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Objective. The goal was to confirm the mechanism by which miR-125b-5p influences melanocyte biological behavior and
melanogenesis in vitiligo by regulating MITF. Methods. oe-MITF, sh-MITF, miR-125b-5p mimic, NC-mimic, NC-inhibitor,
and miR-125b-5p inhibitor were transfected into cells by cell transfection. Western blotting was used to detect the related
protein expression, qRT–PCR was used to detect miR-125b-5p and MITF expression, immunohistochemistry was used to
detect the MITF-positive cells in vitiligo patients tissues, and a dual-luciferase reporter system was used to detect the target of
miR-125b-5p and MITF. PIG1 and PIG3V cell proliferation by the CCK-8 method, cell cycle progression and apoptosis by
flow cytometry, apoptosis was detected by TUNEL, Tyr activity and melanin content were measured using Tyr and melanin
content assay kits. Results. Compared with the healthy control group, the expression of miR-125b-5p in the tissues and serum
of vitiligo patients was upregulated, and the expression of MITF was downregulated; compared with PIG1 cells, the expression
of miR-125b-5p and MITF in the PIG3V group was consistent with the above. Compared with the NC-minic group, the cell
proliferation activity of the miR-125b-5p mimic group decreased, apoptosis increased, and the expression levels of
melanogenesis-related proteins Tyr, Tyrp1, Tyrp2, and DCT were downregulated. Compared with the NC-inhibitor group, the
above indices in the miR-125b-5p inhibitor group were all opposite to those in the miR-125b-5p mimic group. Transfection of
oe-MITF into the miR-125b-5p mimic group reversed the effect of the miR-125b-5p mimic, while transfection of sh-MITF
enhanced the effect of the miR-125b-5p mimic. Conclusion. miR-125b-5p affects vitiligo melanocyte biological behavior and
melanogenesis by downregulating MITF expression.

1. Introduction

Vitiligo characterized by melanocyte destruction is an
acquired and idiopathic disease resulting in dilution of pig-
ment in affected areas [1]. Its lesion sites are characterized
by white patches and colorless, nonscaly, and distinct edges.
With research advances, great progress has been made in the
understanding of the pathogenesis of vitiligo, which is asso-
ciated with the destruction of melanocyte function leading to
impaired melanin deposition as an autoimmune disease [2].
Nonetheless, the mechanism of melanin deposition disorder
is not clear in the current study; therefore, there is an urgent

need to study the specific mechanism of melanin deposition
and find effective therapeutic targets.

As an evolutionarily conserved noncoding RNA mole-
cule, microRNA (miRNA) is approximately 22 nucleotides.
miRNA bind to their target mRNA to regulate gene expres-
sion, resulting in their translation inhibition or degradation.
Each miRNA has multiple targets, and each miRNA is regu-
lated by multiple miRNAs simultaneously [3]. Previous
studies have shown that miRNAs play a key role in all kinds
of life activities, including the immune response, cell prolif-
eration, differentiation, and apoptosis [4]. There are four
kinds of miRNAs with abnormal expression in the
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peripheral blood of vitiligo patients: miR-1238-3p, miR-202-
3p, miR-630, and miR-766-3p [5]. Upregulation of miR-21-
5p and downregulation of SOX5 lead to upregulation of
melanogenesis [6]. miR-211 can regulate mitochondrial
energy metabolism in vitiligo patients [7]. The relationship
between miR-125b-5p, melanocyte biological behavior, and
melanogenesis was investigated. As a member of the miR-
125b family, miR-125b-5p is a new regulator of homeostatic
melanogenesis [8]. However, the specific mechanism by
which miR-125b-5p regulates melanocyte biological behav-
ior and melanogenesis is not clear.

As a key regulator of melanocyte development, MITF
(small eye transcription factor) is necessary in many stages
of the melanocyte life cycle and is required for the survival
of melanocyte precursors or melanoblasts [9]. In a study
by Steingrímsson et al. [10], deletion of MITF resulted in
the entire absence of mouse embryonic adult melanocytes,
and mice were born with all-white hair follicles. Biological
information indicates that miR-125b-5p interacts with
MITF, but whether miR-125b-5p influences the biological
behavior of melanocytes and melanin production by regulat-
ing MITF is not known. Therefore, this study was aimed at
confirming the relationship between miR-125b-5p, MITF,
melanocyte biological behavior, and melanogenesis to
explore the potential mechanism and provide a new way to
treat vitiligo.

2. Methods

2.1. Clinical Data and Patient Samples. In this study, serum
and skin tissue were collected from patients with vitiligo
(n = 17) and normal healthy individuals (n = 17). Patients
who had other serious diseases or started treatment within
3 months prior to admission were excluded. Healthy con-
trols were shown to have normal physiological functions in
a whole-body physiological examination performed at the
abovementioned hospital. All the experiments in this study
were approved by the ethics committee. Before participating
in this study, the included patients and healthy volunteers
signed informed consent forms.

2.2. Cell Culture. Normal human skin melanocytes (PIG1)
and vitiligo melanocytes (PIG3V) (BeNa Culture Collection,

Beijing, China) were cultured in 90% RPMI1640 containing
fetal bovine serum (10% USA), penicillin (100U/mL), and
streptomycin (100mg/mL). The cells were placed in a stan-
dard incubator with 5% CO2 and incubated at a cell density
of 80% for subsequent experiments.

2.3. Cell Transfection. In 6-well plates, PIG1 and PIG3V cells
were inoculated at a density of 1 × 105 cells/well. miR-125b-
5p mimic, sh-MITF, oe-MITF, NC-mimic, NC-inhibitor,
and miR-125b-5p inhibitor were synthesized by Sangon
(Shanghai, China) and transfected into cells by Lipofecta-
mine™ 3000 reagent. The control group was transfected into
cells as a control group, and the cells were subsequently
placed in saturated humidity and CO2 for 48h. The transfec-
tion efficiency was detected using qRT–PCR and WB for
subsequent experiments.

2.4. qRT–PCR. A total RNA extractor (Sangon Biotech) was
used to extract the total RNA from 17 serum samples (tis-
sues and cells). A 1μL RNA sample was taken, and RNA
integrity was detected by 1% agarose gel electrophoresis. A
1μL RNA sample was taken after dilution to measure the
OD value through the ratio of OD260/OD280 to identify the
total RNA purity. A cDNA synthesis kit (Vazyme, Nanjing,
China) was used to reverse transcribe 2μg of mRNA into
cDNA, which was then diluted 10 times. One microliter of
the prepared cDNA was used for qPCR. U6 and GAPDH
were used as the reference genes for expression detection
on an ABI7500 real-time PCR system, followed by PCR
analysis of cDNA using SYBR qPCR Master Mix (Vazyme,
Nanjing, China) to quantify miR-125b-5p and MITF expres-
sion. qRT–PCR conditions are as follows: 95°C for 30 s, 3 s at
95°C, followed by annealing at 60°C for 30 s for 40 cycles. All
primers (Table 1) used in this study were designed with Pre-
mier 5.0. The results were calculated by the 2-ΔΔCt method
after repetition at least 3 times.

2.5. Cell Proliferation Assay (CCK-8). In this study, PIG1 and
PIG3V cells (1 × 105 cells/well) were placed in 96-well plates.
In a 37°C incubator, 100μL of medium was added to every
plate and cultured in a cell incubator for 36 h until the cell
density was 70-80%. After transfection or dosing and incu-
bation for 0, 24, 48, and 72h, ten microliters of CCK-8

Table 1: Primer sequence.

Genes Primers Sequence (5′-3′)

miR-125b-5p
forward 5′-TCCCTGAGACCCTAACTTGTGA-3′
reverse 5′-AGTCTCAGGGTCCGAGGTATTC-3′

U6
forward 5′-CTCGCTTCGGCAGCACA-3′
reverse 5′-AACGCTTCACGAATTTGCGT-3′

MITF
forward 5′-TCTGCCTGGTGCTGTACAAG-3′
reverse 5′-CCAGGCCTTACCATCAGCAA-3′

GAPDH
forward 5′-AGTGATGGCATGGACTGTGG-3′
reverse 5′-GATTTGGTCGTATTGGGCGC-3′
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reagent (Biotrans, Shanghai, China) was added to detect the
influence of miR-125b-5p and MITF on cells. Subsequently,
the 96-well plates were subjected to an enzyme marker (Bio-
Rad, CA, USA) at 450nm to detect the absorbance values.

2.6. Cell Clone Formation Experiments. To prepare the cell
suspensions, we used trypsin (0.25%) to digest the PIG1
and PIG3V cells at the logarithmic growth stage. After gradi-
ent dilution, the cell suspension was inoculated into a 37°C
plate containing 10mL of preheated culture medium at gra-
dient densities of 50, 100, and 200 cells. Then, the plate was
gently rotated to evenly distribute the cells, and the cells
were cultured in a cell incubator. They were observed fre-
quently, and when clones visible to the naked eye appeared
in the dishes, the culture was terminated, the supernatant
was discarded, the cells were washed twice with PBS,
15mL of 4% paraformaldehyde was added to fix the cells,
the fixation was discarded, GIMSA application staining solu-
tion (Jinglai Biological, China) was added to the dye for 10-
30min, and they were then washed with water, air-dried,
and counted under a microscope.

2.7. Protein Blotting. In this study, the proteins were
extracted utilizing RIPA lysis buffer (Sangon Biotech, Shang-
hai), and a lysate containing benzoyl fluoride (PMSF) was
added. A BCA assay (Sangon Biotech, Shanghai) was used
to determine the total protein content. The target bands
were transferred to a nitrocellulose membrane (PVDF) by
taking 50μg for 10% SDS–PAGE and using skim milk pow-
der (5%) to block the PVDF membrane for 2 h. PVDF mem-
branes were cultured with Abcam antibodies: MITF (1/1000;
cat. no. ab140606, Abcam, UK), CDK2 (1 : 5000; cat. no.
ab32147, Abcam, UK), CDK4 (1/1000; cat. no. ab108357,
Abcam, UK), CyclinA2 (1/20000; cat. no. ab181591, Abcam,
UK), CyclinD1 (1/200; cat. no. ab16663, Abcam, UK), BcL-2
(1/1000; cat. no. ab32124, Abcam, UK), Bax (1/1000; cat. no.
ab32503, Abcam, UK), Caspase-3 (1/5000; cat. no. ab32351,
Abcam, UK), Tyr (1/100000; cat. no. ab137869, Abcam,
UK), Tyrp1 (1/1000; cat. no. ab235447, Abcam, UK), Tyrp2
(1/1000; cat. no. ab221144, Abcam, UK), DCT (1/1000; cat.
no. ab221144, Abcam, UK), and GAPDH (1/1000; cat. no.
ab9485, Abcam, UK) overnight at 4°C. TBST buffer was used
to wash the PVDF membranes, which were then incubated
with secondary antibodies (1/2000, cat. no. ab205718,
Abcam) at 25°C for 1 h. Subsequently, ECL color develop-
ment, gel imaging system analysis, semiquantitative determi-
nation of expression, and ImageJ analysis of the grayscale
values of the bands were performed.

2.8. Immunohistochemistry (IHC). IHC experiments were
carried out by 3,3′-diaminobenzidine (DAB) analysis. First,
paraffin sections were routinely dewaxed and incubated with
3% H2O2 for 10min at 37°C (to inactivate endogenous per-
oxides), rinsed with distilled water, immersed in citrate
buffer in a boiling water bath for antigen repair, rinsed,
and then immersed three times with PBS for 5min each.
After the glass slide was baked at 65°C for 2 h, it was placed
in xylene for 10min and then treated with xylene for 10min.
The sections were incubated in the following ethanol gradi-

ent (5min for each solution): 90%, 80%, 70%, and distilled
water. In a wet room, citric acid buffer was used to treat
the slices, and hydrogen peroxide (3%) was used to remove
endogenous peroxidase (25°C, 10min). Sections were
blocked with 5% bovine serum at 37°C for 30min and then
incubated with the primary antibody for 12 h at 4°C. They
were incubated with the second antibody for 30min at
37°C after washing the slices with PBS buffer. 3,3′-Diamino-
benzidine (DAB) was used to observe the sections, and a
light microscope was used to acquire the images.

2.9. Flow Cytometry Detects the Cell Cycle and Apoptosis.
PIG1 and PIG3V cells at the logarithmic growth stage from
each group of treatments were inoculated in 6 cm culture
dishes and cultured for 12 h. Subsequently, PBS was used
to wash the cells three times, and the cells were resuspended
in 100μL of buffer. At 25°C, the cells were coincubated with
5μL of PI (BD Biosciences) for 10min. Finally, after adding
termination buffer, flow cytometry was performed to deter-
mine the apoptosis rate. Images were processed and ana-
lyzed using FlowJo X software. The experiment was
performed 3 times independently.

2.10. Dual-Luciferase Reporter Assay. Dual-luciferase
reporter analysis was used to detect the relationship between
miR-125b-5p and MITF. The StarBase (http://starbase.sysu
.edu.cn/) database was used to confirm the targeting of
miR-125b-5p with MITF. The 3′-UTR of MITF was ligated
into the pmir-GLO vector to construct the MITF wild-type
vector (MITF-WT). In addition, it was ligated into the
pmir-GLO vector by changing the target binding site of
miR-125b-5p and MITF using a gene mutation technique
to construct an MITF mutant vector (MITF-MUT). With
the miR-125b-5p mimic, the generated reporter plasmid
was transfected into HEK293T cells, and a dual-luciferase
reporter assay kit was used to measure the luciferase activity
after 48 h of incubation.

2.11. Terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) Assay. According to the TUNEL kit
(Beyotime, Shanghai, China), PIG1 and PIG3V cells at the
logarithmic growth stage were taken, prepared in cell sus-
pension by trypsin digestion, centrifuged, supernatant dis-
carded, washed with PBS, and fixed with 4%
paraformaldehyde solution at 25°C for 30min. Subsequently,
a 0.3% H2O2 methanol solution was used to block the cells.
Of note, care should be taken to keep the surrounding area
moist with sufficient water-soaked paper or cotton pads to
minimize evaporation of the TUNEL assay solution during
incubation. The TUNEL assay solution was washed off with
PBS. The slices were sealed with antifluorescence quenching
blocking solution, and the tissue and cells were photo-
graphed under a fluorescence microscope at 450-500nm
(400857, Nikon, Japan). PI/DAPI can stain both apoptotic
and nonapoptotic cells red/blue, with green fluorescence
localized by FITC-12-dUTP doping only in the nuclei of
apoptotic cells.
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2.12. Statistics and Analysis. In this study, GraphPad Prism 8
software was used to analyze and prepare graphs, and the
means and standard deviations (SD) are shown. Unpaired
one-way analysis and Student’s t test were used to analyze
the multiple groups and two groups of data, respectively.
The P value for statistical significance was 0.05.

3. Results

3.1. Differential Expression of miR-125b-5p and MITF in the
Serum, Melanocytes, and Tissues of Vitiligo Patients. This
study used qRT–PCR to confirm the levels of miR-125b-5p
and MITF in serum and tissues from 17 vitiligo patients
and 17 healthy individuals. It was shown that in either serum
or tissues in the vitiligo patient group, miR-125b-5p expres-
sion was increased compared to the healthy controls
(Figure 1(a)). Western blotting was used to detect MITF
expression. MITF expression was significantly downregu-
lated in vitiligo patients (Figure 1(b)). Immunohistochemi-
cal results indicated a significant decrease in MITF
expressions from vitiligo patient tissues (Figure 1(c)). In
melanocytes by qRT–PCR compared to normal human skin
melanocytes (PIG1) and in vitiligo melanocytes (PIG3V),
the level of miR-125b-5p was increased, and MITF was
decreased (Figure 1(d)). At the same time, the level of MITF
was significantly reduced in PIG3V cells according to West-
ern blotting (Figure 1(e)). miR-125b-5p and MITF are
abnormally expressed in vitiligo and may play a key role in
the development of vitiligo.

3.2. The Influence of miR-125b-5p on Apoptosis,
Melanogenesis, and the Proliferation of Melanocytes and
Cycle and Pigment PIG1 and PIG3V Cells. To confirm the
biological function of miR-125b-5p in vitiligo development,
we altered the level of miR-125b-5p in cells by transfecting
miR-125b-5p mimic and miR-125b-5p inhibitor. CCK-8
was used to evaluate the proliferation of PIG1 and PIG3V
cells, as shown in Figure 2(a). Compared with the NC-
minic group, the cell proliferation activity of the miR-
125b-5p mimic group decreased, while the cell proliferation
activity of the NC-inhibitor group showed no significant
change. However, compared with the NC-inhibitor group,
the cell proliferation activity of the miR-125b-5p inhibitor
group was significantly increased. In addition, the influence
of miR-125b-5p on PIG3V cells was found to be stronger
than that on PIG1 cells during the assay. The cell clone for-
mation assay was performed again, and the assay results
were consistent with the CCK-8 results, as shown in
Figure 2(b).

The cell cycle and apoptosis were detected by flow
cytometry, and the miR-125b-5p mimic group showed G0/
G1 phase ; the levels of cycle regulation-related proteins
CDK2, CDK4, and CyclinA2 protein were decreased, and
CyclinD1 expression was increased. Meanwhile, apoptosis
was increased and apoptosis-related protein BcL-2 expres-
sion was decreased, the expressions of Bax and Caspase-3
were increased, and the above indicators in the NC-
inhibitor group did not change significantly. However, com-
pared with the NC-inhibitor group, the changing trend of

the miR-125b-5p inhibitor group was completely opposite
to that of the miR-125b-5p group. The duration of the G0/
G1 and S phase was reduced, the levels of cycle regulation-
related CDK2, CDK4, and CyclinA2 proteins were
increased, and CyclinD1 expression was decreased; mean-
while, apoptosis was attenuated, the BcL-2 level was
increased, and Bax and Caspase-3 expressions were
decreased (Figures 2(c)–2(f)).

The levels of melanogenesis-related proteins were
detected by Western blotting. Tyr, Tyrp1, Tyrp2, and DCT
were downregulated after treatment with the miR-125b-5p
mimic, while all of them were upregulated in the miR-
125b-5p inhibitor group (Figure 2(g)).

3.3. miR-125b-5p Targets and Negatively Regulates MITF
Expression. miRNAs can specifically bind to the 3′
-untranslated region (3′-UTR) of target mRNAs to regulate
gene expression. Therefore, we used a bioinformatics data-
base to identify the target sites of miR-125b-5p with MITF
and showed that there are MITF binding sites in miR-
125b-5p (Figure 3(a)). Subsequently, a dual-luciferase
reporter was used to analyze the miR-125b-5p and MITF
targeting relationship. Overexpression of miR-125b-5p
inhibited theluciferase activity of MITF-WT, while it had
no significant effect on the luciferase activity of MITF-
MUT (Figure 3(b)). Western blotting was used to examine
the regulatory relationship between miR-125b-5p and MITF,
and the results showed that the miR-125b-5p mimic
decreased the levels of MITF, while the inhibitor increased
the level of MITF (Figure 3(c)).

3.4. miR-125b-5p Affects PIG1 and PIG3V Proliferation and
Apoptosis by Regulating MITF. To confirm whether miR-
125b-5p affects PIG1 and PIG3V proliferation and apoptosis
by targeting regulating MITF, miR-125b-5p with MITF
overexpression and a low expression vector were con-
structed to alter the level of miR-125b-5p with MITF. A
CCK-8 assay was used to examine the proliferation of cells
after 72 h of growth. Compared with the NC-mimic group,
the proliferation activity of the miR-125b-5p mimic group
was decreased. After cotransfection of oe-MITF with miR-
125b-5p mimic, compared with the miR-125b-5p mimic
+NE-oe group, the miR-125b-5p mimic+oe-MITF group
can effectively reverse the inhibitory effect of miR-125b-5p
mimic on cell proliferation. After the expression of MITF
was inhibited, the inhibitory effect of miR-125b-5p mimic
on the proliferation of PIG1 and PIG3V cells was further
enhanced (Figure 4(a)). The results of the cell clone forma-
tion assay were consistent with those of the CCK-8 assay
of cell proliferation (Figure 4(b)).

Flow cytometry was used to detect PIG1 and PIG3V
apoptosis in this study. The level of apoptosis was increased
under the treatment of miR-125b-5p mimic, Caspase-3 and
Bax expression was increased, but BcL-2 protein was
decreased. After overexpression of MITF, the effect of miR-
125b-5p alone was reversed, and apoptosis was attenuated,
but BcL-2 was upregulated, and Bax and Caspase-3 were
downregulated. If the expression of MITF was decreased
while overexpressing miR-125b-5p, it promoted the effect
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of overexpressing miR-125b-5p alone, apoptosis was
increased again, and the expression of apoptosis-related pro-
tein BcL-2 was decreased again, but Bax and Caspase-3 were
increased again (Figures 4(c) and 4(d)).

TUNEL assay of apoptosis in PIG1 and PIG3V cells
showed an increase in apoptosis under the treatment of the
miR-125b-5p mimic, cotransfection of oe-MITF with it par-
tially reversed the influence of miR-125b-5p mimic transfec-
tion alone, and apoptosis was attenuated. However,
cotransfection of sh-MITF with it promoted the effect of
transfection of the miR-125b-5p mimic alone and apoptosis
was diminished, while cotransfection of sh-MITF with it
promoted the influence of the treatment of miR-125b-5p
mimic alone, and apoptosis was increased again

(Figure 4(e)). In summary, miR-125b-5p influences the pro-
liferation and apoptosis of PIG1 and PIG3V cells by target-
ing the negative regulation of MITF expression and has a
greater effect on PIG3V.

3.5. miR-125b-5p Affects the PIG1 and PIG3V Cycles by
Targeting Regulating MITF. Using flow cytometry to detect
cell PIG1 and PIG3V cycles, the results showed that, under
the treatment of the miR-125b-5p mimic, cells had G0/G1
and S phase block; downregulated CDK2, CDK4, and
CyclinA2 protein expression; and upregulated CyclinD1
expression. After cooverexpressing MITF, cell G0/G1 phase
and S phase block was relieved; CDK2, CDK4, and CyclinA2
protein expressions were upregulated; and CyclinD1
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Figure 1: Differential levels of miR-125b-5p and MITF in the serum, tissues, and melanocytes of vitiligo patients. (a) RT-qPCR for
differential expression of miR-125b-5p and MITF; (b) Western blot for MITF expression; (c) immunohistochemical detection of vitiligo
patients’ tissues; (d) RT–qPCR for differential levels of miR-125b-5p and MITF in PIG1 and PIG; (e) Western blot for differential levels
of miR-125b-5p and MITF in PIG1 and PIG3V. ∗∗P < 0:01.
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expression was downregulated. However, when knocking
down MITF, under the treatment of miR-125b-5p mimic
+NE-sh, cells in the miR-125b-5p mimic+sh-MITF group

had G0/G1 and S phase block; CDK2, CDK4, and CyclinA2
protein expressions were decreased; and CyclinD1 expres-
sion was increased (Figures 5(a) and 5(b)).
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Figure 2: The influence of miR-125b-5p on the apoptosis, cycle, proliferation, and melanogenesis of melanocytes PIG1 and PIG3V. (a, b)
CCK-8 and cell cloning experiments to evaluate the proliferation of PIG1 and PIG3V cells; (c, d) evaluation of the cell cycle of PIG1 and
PIG3V by Western blot and flow cytometry; (e, f) detection of the apoptosis of PIG1 and PIG3V cells by Western blot and flow
cytometry; (g) Western blot detection of melanogenesis-related protein expression. ∗P < 0:05; ∗∗P < 0:01.
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3.6. miR-125b-5p Affects Melanogenesis of PIG1 and PIG3V
through Target Regulation of MITF. To confirm whether
miR-125b-5p can affect PIG1 and PIG3V melanin produc-
tion by regulating MITF expression, we examined the activ-
ity of Tyr, the melanin content, and melanogenesis-related
protein expression. The results showed that, compared with
the miR-125b-5p mimic+NE-oe group, Tyr activity was
enhanced under the treatment of with cotransfection of oe-
MITF with the miR-125b-5p mimic. Tyr activity was
reduced when MITF was knocked down because it reduced
the inhibitory effect of the miR-125b-5p mimic on Tyr activ-
ity (Figure 6(a)).

Melanin production was reduced under the treatment of
the miR-125b-5p mimic, and the expressions of melanin
production-related proteins MITF, Tyr, Tyrp1, Tyrp2, and
DCT were downregulated according to western blotting;
meanwhile, overexpression of MITF reversed the above phe-
nomenon, and the cellular melanin content increased. Com-
pared with the treatment of miR-125b-5p mimic+NE-sh, the
expressions of melanin-related proteins Tyr, Tyrp1, Tyrp2,
MITF, and DCT were upregulated, and the suppression of

MITF expression further enhanced the inhibitory influence
of the miR-125b-5p mimic on melanogenesis, but the treat-
ment of the miR-125b-5p mimic+sh MITF showed reduced
cellular melanin content and downregulated expression of
melanogenesis-related proteins MITF, Tyr, Tyrp1, Tyrp2,
and DCT (Figures 6(b) and 6(c)).

4. Discussion

Vitiligo is an acquired pigmented skin disease resulting in a
lack of pigment cells in the epidermis, which clinically man-
ifests as white patches on the body that are symmetrically
distributed, well-defined, and varying in size; it has a world-
wide incidence of 0.5-1%. Segmental vitiligo (SV) and non-
segmental vitiligo (NSV) are the main types of vitiligo [11].
The development of vitiligo is a result of many factors. In
the epidermis, vitiligo is caused by a variety of factors, but
its main feature is damage to melanocytes between the hair
follicles [12]. The unique biological function of melanocytes
is melanin synthesis and plays a key role in the photoprotec-
tion of the skin; however, abnormal melanin reduction can
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Figure 4: miR-125b-5p influences PIG1 and PIG3V apoptosis and proliferation through targeted regulation of MITF. (a, b) CCK-8 and cell
cloning experiments to evaluate the proliferation of PIG1 and PIG3V cells, ∗∗P < 0:01; (c, d) PIG1 and PIG3V apoptosis, ∗P < 0:05 and
∗∗P < 0:01; (e) detection of PIG1 and PIG3V cell apoptosis by TUNEL.
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Figure 5: Continued.
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have an obvious influence on the appearance and health of
the individual. The study of melanin synthesis is of great
importance for the treatment of vitiligo. Therefore, it is cru-
cial to investigate new targets that can effectively promote
melanin synthesis in melanocytes. miRNAs and some non-
coding RNAs may play a key role in individual susceptibility
to vitiligo [13]. In the present study, qRT–PCR assays
revealed that miR-125b-5p expression was increased in the
serum and tissues of vitiligo patients and was aberrantly
expressed in the development of vitiligo. It has also been
shown that altered gene expression is involved in melano-
genic dysfunction, and the role of miRNAs in melanogenesis
has been extensively studied. In melanoma, some miRNAs
regulating melanogenesis have been found to play a key role
[14]. miR-340 and miR-218 inhibit melanogenesis by nega-
tively regulating MITF expression and thus play an inhibi-
tory role in melanoma production [15, 16]. For example,
miR-21a-5p, miR-25, and miR-27a-3p play a carcinogenic
role in melanoma, and the levels are increased in metastatic
melanoma [17, 18]. In this research, miR-125b-5p showed
elevated expression in PIG3V compared to in PIG1 accord-
ing to assay. The proliferative activity of melanocytes can be
decreased by the overexpression of miR-125b-5p, blocking
the cell cycle, increasing apoptosis, and decreasing the levels
of melanogenesis-related proteins Tyr, Tyrp1, Tyrp2, and
DCT, while reversing the inhibition of miR-125b-5p, such
as shortening the G0/G1 and S phases, decreasing apoptosis,
and upregulating melanogenesis-related protein expression.
The results suggest that miR-125b-5p has a key role in mela-
nogenesis in melanocytes.

miRNAs can regulate the level of related genes by bind-
ing to the 3′-UTR sequence of target gene mRNAs. MITF is
a key developmental and differentiation program master
transcriptional regulator that coordinates the melanocyte
lineage [19, 20]. Several studies have shown a potential effect
of MITF expression controlled by miRNAs and further reg-
ulate melanogenic enzymes at the mRNA level [21, 22]. For

example, miR-508-3p overexpression led to decreased
expression of MITF, Tyr, TyrP-2, and melanogenesis [23].
miR-137 also decreased MITF protein expression in trans-
genic mice [24]. In this study, the target binding between
miR-125b-5p and MITF was predicted by a bioinformatics
website, and the negative expression level of MITF was influ-
enced by miR-125b-5p. Overexpression of miR-125b-5p
resulted in weak proliferative viability, G0/G1 cell cycle
arrest, and S phase arrest in melanocytes and increased apo-
ptosis, while coexpression of MITF with miR-125b-5p sig-
nificantly reversed the effect of miR-125b-5p
overexpression. Moreover, knockdown of MITF increased
the level of miR-125b-5p. The results indicate that miR-
125b-5p affects the apoptosis and cycle of PIG1, prolifera-
tion, and PIG3V by targeting and regulating MITF. It is also
a master regulator of three major pigmentation enzymes
required for melanin synthesis: Tyr, TyrP1, and TyrP [25].
As a membrane-bound glycoprotein, Tyr plays a key role
in melanin synthesis and is considered to be the rate-
limiting enzyme for melanin synthesis, while TyrP1 and
TyrP2, also known as dobutamine isomerase (DCT), act
mainly in the later stages of melanin synthesis [26, 27]. In
this study, after the level of miR-125b-5p was increased,
the activity of Tyr in PIG1 and PIG2 cells was weakened, cel-
lular melanin content was reduced, and the levels of MITF,
Tyr, Tyrp1, Tyrp2, and DCT, which are proteins related to
melanogenesis, were decreased. This phenomenon was obvi-
ously reversed after simultaneous overexpression of MITF,
and if MITF was knocked down at the same time, the level
of miR-125b-5 was enhanced, which affects melanogenesis
of PIG1 and PIG3V through target regulation of MITF.

In summary, the level of miR-125b-5p was upregulated,
and MITF was downregulated in vitiligo tissues and serum.
miR-125b-5p regulates MITF expression, thereby affecting
PIG1 and PIG3V cell proliferation, cell cycle progression,
apoptosis, and melanogenesis, and it has a greater effect on
PIG3V cells.
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Figure 5: miR-125b-5p influences the cycle of PIG1 and PIG3V by targeting and regulating MITF. (a) Flow cytometry detection of cellular
PIG1 and PIG3V cycles; (b) detection of cycle-regulated related proteins by Western blot, ∗P < 0:05 and ∗∗P < 0:01.
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Figure 6: miR-125b-5p influences melanogenesis of PIG1 and PIG3V through target regulation of MITF. (a) Try activity assay; (b) melanin
content measurement; (c) Western blot for the level of melanin production-related protein. ∗P < 0:05 and ∗∗P < 0:01.
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