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Objectives. To analyze the tissue heterogeneity of hormone-sensitive and drug-resistant nephrotic syndrome genes using a
bioinformatics approach and to analyze gene-related functional pathways. Methods. The limma package of R software was used
to screen differential genes from the nephropathy datasets GSE145969 and GSE189734. The differential genes were analyzed
for functional and pathway enrichment in terms of biological processes, cellular components, and molecular functions. The
Metascape tool was used to construct protein networks for the differential genes, and the results were imported into Cytoscape
software for visualization. The genes were identified as key modules and genes using the MCODE plug-in. Gene set
enrichment analysis was performed for the HALLMARK analysis of the two microarray key genes to obtain the relevant
pathways. Results. GSE145969 screened 351 differential genes, 168 upregulated genes, and 183 downregulated genes. The
differential genes were enriched in biological processes, cellular components, and molecular functions, such as myocardial
contraction, intracellular nonmembrane organelles, and structural molecular activities. The protein-protein interaction (PPI)
network contained 140 nodes, with the highest-scoring module containing seven genes, and the MCODE plug-in calculated the
downseed. The key gene was KIAA0101, whose HALLMARK pathway was significantly enriched in the mTORC1 signaling
pathway. A total of 263 differential genes were screened by GSE189734, and they were enriched in biological processes,
molecular functions, and cellular components, such as immune system processes, signaling receptor binding, and the
cytoplasmic matrix. The PPI network contained 253 nodes, with the highest-scoring module containing 37 genes. The seed
gene obtained through the MCODE plug-in calculation was IL2RA, whose HALLMARK pathway was significantly enriched in
the KRAS signaling pathway. Conclusion. By analyzing the gene sets of different tissues in nephropathy, two key genes, namely
KIAA0101 and IL2RA, were obtained. Their gene function enrichment is related to cell growth, development, and
reproduction. Therefore, IL2RA and KIAA0101 can be used as diagnostic markers for hormone-resistant nephropathy.

1. Introduction

Chronic kidney disease (CKD) is a global public health
problem that will eventually evolve into renal failure and
cardiovascular disease [1]. Steroid-sensitive nephrotic syn-
drome (SSNS) is one of the most common chronic diseases
in children [2], but half of the children with SSNS will have
at least four relapses per year or at least two relapses within
six months after the initial visit, a condition known as fre-
quently recurrent nephrotic syndrome (FRNS) [3]. In some
of these children with FRNS, two consecutive relapses occur

after a period of reduction or discontinuation of steroid ther-
apy, a condition defined as steroid-dependent nephrotic syn-
drome [4]. Steroid-resistant nephrotic syndrome (SRNS) is a
heterogeneous disease that includes both immune-based
genes and a monogenic etiology [5]. The incidence of
nephrotic syndrome is regionally dependent, with rates of
1.2–1.8 cases per 100,000 children per year in Germany
[6], 3–3.5 cases per 100,000 children per year in Paris and
surrounding areas [7], and 6.49 cases per 100,000 children
per year in Japan [8]. Among the affected young children,
males predominate, with a male-to-female ratio of 2 : 1 [9].
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More than 85% of patients with nephrotic syndrome
respond to corticosteroids, but about 10%–15% still do not
respond to steroids or develop steroid resistance [5]. The
median age of onset of SRNS is 4.4 years [10], with an early
age of onset concentrated in early childhood.

With the development of bioinformatics technology, it
has become an important way to obtain disease-related
information for further analysis using techniques such as
microarrays or multiple sequencing methods. Moreover, by
grouping disease gene expression profiles for study, the caus-
ative genes can eventually be screened. The study of SSNS
can be facilitated by analyzing hormone-sensitive and
drug-resistant nephrotic syndrome gene-related pathways.
In this study, we plan to determine the key genes of
hormone-resistant nephropathy by analyzing different tissue
microarrays for differential expression and gene function
enrichment.

2. Methods and Materials

2.1. Sample Source. This study found two datasets related to
hormone-resistant nephrotic syndrome based on the Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/) gene expression databases: GSE145969 and GSE189734.
The GSE145969 dataset collected data from 16 SSNS and 12
SRNS patients. The clinical information was divided into two
groups: hormone sensitivity (steroid-sensitive) and hormone
resistance (steroid-resistant). The GSE189734 dataset collected
data on three SSNS and three SRNS patients.

2.2. Differential Expression Analysis to Screen for Differential
Genes. The limma package of R software was used to analyze
the differential expression of mRNA in the two microarrays.
The results of the differential expression analysis for each
microarray are shown in a volcano plot with a screening
threshold of p < 0:05, jFCj ≥ 1:5 for differentially expressed
genes (DEGs).

2.3. Differential Gene Function and Pathway Enrichment
Analysis. In order to further study the functions of the above
genes, the ClusterProfiler program package in R software
was used to perform gene function enrichment analysis on
DEGs to obtain gene ontological- (GO-) related pathways.
GO includes Molecular Function (MF), Biological Process
(BP) and Cellular Component (CC). p < 0:01 is statistically
significant, and the results are presented as bubble plots.

2.4. Protein-Protein Interaction (PPI) Network Analysis. To
further investigate the interaction relationship between dif-
ferentially expressed genes, we performed PPI analysis on
the DEGs. The DEGs were analyzed using Metascape
(https://metascape.org/) to obtain the PPI relationship net-
work. The MCODE plug-in in Cytoscape software was used
to screen the important functional modules in the PPI net-
work, select the highest-scoring cluster and seed genes in
that cluster for subsequent analysis, and position the seed
genes as key genes.

2.5. Single Gene Set Enrichment Analysis (GSEA). Based on
the median expression value of key genes, the samples were

divided into two groups: high and low expressions. The
HALLMARK pathway was observed using a single GSEA.
The screening threshold was jNESj > 1, and the p value
was set to <0.05.

3. Results

3.1. Screening of Differential Genes Using Differential
Expression Analysis. The differential analysis of GSE145969
yielded 351 differential genes (Figure 1(a)), including 168
upregulated genes and 183 downregulated genes. The differ-
ential analysis of GSE189734 produced 263 differential genes
(Figure 1(b)), which were all upregulated genes.

3.2. Functional Enrichment Analysis of Differential Genes.
GO functional enrichment analysis was performed on the
differential genes of the two microarrays. The significantly
enriched biological process terms for the genes of the
GSE189734 microarray included immune system processes,
cellular responses to chemical stimuli, and cellular responses
to organic substances (Figure 2(a)). The significantly
enriched molecular function terms included signaling recep-
tor binding and enzyme site binding (Figure 2(b)). The sig-
nificantly enriched cellular component terms included
cytoplasmic matrix, cytoplasmic vesicles, intracellular vesi-
cles, and cell membranes (Figure 2(c)). The significantly
enriched biological process terms included cardiac contrac-
tion and hair cycle regulation (Figure 2(d)). The significantly
enriched cellular component terms included intracellular
nonmembrane organelles and nucleoli (Figure 2(e)). The
significantly enriched molecular function terms included
structural molecular activity, ion-gated channel activity,
and gated channel activity (Figure 2(f)).

3.3. PPI Network Analysis. The two-dataset DEGs were ana-
lyzed using Metascape, and the PPI network constituted by
the DEGs contained 140 nodes and 253 node action rela-
tionships (Figures 3(a) and 3(b)). The two datasets were ana-
lyzed for GO functional enrichment, and the results showed
that the GSE145969 chip gene was significantly enriched in
the positive regulation of neuron projection development
and gene silencing by RNA (Figure 3(c)). The GSE189734
dataset gene was significantly enriched in cytokine signaling
in the immune system and in cell activation (Figure 3(d)).
The highest-scoring clusters were obtained using the
MCODE plug-in in Cytoscape. The modules contained
seven nodes with 18 edges and 37 nodes with 368 edges
(Figures 3(e) and 3(f)).

3.4. GSEA of Key Genes. The key genes from the MCODE
plug-in analysis were used as the key genes: KIAA0101 for
the GSE145969 dataset and IL2RA for the GSE189734 chip.
The GSEA of the HALLMARK pathway was performed sep-
arately. IL2RA was significantly enriched in the KRAS sig-
naling pathway (Figure 4(b)).

4. Discussion

With the rapid development of biological sciences and
genetics, we have gained a deeper understanding of
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nephrotic syndrome. In recent years, the epidemiology of
nephrotic syndrome has been in a stable state and largely
unchanged, but the pathology associated with it is constantly
evolving. The nephrotic syndrome is reflected by urinary
polyprotein, hypoproteinemia, edema, and other available
clinical features, such as hyperlipidemia [11]. The pathogen-
esis of nephropathy is related to several factors; the most
common of which is diabetic nephropathy, one of the most
common microvascular complications among diabetic
patients [12].

In this study, we selected different tissue samples from
nephropathy for analysis, with GSE189734 containing six

samples and GSE145969 containing 28 samples. Differential
expression analysis was performed on the two microarrays.
A total of 263 DEGs were obtained for GSE189734, and
351 genes were obtained for GSE145969, including 168
upregulated genes and 183 downregulated genes. Their func-
tional enrichment analyses and pathways were analyzed sep-
arately. The GSE145969 dataset was functionally enriched in
the positive regulation of neuron projection development.
Neuron projection is established through an extremely com-
plex transcriptional crossover, and genes operate by regulat-
ing the developmental drivers of the projection neuron
subtype and another subtype [13]. Satb2 and Ctip2 are the
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(a) GSE145969 differential gene volcano map
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Figure 1: Results of the differential expression analysis. Note: The figure shows a volcano plot. The screening criteria are p < 0:05 and
jFCj ≥ 1:5. The green portion of the figure denotes the downregulated genes, and the red portion denotes the upregulated genes.
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(b) Molecular functional terminology of DEG in GSE189734
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Figure 2: Continued.
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Figure 2: Results of the GSE189734 and GSE145969 gene functional enrichment analysis. Note: The results are shown by bubble plots for
the first 10 functional pathways of genes, with a screening threshold of p < 0:01.
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(a) Interaction relationship network of DEGs in GSE145969 (b) Interaction relationship network of DEGs in GSE189734
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Figure 3: Results of the PPI analysis of GSE145969 and GSE189734. Note: As the result of the MCODE plug-in in Metascape had only one
cluster and contained fewer genes, Cytoscape was used to recreate the map.
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two transcription factors that generally play a role in projec-
tion neuron development, with Satb2 acting as a repressor of
Ctip2 [14]. The functions of the GSE189734 dataset are
enriched in cytokine signaling in the immune system. The
immune system is controlled by a variety of cytokines, which
act through the Janus tyrosine kinases and the signal transduc-
tion and activators of transcription to achieve their functions
[15]. In addition, the protein network models were con-
structed separately for the DEGs, and the genes were scored
using the MCODE plug-in, resulting in the highest-scoring

gene modules. The results showed that GSE189734 had 253
nodes and that the highest-scoring module contained 37 genes
and 368 edges. GSE145969 had 140 nodes, and the highest-
scoring module contained 7 genes and 18 edges. Clearly, the
GSE189734 dataset genes were more closely related. The seed
genes IL2RA and KIAA0101 were selected as the key genes for
the GSEA of the HALLMARK pathway. The results showed
that KIAA0101 was significantly enriched in the mTORC1
signaling pathway, while IL2RA was significantly enriched in
the KRAS signaling pathway.
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Figure 4: Results of the GSEA of the key genes. Note: The threshold value is jNESj > 1, and the p value is <0.05.
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The KIAA0101 gene was found to be associated with
the prognosis of several tumors, and its bioinformatics
analysis revealed that it is an independent prognostic factor
for malignant pleural mesothelioma [16]. It was also found
to be a diagnostic biomarker of breast cancer prognosis in a
study on breast cancer [17]. In addition, KIAA0101 is a
diagnostic and prognostic marker for lung adenocarcinoma
and is even associated with the gene regulatory network
and immune infiltration of lung adenocarcinoma [18].
The IL2RA gene regulates proliferation, differentiation,
apoptosis, and leukemogenesis and is associated with a
variety of diseases, such as acute myeloid leukemia progno-
sis [19]. Single nucleotide polymorphisms in the IL2RA
gene affect the pathogenesis of multiple sclerosis by encod-
ing IL-2Rα [20]. An mTOR signaling pathway is closely
related to the MAPK pathway and controls cell growth by
interacting to determine anabolism and catabolism. The
mTORC1 signaling pathway transduces functions that reg-
ulate metabolism, translation, and autophagy [21] [22]. The
overexpression of mTORC1 causes disease; therefore,
mTORC1 inhibitors are used to treat various diseases
[23]. KRAS is a member of the Ras family, which is a com-
mon protooncogene with a mutation rate of up to 30%
[24], and is associated with a variety of cancers with poor
prognoses. There are several KRAS markers in mutated
cancers, such as pancreatic, colorectal, lung, and genitouri-
nary cancers [25]. Ras proteins regulate multiple programs
of cell growth, reproduction, and metabolism by signaling
to pathways, such as the MAPK pathway and P13K, thus
facilitating oncogenic transformation [26]. The results of
the study showed that similar gene function pathways were
obtained by analyzing different tissue samples from
nephropathy and that all were related to cell growth, devel-
opment, and reproduction.

In conclusion, hormone-resistant nephropathy was
identified by two key genes, IL2RA and KIAA0101, and
the signaling pathways involved were the KRAS signaling
pathway and the mTORC1 signaling pathway. We hypoth-
esize that the two genes exert their effects by influencing
two signaling pathways to regulate cell growth, develop-
ment, and reproduction, and that IL2RA and KIAA0101
could be used as hormone-resistant nephropathy diagnos-
tic markers.

Data Availability

This study found two datasets related to hormone-resistant
nephrotic syndrome based on the Gene Expression Omni-
bus (GEO, https://www.ncbi.nlm.nih.gov/geo/)
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