that our results provide clini-
cians with a practical tool for selecting appropriate
chemotherapy drugs. Due to the great heterogeneity that
characterizes cancer cells, the sensitivity of HCC to various
anticancer drugs varies widely. Compared with the findings
reported in the abovementioned studies, our findings nota-
bly showed the existence of an association between the
obtained OSRGs-based risk score and the IC50 of commonly
used chemotherapy drugs. Similarly, predicting the response
rate of HCC to ICI therapy is difficult considering the com-
plicated component as well as the intricate interactions
between different cell types in the TME. Some crucial factors
that affect the efficacy of ICI therapy, such as the infiltrated
immune cells, TMB, and the TIDE score, showed significant
correlations with the obtained risk score. These novel find-
ings offer promising prospects for enhancing antitumor
effects by accurately providing patients with individualized
treatment plans according to their different OSRGs-based
risk scores.

There is no denying that some limitations exist in this
study. Firstly, our gene signature was suited to the patients
with surgical or biopsy specimens because this gene signa-
ture was based on gene expression data. Secondly, we used
Cox regression analysis to screen the prognostic genes,
which may lead to the overlook of some genes with biologi-
cal significance. Thirdly, although we used a variety of
methods to ensure the accuracy of our gene signature, the
reliability of this model needs to be iteratively improved in
long-term clinical applications with larger sample size.

5. Conclusions

By integrating the expression matrix of OSRGs as well as
survival statistics based on two independent HCC cohorts,
we established and validated a novel eight OSRGs-related
gene signature for patients with HCC. This gene signature
showed significant correlation between the TMB and
immune cell infiltration in the TME. More importantly, its
application could facilitate the estimation of the prognosis
as well as therapeutic responses to immunotherapy and che-
motherapy for patients with HCC. Notwithstanding, even
though our gene signature showed good application pros-

pects, it still needs further verification in clinical application
to improve its stability. Taken together, our findings can
help clinicians estimate the outcome of patients and select
the appropriate therapeutic strategy for HCC to improve
its prognosis. Our work also provides new insights into the
diagnostic and therapeutic value of oxidative stress and
OSRGs, laying a preliminary foundation for future mecha-
nistic studies on OSRGs in HCC.
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