
Research Article
Construction of Pyroptosis-Related Prognostic and Immune
Infiltration Signature in Bladder Cancer

Xiaoyi Du ,1 Xin Zhao ,2 Yu Tang ,1 and Wei Tang 1

1Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
2Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China

Correspondence should be addressed to Wei Tang; 201522@hospital.cqmu.edu.cn

Received 4 May 2022; Revised 17 November 2022; Accepted 25 November 2022; Published 14 December 2022

Academic Editor: Elisa Belluzzi

Copyright © 2022 Xiaoyi Du et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Pyroptosis is a kind of programmed cell death related to inflammation, which is closely related to cancer. The goal of this study is
to establish and verify pyroptosis-related gene signature to predict the prognosis of patients with bladder cancer (BLCA) and
explore its relationship with immunity. Somatic mutation, copy number variation, correlation, and expression of 33 pyroptosis-
related genes were evaluated based on The Cancer Genome Atlas (TCGA) database. BLCA cases were divided into two clusters
by consistent clustering and found that pyroptosis-related genes were related to the overall survival (OS) of BLCA. The least
absolute shrinkage and selection operator (LASSO) Cox regression was used to construct the signature (including 7 pyroptosis-
realated genes). Survival analysis curve and receiver operating characteristic curve (ROC) showed that this signature could
predict the prognosis of BLCA patients. Univariate and multivariate Cox regression analysis showed the independent
prognostic value of this model. Immune infiltration analysis showed that the six types of immune cells have significantly
different infiltrations. The effect of immunotherapy is better in the low-risk group. In summary, our effort indicated the
potential role of pyroptosis-related genes in BLCA and provided new perspectives on the prognosis of BLCA and new ideas for
immunotherapy.

1. Introduction

Bladder cancer (BLCA) usually refers to the tumor originat-
ing from the bladder epithelium, and its incidence rate is
increasing continuously since 1990 [1]. BLCA is one of the
most common malignant tumor in the urinary system [2,
3]. The pathological types of BLCA are mainly divided into
three types: urothelial carcinoma, squamous cell carcinoma,
and adenocarcinoma; among them, urothelial carcinoma
accounts for more than 90% of total bladder cancer [4].
Then, according to the degree of tumor invasion, BLCA
can be divided into nonmuscle invasive bladder cancer
(NMIBC) and muscle invasive bladder cancer (MIBC) [5].
In recent years, the understanding of the pathogenesis of
BLCA has increased a lot; the treatment methods include
surgery, radiotherapy, chemotherapy, immunotherapy, etc.,
but the recurrence rate and mortality of patients are still
high, and the recurrence rate of NMIBC is as high as 70%;
the 5-year survival rate of MIBC is less than 50% [6].

Improving the overall survival rate of patients and reducing
the recurrence rate remain a major clinical challenge. There-
fore, it is important to determine new effective treatment
targets, judge the prognosis of bladder cancer patients in a
multidimensional model, further understand the pathogene-
sis of BLCA, and formulate more effective comprehensive
treatment strategies.

In 1992, pyroptosis was first observed in Shigella infected
macrophages, at that time, it was defined as apoptosis
because they had the same characteristics, such as DNA
fragmentation, nuclear concentration, and caspase depen-
dence [7]. It was not until 2001 that researchers further clar-
ified that macrophage death caused by bacterial infection is a
death mode completely different from apoptosis and named
it caspase-1-dependent programmed necrosis [8]. In 2018,
the nomenclature committee on cell death (NCCD) pro-
posed to define pyroptosis as a regulated cell death (RCD)
[9]. At present, it is found that it mainly relies on gasdermin
protein family members to form plasma membrane pores,
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usually, but not always as a consequence of inflammatory
caspase activation; it can lead to the continuous expansion
of cells until the cell membrane breaks and the release of cell
contents, which triggers a strong inflammatory response;
thus, initially, pyroptosis was considered to be a key mecha-
nism to fight infection [10–12]. Now, more and more studies
have shown that the key components of pyroptosis, inflam-
matory vesicles, gasdermin protein, and proinflammatory
cytokines are related to tumor occurrence, invasion, and
metastasis [13–15]. It has been reported that pyroptosis-
related genes are significantly upregulated in tumor tissue
samples and urine of bladder cancer patients, and different
pyroptosis-related inflammasomes may affect the pathologi-
cal characteristics of bladder cancer [16–18]. However, the
relationship between pyroptosis and BLCA has yet to be
investigated fully.

In this study, we used the public database The Cancer
Genome Atlas (TCGA) to obtain data on patients with blad-
der cancer. The differences in the expression of pyroptosis-
related genes in normal bladder tissues and BLCA tissues
were analyzed. Consensus Clustering and LASSO Cox
regression were used to establish subgroups; then, the rela-
tionship between pyroptosis-related genes and the progno-
sis, immune infiltration, and immunotherapy of patients
with BLCA was explored. Compared with traditional clinical
prediction, we can establish a pyroptosis-related gene signa-
ture to more accurately predict the prognosis of BLCA
patients and provide some clinical guidance for individual-
ized immunotherapy.

2. Materials and Methods

2.1. Datasets. The flowchart of this study is shown in
Figure S1. We obtained the RNA sequence (RNA-seq) data
of patients with bladder cancer from the TCGA database
(https://portal.gdc.cancer.gov/repository) as well as the
corresponding clinical and pathological information. For
external validation datasets (GSE32548 and GSE31684)
were obtained from GEO (http://www.ncbi.nlm.nih.gov/
geo/). Patients without survival information were excluded.
Based on the previously published literature [19–26], we
finally selected a total of 33 genes (AIM2, CASP1, CASP3,
CASP4, CASP5, CASP6, CASP8, CASP9, ELANE, GPX4,
GSDMA, GSDMB, GSDMC, GSDMD, GSDME, IL18,
IL1B, IL6, NLRC4, NLRP1, NLRP2, NLRP3, NLRP6,
NLRP7, NOD1, NOD2, PJVK, PLCG1, PRKACA,
PYCARD, SCAF11, TIRAP, and TNF) that strongly
associated with cell pyroptosis as pyroptosis-related genes.
Patients in the immunotherapy data were from The Cancer
Immunome Atlas (TCIA) (https://tcia.at/). The maftools
Bioconductor package was used to read the MAF files to
count the variants in each sample and visualize it. The
limma Bioconductor package was used to identify
differentially expressed genes between normal and tumor
tissues.

2.2. Consensus Clustering. In the first, we applied the “sur-
vival” R package to perform univariate Cox regression anal-
ysis on pyroptosis-related genes and initially screened out

prognostic-related genes that were significantly associated
with overall survival (OS). The ConsensuClusterPlus R
package was used to perform consensus clustering of each
BLCA sample based on prognostic-related gens expression
data. The Kaplan-Meier method was used for OS analysis.

2.3. Establishment of Pyroptosis-Related Gene Prognostic
Signature and Independent Prognostic Analysis. Next,
patients with TCGA data set were randomly divided into
train cohort and test cohort. Based on the prognostic-
related genes that were initially screened, we performed
LASSO Cox regression analysis on the train cohort to estab-
lish the best prognostic signature. We could get the optimal
lambda value and a list of prognostic genes with coefficients
generated by the LASSO model. The calculation of the risk
score is based on the following formula:

Risk score = 〠
k

i
xi ∗ yi ð1Þ

The k, xi, and yi represented the number of signature genes,
the gene expression level, and the coefficient index, respec-
tively. In the train cohort, the BLCA patients were divided
into high-risk and low-risk groups according to the median
risk score. The difference in survival between the high-risk
group and low-risk group was analyzed by the Kaplan-
Meier survival curves. ROC analysis was used to further
evaluate the prognostic ability of gene signature. In addition,
in the test cohort and entire cohort, the same formula and
statistical methods were used to verify the predictive power
of gene signature. Univariate and multivariate Cox regres-
sion models were used to analyze the gene signature and
clinicopathological information. Then, the nomogram is
drawn for clinical practice. CIBERSORT algorithm was used
to analyze the relationship between prognositc signature and
immune cell. We used TCIA database to generate an immu-
nophenoscore (IPS) for each sample to compare the immu-
notherapy responses of different risk groups.

2.4. Cell Culture. The BLCA cell lines (5637 and T24) were
obtained from the American Type Culture Collection (Rock-
ville, MD, USA). Human urothelial cells were obtained from
the ScienCell (Carlsbad, CA). T24 and 5637 were cultured in
Roswell Park Memorial Institute (RPMI)-1640 medium
(Gibco, CA, USA), and HUC was cultured in F12 Nutrient
Mixture (GIBCO, Grand Island, NY); both supplemented
with 10% fetal bovine Serum (fetal bovine serum, Pan Bio-
tech, Germany) and 1% penicillin/streptomycin (In Vitro-
mycin, Carlsbad, USA). The cells were incubated at 37°C
in 5% CO2.

2.5. Total RNA Extraction and Quantitative Real-Time PCR
(qPCR). Total RNA from cells was extracted by the Steady
Pure Quick RNA Extraction Kit (AG21023, Accurate Bio-
technology, Hunan, China) and reverse transcribed (Takara,
Dalian, China) to acquire cDNAs. qPCR was performed on
the BIO-RAD PCR system using BlazeTaq™ SYBR Green
qPCRMix (Genomics, Guangzhou, China). The internal
control for this qPCR was human β-actin. The relative
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expression levels of these genes were calculated using the
2−ΔΔCt method. Primers for AIM2, CASP6,GSDMB, and
GSDMD can be found in Table S1.

2.6. Statistical Analysis. The Wilcox test was used to com-
pare the expression levels of genes between normal bladder
and BLCA tissues. The Kaplan-Meier analysis with a two-
sided log-rank test was used to compare OS of patients in
different groups. ROC curves and the area under curves
(AUC) were applied to evaluate the prediction accuracy of
the signature. Univariate and multivariate Cox regression
analyses were conducted to identify the independent predic-
tor for OS. All statistical analyses were performed with R
software (v4.0.5), GraphPad Prism 5 (GraphPad), and Excel
(Excel 2007®); the P values < 0.05 were considered statisti-
cally significant.

3. Results

3.1. Overview of Genetic Changes of Pyroptosis-Related Genes
in BLCA. We first summarized the incidence of copy num-
ber variation and somatic mutations of 33 pyroptosis-
related genes in bladder cancer. Among the 412 TCGA sam-
ples, 95 samples (approximately 23.06%) had mutations in
pyroptosis-related genes. The results showed that the muta-
tion frequency of SCAF11, NLRP7, and NLRP2 was 3%; the
mutation frequency of CASP8, CASP1, NLRP3, PLCG1, and
CASP5 was 2%; the mutation frequency of NLRP1, NOD2,
NLRP6, NLRC4, GSDMD, ELANE, CASP9, NOD1, and
GSDMC was 1%, and the other 16 pyroptosis-related genes
were not found in any mutations in BLCA samples
(Figure 1(a)). As shown in Figure 1(b), copy number varia-
tions (CNV) were common in pyroptosis-related genes.
The location of CNV alteration of pyroptosis-related genes
on chromosomes was shown in Figure 1(c). The correlation
between pyroptosis-related genes was shown in Figure 1(d).
The difference in mRNA expression levels of pyroptosis-
related genes between normal and BLCA samples was shown
in Figure 1(e).

3.2. Tumor Classification Based on Differential Expression of
Pyroptosis-Related Genes. Univariate Cox regression analysis
was used to initially screen survival-related genes. The 8
genes (CASP8, GSDMB, AIM2, CASP1, GSDMD, CASP6,
PRKACA, and CASP9) meeting the P < 0:05 criteria were
retained for further analysis (Figure 2(a)). Consensus cluster
analysis was used to explore the relationship between the
expression of 8 prognostic-related regulators and BLCA sub-
types. By increase the clustering variable (k) from 2 to 9,
when k = 2, there was a high intragroup correlation and a
low intergroup correlation, indicating that BLCA patients
with TCGA, GSE31684, and GSE32548 could be suitably
divided into two clusters based on 8 prognostic-related genes
(Figures 2(b) and 2(c)). The overall survival rate of the two
groups was compared, and there was a difference in OS
between the two clusters (Figure 2(d)). Then, the heatmap
showed the association between cluster, 8-gene expression,
clinical information, and pathological characteristics
(Figure 2(e)).

3.3. Construction and Validation of Prognostic Signature for
Pyroptosis-Related Regulators. Patients from TCGA were
randomly divided into train cohort and test cohort. In the
train cohort, the eight genes (CASP8, GSDMB, AIM2,
CASP1, GSDMD, CASP6, PRKACA, and CASP9) were per-
formed with the LASSO Cox regression analysis; then, a
prognostic signature with 7 genes (AIM2, CASP1, CASP6,
CASP9, GSDMB, GSDMD, and PRKACA) was constructed,
and the corresponding coefficients were obtained
(Figures 3(a)–3(c)). Based on the median risk score, patients
in the train cohort were divided into high-risk and low-risk
groups. In order to verify this prognostic signature, we intro-
duced this risk model into the test cohort and the entire
cohort. According to the median risk value of the train
cohort, patients in the test cohort and the entire cohort were
divided into high-risk and low-risk groups. The Kaplan-
Meier survival curves of OS showed that patients in the
high-risk group tended to have a shorter OS than the low-
risk group (Figures 3(d)–3(f)). The risk score and survival
status of each case were sorted and displayed on the dot
chart. We could found a significant difference in OS between
the high-risk and the low-risk groups. The heatmap showed
the 7 genes expression differences between the high-risk and
low-risk groups (Figures 3(g)–3(i)). By using GSVA enrich-
ment analysis, the biological characteristics of patients in
high- and low-risk groups were compared, and it was dis-
covered that the high-risk group had an enrichment of
cancer-related pathways (Figure S2a). The time-dependent
ROC curve was applied to evaluate the predictive effect of
the prognostic signature; the AUC values were as follows,
0.704 (train cohort, 1 year), 0.712 (test cohort, 1 year),
0.707 (entire cohort, 1 year), 0.727 (train cohort, 3 years),
0.655 (test cohort, 3 years), 0.696 (entire cohort, 3 years),
0.745 (train cohort, 5 years), 0.666 (test cohort, 5 years),
and 0.708 (entire cohort, 5 years) (Figures 3(j)–3(l)).

We integrated datasets GSE32584 and GSE31684 as
external validation. Patients were divided into high-risk
and low-risk groups using the risk model obtained from
the train cohort. It was observed that patients in the low-
risk group had a better prognosis than the high-risk group
(Figures S2b–2d). The 1-, 3-, and 5-year ROC curves
showed that the risk model still had high AUC values
(Figure S2e). It is suggested that our risk model has good
ability in predicting the prognosis of BLCA patients. We
selected 4 differentially expressed genes for qPCR
validation in normal urothelial cell line and bladder cancer
cell lines, and the results were as predicted by
bioinformatics (Figure S2f).

3.4. Independent Prognostic Value of the Prognostic
Signature. Then, univariate and multivariate Cox regression
analysis were applied to assess whether the risk score derived
from the 7-gene signature model could performed as an
independent prognostic factor in the entire cohort
(Figures 4(a) and 4(b)). The results indicated that this model
could be used as an independent prognostic indicator. In
addition, we used heatmaps to show the relationship
between these 7 genes and clinical features. Six genes
(CASP6, GSDMB, CASP9, GSDMD, AIM2, and CASP1)
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Figure 1: The characteristics, correlations, and differences of pyroptosis-related genes in BLCA. (a) The mutation frequency of 33
pyroptosis-related genes in 412 BLCA patients from TCGA-STAD cohort. The upper barplot showed tumor mutation burden. The right
number indicated the mutation frequency in each gene. The corresponding colors are annotated at the bottom to indicate different
mutation types. (b) The CNV variation frequency of pyroptosis-related genes in TCGA cohort. The height of the column represented the
alteration frequency. (c) The location of CNV alteration of pyroptosis-related genes on 23 chromosomes using TCGA cohort. (d)
Correlation analysis of pyroptosis-related genes in BLCA. (e) The expressions of pyroptosis-related genes between normal tissues and
BLCA tissues. The asterisks represented the statistical P value ( ∗P < 0:05 ; ∗∗P < 0:01 ; ∗∗∗P < 0:001).
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Figure 2: Two subgroups were divided according to the Consensus Clustering to compare the survival differences. (a) The forest showed the
hazard ratio (95% CI) and P value of selected pyroptosis-related genes by univariate Cox regression. (b) Consensus clustering matrix for
k = 2. (c) CDF curves for k = 2 − 9. (d) The Kaplan-Meier curves of overall survival (OS) for BLCA in two clusters. (e) Heatmap and the
clinicopathologic characters of the two clusters classified by 8 genes.
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Figure 3: Prognostic value of pyroptosis-related genes in BLCA patients. (a, b) Least absolute shrinkage and selection operator (LASSO)
Cox regression identified a risk prognosis model. (c) Coefficients of 7 pyroptosis-relate genes. (d–f) In the train cohort (d), test cohort
(e), and entire cohort (f), the Kaplan-Meier curves suggested that the low-risk group had better OS than the high-risk group. (g–i) The
risk scores distribution, BLCA patients’ survival status, and expression heatmap in the train cohort (g), test cohort (h), and entire cohort
(i). (j–l) The train cohort (j), test cohort (k), and entire cohort (l): receiver operating characteristic (ROC) curves of pyroptosis-relate
genes for predicting the 1-, 3-, 5-year survival of BLCA patients.
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were upregulated, while PRKACA genes were downregu-
lated in the low-risk group. It was also found that the
patient’s age, T, and Stage were statistically different between
the low-risk group and the high-risk group (P < 0:05)
(Figure 4(c)). Based on the risk scores model, a nomogram
containing 5 clinical features is constructed. Clinicians can
easily combine common clinical features with our model to
predict the survival expectations of patients with BLCA
(Figure 4(d)). The calibration chart shows that the nomo-
gram predictions, and actual observations are in good agree-
ment in the 1-year, 3-year, and 5-year survival rates
(Figures 4(e)–4(g)).

3.5. Identification of the Relationship between the Prognostic
Signature and Immune. In order to better study the interac-
tion between the prognostic signature and the immune
microenvironment, the CIBERSORT algorithm was used to
detect the ratio of tumor-infiltrating immune cells in BLCA.
Firstly, the relative content distribution of 22 types of tumor-
infiltrating immune cells (TICs) in each sample and the cor-
relation between 22 TICs were evaluated (Figures 5(a) and
5(b)).

The overlapping results of difference analysis
(Figure 6(a)) and correlation analysis (Figure 6(b) and
Figures 7(a) and 7(b)) could found that 6 TICs were
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Figure 4: The risk model is an independent prognostic factor and nomogram for predicting the survival probability of patients with BLCA.
(a) Univariate and (b) multivariate Cox regression analyses. (c) Heatmap and clinicopathologic features of high-risk and low-risk groups.
The asterisks represented the statistical P value ( ∗P < 0:05; ∗∗P < 0:01; ∗∗∗P < 0:001). (d) Prognostic nomogram for BLCA patients. (e–
g) Calibration curves for the nomogram at (e) 1-, (f) 3-, and (g) 5-year.
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Figure 5: Tumor-infiltrating immune cells. (a) Barplot displays the ratio of 22 types of immune cells in BLCA samples. Column names:
sample ID. (b) Correlation analysis for the 22 types of immune cells.
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potentially correlated with prognostic signature
(Figure 7(c)). Activated Dendritic cells, CD8+T cells, follicu-
lar helper T cells, and regulatory T (Treg) cells were found to
have negative correlations with the prognostic signature, M0

Macrophages, and M2 Macrophages showed positive corre-
lations with it.

Immunotherapy is one of the main methods of tumor
treatment. The number and activation status of TICs are
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Figure 6: Correlation analysis between risk score and tumor-infiltrating immune cells. (a) The infiltrating levels of 22 immune cell types in
high- and low-risk group. (b) Relationships between the risk score and infiltration abundances of immune cell types.
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Figure 7: Continued.
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closely related to the immunotherapy and prognosis of many
tumors [27–30]. Immunophenoscore (IPS) is considered to
be an effective predictor of immunotherapy, so we studied
the relationship between IPS and risk scores. We found that
the low-risk group had higher IPS than the high-risk group.
These results indicated that the low-risk group was treated
with anti-PD1 alone and anti-ctla4 alone, or the combina-
tion of the two has a higher positive response rate
(Figures 7(d)–7(g)).

4. Discussion

BLCA is the eleventh most common malignant tumor in the
world. Its morbidity and mortality are high, and it brings a
significant health burden to the society. Immunotherapy
brings new opportunities for patients with BLCA, but due
to the low response to immunotherapy, only a few patients
can benefit from it. Therefore, it is necessary to further dis-
cover effective biological prediction models in clinical prac-
tice. Pyroptosis is a new type of programmed cell death
that causes inflammation and cell lysis [31, 32]. Pyroptosis
is related to many diseases and is considered a double-
edged sword in tumors, especially its dual role in tumor for-
mation and tumor microenvironment. Existing studies have
shown that pyroptosis can inhibit the growth of gastric can-
cer and colon cancer, but it can promote cervical cancer.
However, the prognostic value and mechanism of
pyroptosis-related genes in BLCA remain to be studied.

In this study, we systematically explored the expression,
gene mutations, and clinical significance of 33 currently
known pyroptosis-related genes in BLCA. The results
showed that there were differences in the expression of many
pyroptosis-related genes in BLCA and adjacent normal tis-
sues. SCAF11 (3%), NLRP7 (3%), NLRP2 (3%), CASP5
(2%), PLCG1 (2%), NLRP3 (2%), CASP1 (2%), CASP8

(2%), GSDMC (1%), NOD1 (1%), CASP9 (1%), ELANE
(1%), GSDMD (1%), NLRC4 (1%), NLRP6 (1%), NOD2
(1%), and NLRP1 (1%) occurred somatic mutations as well
as most of them had high frequencies of CNV in BLCA.
Because of the bidirectional role of pyroptosis in tumors, a
single pyroptosis-related gene seems to be unreliable for
the diagnosis and prognosis of BLCA. This inspired us to
use multiple pyroptosis genes to explore the diagnostic and
prognostic value of pyroptosis. Two clusters produced by
the consensus clustering analysis based on the differentially
expressed genes showed significant differences in the OS.
In order to further evaluate the prognostic value of these
pyroptosis-related genes, LASSO Cox regression analysis
was used to establish a risk model. A new pyroptosis-
related gene signature containing 7 genes (AIM2, CASP1,
CASP6, CASP9, GSDMB, GSDMD, and PRKACA) was con-
structed, and verified. AUC results showed that the signature
has good accuracy in predicting the survival of BLCA
patients. Univariate and multivariate analysis suggested that
the model is an independent risk factor that independently
affects the prognosis of BLCA.

Pyroptosis is a form of RCD; when cells are stimulated,
aspartate-specific cysteine-containing proteases (Caspase)
can be activated by the intracellular inflammasome, which
cleaves Gasdermin (GSDM) protein family to form the
plasma membrane pores, causing inflammatory cell death,
which is of great significance in cancer and cancer treatment
[9]. GSDMD and GSDMB are members of the GSDM gene
family, and both have an N-terminal domain, which can
bind to phospholipids on the cell membrane, open the chan-
nel for the release of inflammatory factors, and mediate the
occurrence of pyroptosis [21, 33]. In related studies of tumor
cells, GSDMB was found to be highly expressed in breast,
gastric, liver, cervical, and colon cancers; therefore, some
scholars believe that GSDMB may be involved in cancer
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Figure 7: Correlation analysis between risk score and tumor-infiltrating immune cells. Prediction of immunotherapy response. (a, b)
Relationships between the risk score and infiltration abundances of immune cell types. (c) Venn plot displays six types of immune cells
shared by difference and correlation tests. (d–g) Comparison of IPS between low-risk group and high-risk group.
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progression and metastasis as an oncogene [34, 35]. How-
ever, recently, Zhou et al. found that in a mouse colon tumor
model, granzyme A secreted by toxic lymphocytes can
directly cleave and activate GSDMB, induce pyroptosis of
target cells and increase the immune clearance rate of
tumors [36]. There are also many studies on GSDMD in
tumor treatment, and it is often regarded as a tumor sup-
pressor gene that plays a role in tumor cells. When Wang
et al. explored the relationship between gastric cancer cells
and GSDMD, they found that high expression of GSDMD
could inhibit the proliferation of gastric cancer cells, and
activation of GSDMD-induced pyroptosis could promote
tumor cell death and exert the anticancer properties of
GSDMD [37]. In addition, AIM2, as an inflammasome par-
ticipating in the classical pyroptosis pathway, can play a key
role in the occurrence and development of cell pyroptosis by
cleaving GSDMD and releasing IL-1β and IL-18 [38]. Stud-
ies have shown that AIM2 is related to the occurrence and
development of various tumors such as colon cancer, pros-
tate cancer, and breast cancer [39–41]. In conclusion,
GSDMD, GSDMB, and AIM2 are all promising new targets
in cancer therapy, which may be involved in the death
mechanism of tumor cell therapy through pyroptosis. Except
for pyroptosis, there are also abnormal proliferation, abnor-
mal differentiation, and abnormal apoptosis involved in the
process of tumorigenesis. Caspases are a class of proteolytic
enzymes that mediate apoptosis and expressed in human tis-
sue cells and tumor cells, which are extremely important
apoptosis initiating and executing factors as well as involved
in the process of pyroptosis [42]. Among them, CASP6 and
CASP9 mainly mediate the apoptotic process, and CASP1
mainly induces pyroptosis, but there are also interactions
among the three, and CASP6 is reported to regulate the acti-
vation of CASP1 to promote the formation of GSDMD-
induced pyroptosis [43]. PRKACA plays an important role
in the development and progression of many cancers [44,
45]. However, the molecular mechanism of PRKACA
involved in the occurrence and development of bladder can-
cer is still unclear and needs to be investigated and explored
in depth. Therefore, we believe that these seven genes may
be involved in the occurrence and development of bladder
cancer by regulating pyroptosis or apoptosis. Existing stud-
ies have proved that it is not difficult to see that pyroptosis
has a complex role in cancer. Thus, when evaluating the
prognosis of patients, the impact of a certain gene of pyrop-
tosis on patients cannot be discussed separately, whereas it
should be considered comprehensively. Hence, the most
direct and effective way is to establish a prognosis-related
model.

Immune cell infiltration in tumor tissue plays an impor-
tant role in cancer cell proliferation, invasion, migration, etc.
Dendritic cells (DC) can initiate and regulate the adaptive
immune response, which is the basis for the antitumor
immune response [46]. The number of CD8+T cells has
implication for chemotherapy, and immunotherapy could
improve the therapeutic effects of tumor treatment; it has
been confirmed in patients with gastric cancer, breast cancer,
and melanoma [47–49]. In a mouse model of breast cancer
with high mutation burden, follicular helper T cells can

mediate the response to checkpoint inhibitors and enhance
the antitumor response [50]. Treg cells can suppress tumor
immunity and are related to tumor aggressiveness [51, 52].
M2 macrophages have anti-inflammatory effects, and polar-
ized M2 macrophages are called tumor-associated macro-
phages (TAMs) that can promote tumor growth and
invasion [53]. Immunotherapy has a great role in the per-
sonalized treatment of cancers such as the urinary system.
Induction of pyroptosis is considered to be a new and poten-
tial cancer treatment measure. Studies have found that
induction of pyroptosis combined with immunotherapy
can enhance anticancer activity [54]. By analyzing the pro-
portion and types of immune cells, we found that there are
significant differences in immune cells between the high-
and low-risk groups, so we further analyzed the correlation
between the risk score and immune cells. It was found that
activated Dendritic cells, CD8+T cells, follicular helper T
cells, and regulatory T (Treg) cells were higher in the low-
risk group, and they were negatively correlated with the risk
score. The M0 Macrophages and M2 Macrophages were
higher in the high-risk group; they are positively correlated
with risk scores. Unexpectedly, in our study, the proportion
of regulatory T (Treg) cells in the low-risk group was higher
than in the high-risk group. Therefore, how Treg cells play a
role in patients with bladder cancer and the relationship
with pyroptosis need further research. We believe that one
possible reason for this difference is that regulatory T (Treg)
cells could regulate the overactive inflammatory response
caused by pyroptosis in the tumor microenvironment.
Finally, we explored the predictive ability of risk signatures
and immunotherapy response and found that patients in
the low-risk group responded better to immunotherapy. In
summary, the prognostic model based on pyroptosis-
related regulators may provide new insights for the progno-
sis of immunotherapy for bladder cancer and help clinical
medical decision making.

5. Conclusions

In our study, it was found that there are differences in the
expression of pyroptosis-related regulators in normal blad-
der tissue and bladder cancer, and the OS of patients
grouped according to the expression of pyroptosis-related
regulators is different. A prognostic signature of 7 genes
has been established and verified that it is an independent
prognostic factor for patients with bladder cancer and is
related to the tumor immune microenvironment. Of course,
our research has limitations; further multicenter studies and
experimental investigations are needed. However, our
research provides a new genetic marker for predicting the
prognosis of patients with BLCA and provides an important
basis for further research on the relationship between
pyroptosis-related regulators and bladder cancer immunity.
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