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Backgrounds. Long noncoding RNAs (lncRNAs) are strongly associated with the development of breast cancer (BC). As yet, the
function of LINC01234 in BC remains unknown. Methods. Using biological information, the potential lncRNA, miRNA, and
target gene were predicted. LINC01234 and miR-525-5p expression in BC tissues was detected using quantitative real-time
reverse transcription polymerase chain reaction. Fluorescence in situ hybridization was used to determine the distribution of
LINC01234. Cell proliferation was analyzed using CCK-8 assay, colony formation, terminal deoxynucleotidyl transferase dUTP
nick end labeling staining, and apoptosis evaluated using flow cytometry. Western blotting was used to evaluate protein
expression. Dual-luciferase® reporter, RNA pull-down, and RNA immunoprecipitation assays were performed to analyze the
binding relationships among LINC01234, miR-525-5p, and cold shock domain-containing E1 (CSDE1). Results. We screened
out LINC01234, found to be significantly increased in BC tissues, associated with a poor prognosis, and positively correlated
with tumor size of BC. Knockdown of LINC01234 suppressed BC cell growth and facilitated apoptosis. Dual-luciferase
reporter®, RNA pull-down, and RNA immunoprecipitation assays confirmed that LINC01234 and CSDE1 directly interacted
with miR-525-5p. Upregulation of miR-525-5p and suppression of CSDE1 inhibited BC cell growth and induced cell apoptosis.
Conclusion. Upregulation of LINC01234 contributes to the development of BC through the miR-525-5p/CSDE1 axis.
LINC01234 may be one of the potential diagnostic and treatment targets for BC.

1. Introduction

Breast cancer (BC) is one of the most commonly diagnosed
cancers worldwide and is associated with high mortality. In
2020, BC surpassed lung cancer for the first time, causing
more than 2.1 million cases and 680,000 deaths in 2020
alone. Among women, BC ranks the first in terms of inci-
dence and mortality in most countries, accounting for nearly
24.5% of all cancer cases and 15.5% of cancer-related deaths
[1]. The mortality rate of BC remains high owing to abnor-
mal cell proliferation and distant metastasis of BC cells [2,

3]. Despite the emergence of multiple combination therapies
for improving the quality of life and overall survival of
patients with BC, a few patients nonetheless experience
recurrence and metastasis. BC is a heterogeneous tumor
with complex molecular alterations [4]. Hence, it is impor-
tant to understand the potential underlying molecular mech-
anisms and investigate potential prognostic and therapeutic
targets.

lncRNAs are associated with a variety of pathological
and physiological processes [5, 6], especially cancers [7–9].
Several lncRNAs can act as tumor suppressor genes or
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oncogenes to influence BC progression [10, 11]. Impor-
tantly, lncRNAs can function as competitive endogenous
RNAs (ceRNAs) that adsorb miRNAs, regulating down-
stream gene expression in BC [12–15]. As a molecular
sponge, lncRNAs adsorb and separate miRNA from target
mRNA, thus affecting mRNA translation. lncRNAs thus
possess considerable potential as biomarkers for tumor diag-
nosis, prognostic evaluation, and targeted treatment formu-
lation [16]. LINC01234, a newly discovered lncRNA, is
located on chromosome 12q24.13. Previous studies have
shown an upregulation of LINC01234 in ovarian cancer
[17], liver cancer [18], and triple-negative breast cancer
(TNBC) [19]. However, both the biological impact and
mechanism of LINC01234 in the pathogenesis of BC are
scarcely known.

miRNAs, belonging to a class of noncoding RNAs, are
single-stranded RNAs with 19–25 nucleotides and are
known to play an important role in cancers [20]. In general,
miRNAs exert their effects via base complementary pairing
with target mRNAs, degrading the corresponding mRNAs,
or suppressing mRNA translation [21]. miRNA is the core
element in the ceRNA network, considered to be a novel
mechanism between RNAs. A low expression of miR-525-
5p has been found in cancers, including lung cancer [22],
thymic carcinoma [23], and BC [24]. Thus, as a potential
tumor suppressor, miR-525-5p is believed to be crucial in
the pathogenesis of multiple types of cancers.

Recently, remarkable progress has been achieved with
the development of high-throughput sequencing technolo-
gies and public databases, which have enabled researchers
to identify tumor-driving genes and the relevant signaling
pathways related to tumor progression [25–27]. In this
study, we screened out LINC01234 based on datasets from
The Cancer Genome Atlas (TCGA) databases. We verified
that LINC01234 expression levels were increased in cancer
tissues and BC cell lines and that upregulation of
LINC01234 was associated with poor prognosis of BC. We
also examined the function of LINC01234 in BC cells and
identified that its suppression could reduce cell proliferation
and promote apoptosis. Furthermore, LINC01234 was found
to function as a ceRNA in accommodating CSDE1 expres-
sion by adsorbable sponging miR-525-5p, thereby suggesting

the possibility of using LINC01234 as one of the potential
biomarkers and targets for BC diagnosis and treatment.

2. Materials and Methods

2.1. Identification of Differentially Expressed lncRNAs. The
TCGA-BRCA lncRNA data were obtained from Genomic
Data Commons (GDC) Data Portal (https://portal.gdc
.cancer.gov/). The data so obtained were normalized using
the rate monotonic algorithm. Differentially expressed
lncRNAs (DElncRNAs) were identified using differential
expression analysis, utilizing the DESeq2 package of R
(The R Foundation for Statistical Computing, Vienna, Aus-
tria). The cutoff criteria applied were p < 0:05 and logFC >
2. Volcano plots and heat maps were constructed using the
“ggplot2” and “pheatmap” packages in R, respectively. The
correlation of gene expression was analyzed using the “cor.t-
est” function. The Kaplan–Meier survival curve for DElncR-
NAs was plotted using the “survival” package in R.

2.2. Prediction of Target Genes. The interaction between
lncRNA and miRNA was analyzed through miRcode
(http://mircode.org), StarBase (http://starbase.sysu.edu.cn/
index.php), and lncBasev2.0 (http://carolina.imis.athena-
innovation.gr/diana_tools/web/index.php?r=lncbasev2%
2Findex-predicted). Moreover, the interaction between
miRNA and mRNA was analyzed utilizing miRDB (http://
mirdb.org), miRTarBase (http://mirtarbase.cuhk.edu.cn),
and TargetScan (http://www.targetscan.org). A Venn dia-
gram was drawn to identify the overlapping target miRNAs
and mRNA.

2.3. Clinical Sample Collection and Analysis. BC and adjacent
normal tissue samples were acquired from 101 patients dur-
ing surgery, prior to their receiving chemotherapy or radio-
therapy at the First Affiliated Hospital of University of South
China, from March 2019 to January 2021. The BC and nor-
mal tissue samples were collected and frozen in liquid nitro-
gen immediately. The study was approved by the Ethics
Committee of the First Affiliated Hospital of University of
South China (No. 2019LL0912001).

Table 1: The sequences of the primers used in quantitative real-time reverse transcription polymerase chain reaction.

Gene Sequence (5′-3′) Product length (bp)

GAPDH.F TGTTCGTCATGGGTGTGAAC 154

GAPDH.R ATGGCATGGACTGTGGTCAT

LINC01234.F TCAGCAACTGCTAACAGCGA 195

LINC01234.R GTGTGACTTCGGAGGGAGTG

CSDE1.F AAACCAGAATGACCCATTGCC 152

CSDE1.R ATTTGTCACGTCGGTCTGTTG

U6.F CTCGCTTCGGCAGCACA 96

U6.R AACGCTTCACGAATTTGCGT

hsa-miR-525-5p.R CTCAACTGGTGTCGTGGA

hsa-miR-525-5p.RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAGAAAGTG

hsa-miR-525-5p.F ACACTCCAGCTGGGCTCCAGAGGGATGCACT
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2.4. Immunohistochemical Analysis. The expression levels of
CSDE1 protein in BC tissues were detected by immunohis-
tochemistry (IHC). Anti-CSDE1 (Abcam, ab201688) was
used for IHC, as per a previously reported method [28].
IHC staining was captured under microscopy, and IHC opti-
cal density scores were calculated to quantify protein expres-
sion [29].

2.5. Cell Culture. Human normal breast epithelial cell line
(MCF-10A, CL-0525) and BC cell lines (MDA-MB-231
(CL-0150), SK-BR-3 (SKBR-3, CL-0211), MCF-7 (CL-
0149), HS-578T (CL-0114), MDA-MB-468 (CL-0290), T-
47D (CL-0228), and BT-474 (CL-0040)) were obtained from
Procell (Wuhan, China); BC cell lines (HCC1806 (CRL-
2335) and BT-474 (HTB-20)) were acquired from ATCC
(Rockville, USA) and cultivated in the recommended media.
All cell lines were subcultured in our laboratory for less than
six months.

2.6. qRT-PCR. The total RNA was isolated by TRIzol (#9109,
TAKARA, Japan) and dissolved in diethyl pyrocarbonate-
treated ddH2O (DEPC, #6079, MACKLIN, Shanghai). Bes-
tar™ qPCR RT Kit (#2220, DBI Bioscience, Ludwigshafen,
German) was utilized for synthesizing cDNA. The expres-
sion of target genes was determined using Bestar™ qPCR
MasterMix (#2043, DBI Bioscience) with a real-time fluores-
cence quantitative polymerase chain reaction (PCR) instru-
ment (Bio-Rad, CFX96, USA). U6 and GAPDH were set as

internal references. The 2-△△Ct method was employed for
the calculation of certain gene expressions. The primers used
are detailed in Table 1.

2.7. Cell Transfection. The synthesis of small-interfering
RNA (si-RNA) targeting LINC01234 (sh-LINC01234, 5′-
AACAUUCAUCUCAGAUUCCUGdTdT-3′) and CSDE1
(sh-CSDE1, 5′-AUAUCUCUUUUACAACAUCACdTdT-
3′), miR-525-5p mimics, miR-525-5p inhibitors, as well as
the overexpressing plasmids of pcDNA3.1-LINC01234,
pcDNA3.0-CSDE1, psi-Check-LINC01234-WT, psi-Check-
LINC01234-MUT, psi-Check-3′UTR-CSDE1-WT, and psi-
Check-3′UTR-CSDE1-MUT was all completed by Synbio
Technologies (Suzhou, China). Cells were plated into six-
well plates overnight (5 × 105/ml, 2ml/well) and transfected
using Lipofectamine™ 3000 reagent (Invitrogen). After
transfection for 48 hours, cells were collected for the subse-
quent experiments. The cell transfection efficiency was
determined using quantitative real-time reverse transcrip-
tion (qRT-PCR).

2.8. CCK-8 Assay. BC cells were inoculated into 96-well
plates (1 × 104/ml, 100μl/well) and transfected for 48 h. Cells
were cultured for the indicated times. A total of 10μl of
CCK-8 solution (Dojindo, Japan) was added to each well.
After 2 hours, the absorbance at 450 nm was measured using
a microplate reader (BioTek, Epoch, USA).
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Figure 1: LINC01234 is increased and correlated with poor prognosis in breast cancer (BC). (a, b) A heat map and volcano plot chart
showing the distribution of the DEG TCGA datasets. Green: downregulated genes; red: upregulated genes. (c) The correlation of gene
expression between tumor and normal groups. (d) The patients with high LINC01234 expression have poor overall survival (OS). (e)
The expression level of LINC01234 using quantitative real-time reverse transcription polymerase chain reaction in BC tissues (n = 101).
∗∗p < 0:01.
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2.9. Colony Formation Assay. Transfected BC cells (800 cells
per well) were seeded into a 35mm petri dish and incubated
in the complete medium for two weeks until visible clones
appeared. After rinsing with phosphate-buffered saline
(PBS), cells were immobilized in 4% paraformaldehyde
(Aladdin, Shanghai, China) for 30min and stained with
10% crystal violet (Aladdin) for 10min. Finally, the clones
were captured and counted under a microscope.

2.10. Cell Apoptosis Assay. The Annexin V-FITC/PI staining
kits (Beyotime, Shanghai, China) were employed to analyze
the extent of cell apoptosis. A single-cell suspension of cells
was created using 0.25% trypsin (Genview, Beijing, China)
and centrifuged at 1000 rpm. After rinsing with PBS, the
cells were resuspended and stained with FITC-labeled
Annexin V (10μl) and PI reagent (5μl) mix. The mixture
was kept in the dark for 10min. Finally, cell apoptosis was
analyzed using a flow cytometer (Becton Dickinson, FACS-
Calibur, USA).

2.11. Terminal Deoxynucleotidyl Transferase Biotin-dUTP
Nick End Labeling. Cell apoptosis was also detected using
terminal deoxynucleotidyl transferase biotin-dUTP nick

end labeling (TUNEL) Apoptosis Assay Kits (C1086, Beyo-
time) in line with the manufacturer’s specifications. In a nut-
shell, the cells were first fixed and permeated. Next, cells
were stained with 50μl TUNEL solution for 45–60min at
room temperature, washed with 250–500μl PBS, and cap-
tured under a fluorescence microscope (OLYMPUS,
CKX41, Japan).

2.12. Western Blot. The total cellular protein was extracted
using radioimmunoprecipitation assay (RIPA) lysis buffer.
The extracted protein concentration was quantified using a
BCA Protein Assay Kit (Servicebio, Wuhan, China). The
protein was separated using SDS-PAGE. Target proteins
were transferred onto the polyvinylidene fluoride mem-
branes. 5% skim milk powder was used to block the trans-
ferred membranes, which were then incubated with anti-
CSDE1 (Abcam, ab201688) and anti-GAPDH (Abcam,
ab181603) primary antibodies at 4°C overnight. After rinsing
with Tris-Buffered Saline with Tween® 20, the membranes
were incubated with secondary antibodies (BOSTER,
BA1056) at 25°C for 1 hour. Finally, target protein signals
were visualized after enhanced chemiluminescence.

2.13. Dual-Luciferase Reporter Assay. The relationships
among LINC01234, miR-525-5p, and CSDE1 were analyzed
using dual-luciferase reporter assay. LINC01234 wild-type
(WT), LINC01234 mutated-type (MUT), CSDE1-WT, and
CSDE1-MUT vectors were all constructed by Synbio Tech-
nologies. After cotransfection for 48h, luciferase activity
was detected using the Dual-Luciferase Reporter Assay Sys-
tem (Promega).

2.14. Fluorescence In Situ Hybridization. The cellular local-
ization of LINC01234 in BC cells was determined using fluo-
rescence in situ hybridization (FISH) assay. Both
LINC01234 (5′-CACATGCTAAGTGGTGGGTGGGGT
GAG-3′) and U6 (5′-AACGCTTCACGAATTTGCGT-3′)
probes were acquired from RiboBio (Guangzhou, China).
Cy3-labeled probes were hybridized with BC cells according
to the explanatory memorandum [30]. The nuclei were
stained with DAPI, and images were captured using a fluo-
rescence microscope (OLYMPUS, CKX41, Japan).

2.15. RNA Immunoprecipitation Assay. RIP was performed
with an EZ-Magna RIP Kit (Millipore, USA) according to
the product manual. The AGO2 antibody was used for
RIP. In brief, 1 × 106 cells were lysed in 1ml lysis buffer con-
taining 1% protease inhibitor and RNase inhibitor on ice for
10min. These cell lysates were centrifuged at 12000 g for
20min at 4°C, and the supernatant was collected. Then,
100μl of supernatant was retained as input control. Follow-
ing this, 500μl of protein A+G beads were incubated with
5μg of IgG or AGO2 antibody (Abcam, ab156870) and
450μl supernatant at 4°C for 12h on a shaking table at
15 rpm/min. The coimmunoprecipitated RNAs were
detected by qRT-PCR.

2.16. RNA Pull-Down Assay. The RNA pull-down assay was
performed as previously reported [31]. Briefly, 200 nM bioti-
nylated miR-525-5p, 100 nM miR-525-5p without biotin

Table 2: The correlation between LINC01234 expression and the
clinical and pathological features of patients with breast cancer.

Clinical
characteristics

Number of
cases

(N = 101)

LINC01234
expression

p
value

High (N =) Low (N =)
Age (years) 0.607

≤50 26 12 14

>50 75 39 36

Gender 0.31

Male 1 0 1

Female 100 51 49

Tumor size (cm) 0.013∗

≤2 50 19 31

>2 51 32 19

Pathologic stage 0.636

Stage I+II 83 41 42

Stage III+IV 18 10 8

Lymph node
metastasis

0.778

Yes 37 18 19

No 64 33 31

ER 0.119

Negative 25 16 9

Positive 76 35 41

PR 0.352

Negative 41 23 18

Positive 60 28 32

HER2 0.613

Negative 28 13 15

Positive 73 38 35
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Figure 2: Inhibition of LINC01234-suppresses BC cell proliferation. (a) LINC01234 expression in breast cancer (BC) cells is notably higher
than that in MCF-10A. (b) Fluorescence in situ hybridization shows that LINC01234 is mainly expressed in the cytoplasm. (c) Quantitative
real-time reverse transcription polymerase chain reaction demonstrates that LINC01234 is successfully inhibited or overexpressed in BC
cells. (d, e) CCK-8 assay verifies that the knockdown of LINC01234 notably suppresses cell growth, while overexpression of LINC01234
promotes it. (f, g) Colony formation assay verifies that knockdown of LINC01234 notably suppresses colony-forming activity and
overexpression of LINC01234 promotes it. ∗∗p < 0:01; ∗∗∗p < 0:001.
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labeling, 100 nM biotinylated antisense of miR-525-5p, and
100nM antisense of miR-525-5p without biotin labeling
(GenePharma) were transfected into MCF-7 cells by Lipo-
fectamine™ 3000 reagent (Invitrogen). After 24h, 1 × 107
cells were collected and lysed in the lysis buffer. Further,
500μl of cell lysate was incubated with 500μl of washed
streptavidin magnetic beads (Life Technologies) for 2 h at
37°C. The beads were washed, and RNA was extracted with
the TRIzol reagent. The coprecipitated RNA was analyzed
using qRT-PCR.

2.17. Statistical Analysis. All data were calculated with
GraphPad Prism software 8 (GraphPad Software, San Diego,
CA, USA) and SPSS 22.0 software (IBM Corp., Armonk, NY,
USA). The data are exhibited as mean ± SD. Student’s t-test
and one-way ANOVA were used for comparisons between
two groups and multiple groups, respectively. Pearson’s
chi-square test was used to analyze correlations. Each exper-
iment was performed at least in triplicate, and p < 0:05 was
considered statistically significant.

3. Results

3.1. LINC01234 Was Upregulated and Correlated with a Poor
Prognosis of BC. The expressed lncRNAs based on TCGA

database were first analyzed, and 3034 DElncRNAs were
identified using the DESeq2 package assuming cutoff values
of logFC > 2 and p < 0:05. These included 2151 upregulated
and 883 downregulated DElncRNAs (Figures 1(a) and
1(b)). The correlation between gene expression in the tumor
and normal groups was analyzed using R software
(Figure 1(c)). Based on bioinformatic analyses, LINC01234
was picked as the candidate gene for further investigation.
Survival analysis to analyze the role of LINC01234 in BC
revealed that patients with high LINC01234 expression had
poorer overall survival (OS) (Figure 1(d)). To explore the
clinicopathological implications of LINC01234, we collected
101 paired BC tissue samples and evaluated the expression
levels of LINC01234 using qRT-PCR. LINC01234 was found
to be increased in BC tissues (Figure 1(e)). Based on the
median value of LINC01234, patients were divided into
low- and high-expression groups. We found that
LINC01234 expression level was positively correlated with
the tumor size of BC (Table 2). Thus, our results indicated
that LINC01234 may contribute to tumorigenesis in BC,
an association that has hitherto remained unexplored.

3.2. LINC01234 Functioned as an Oncogene in BC Cells. To
determine the role of LINC01234 in vivo, we detected
LINC01234 expression levels in eight BC cell lines and
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Figure 3: Inhibition of LINC01234 promotes breast cancer cell apoptosis. (a) Flow cytometry results display that downregulation of
LINC01234 markedly promotes cell apoptosis. Meanwhile, overexpression of LINC01234 shows the opposite effect. (b) Terminal
deoxynucleotidyl transferase biotin-dUTP nick end labeling staining results show that downregulation of LINC01234 markedly promotes
cell apoptosis. Meanwhile, overexpression of LINC01234 shows the opposite effects. ∗∗p < 0:01; ∗∗∗p < 0:001.
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MCF-10A. The LINC01234 expression in BC cells was nota-
bly higher than that in normal cell MCF-10A (Figure 2(a)).
To select the most representative cell lines for the study of
LINC01234’s effects, we chose MDA-MB-468 (with the low-
est LINC01234 expression) and MCF-7 cells (with the high-
est) in the subsequent experiments. Furthermore, FISH
results confirmed that LINC01234 was mainly expressed in
the cytoplasm (Figure 2(b)). We used RNA interference or
overexpression plasmids to change LINC01234 expression
in BC cells. The results of qRT-PCR revealed that
LINC01234 was successfully inhibited or overexpressed in
BC cells (Figure 2(c)). Cell growth assays verified that the
knockdown of LINC01234 notably suppressed cell growth
and colony-forming activity, while the overexpression of
LINC01234 promoted them (Figures 2(d)–2(g)). Flow
cytometry and terminal deoxynucleotidyl transferase
biotin-dUTP nick end labeling (TUNEL) staining demon-

strated that downregulation of LINC01234 markedly pro-
moted cell apoptosis. Meanwhile, overexpression of
LINC01234 showed the opposite effects (Figures 3(a) and
3(b)). All these outcomes suggest that LINC01234 promotes
cell proliferation and inhibits cell apoptosis, functioning as
an oncogene in BC cells.

3.3. LINC01234 Directly Interacted with miR-525-5p as a
Sponge in BC Cells. As we already know, lncRNA distributed
in the cytoplasm can function as sponges, adsorbing miRNA
and liberating the corresponding miRNA-targeted mRNA
transcripts. Accordingly, we predicted the target miRNAs of
LINC01234 using lncBaseV2.0, miRcode, and StarBase. miR-
525-5p was jointly identified as one of the potential target miR-
NAs of LINC01234. First, we found that the levels of miR-525-
5p were decreased in BC tissues (Figure 4(a)) and were nega-
tively correlated with the expression levels of LINC01234
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Figure 4: LINC01234 directly interacts with miR-525-5p as a sponge in breast cancer cells. (a) qRT-PCR results show that miR-525-5p is
downregulated in breast cancer (BC) tissues. (b) miR-525-5p expression levels are negatively correlated with those of LINC01234. (c)
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(Figure 4(b)). Moreover, overexpressed LINC01234 signifi-
cantly attenuatedmiR-525-5p expression, while downregulated
LINC01234 promoted miR-525-5p expression (Figure 4(c)).
According to public databases, the potential binding sites of
LINC01234 are found within the miR-525-5p sequence
(Figure 4(d)). Therefore, we structured the LINC01234 lucifer-
ase reporter containing the putative wild type or mutant type.
Luciferase activity was significantly suppressed on cotransfect-
ing with LINC01234-WT and miR-525-5p mimics in cells
(Figure 4(e)). Furthermore, RNA pull-down results showed
that miR-525-5p could band with LINC01234 (Figure 4(f)).
In addition, we performed RIP experiments to pull down the
complex using AGO2 antibodies and carried out qRT-PCR
for miR-525-5p and LINC01234. The results revealed that
miR-525-5p and LINC01234 were specifically enriched in
the AGO2 antibody-immunoprecipitated complexes
(Figure 4(g)). Consequently, our findings indicated that
LINC01234 could directly bind to miR-525-5p in a structural
and functional manner.

3.4. miR-525-5p Functioned as an Antioncogene in BC Cells.
On qRT-PCR, miR-525-5p was successfully inhibited or
upregulated in BC cells after transfection with miR-525-5p
mimics and inhibitors, respectively (Figure 5(a)). Cell
growth assays verified that the upregulation of miR-525-5p
notably suppressed the growth and colony-forming activities
of the cell, while suppression of miR-525-5p promoted cell
growth and colony-forming activities (Figures 5(b)–5(d)).
Flow cytometry and TUNEL staining revealed that the
upregulation of miR-525-5p dramatically promoted cell apo-
ptosis. Conversely, downregulation of miR-525-5p showed
the opposite effects (Figures 6(a) and 6(b)). These outcomes
implied that miR-525-5p functioned as a tumor suppressor
in BC and was sponged by LINC01234.

3.5. CSDE1 Was a Direct Target of miR-525-5p. To confirm
whether LICN01234 functions as a ceRNA of miR-525-5p
and liberates the expression levels of downstream target
genes, we predicted the potential target mRNA of miR-
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Figure 5: Upregulation of miR-525-5p suppresses breast cancer cell proliferation. (a) Quantitative real-time reverse transcription
polymerase chain reaction shows that miR-525-5p is successfully inhibited or overexpressed in MCF-7 and MDA-MB-468 cells. (b–d)
CCK-8 and colony formation assays verify that overexpression of miR-525-5p notably suppresses cell growth and colony-forming
activity, while suppression of LINC01234 promotes it. ∗∗p < 0:01; ∗∗∗p < 0:001.
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525-5p by employing miRDB, miRTarBase, and TargetScan.
A total of 32 overlapping target mRNA were identified, and
CSDE1 was chosen as the gene potentially downstream of
miR-525-5p (Figure 7(a)). qRT-PCR analyses validated that
CSDE1 was increased and reduced after transfection with
LINC01234 overexpression plasmid and small interference
RNA (siRNA) in BC cells (Figure 7(b)), and CSDE1 expres-
sion was decreased by miR-525-5p mimics and upregulated
by a miR-525-5p inhibitor (Figure 7(c)). Furthermore, we
analyzed CSED1 protein expression in BC and the tumor-
adjacent normal tissues using IHC and found that CSDE1
levels were significantly increased in BC than in normal tis-
sues (Figures 7(d) and 7(e)), and its levels were positively
correlated with LINC01234 expression (Figure 7(f)). The
predicted binding sequences between miR-525-5p and 3′
UTR region of CSDE1 are shown in Figure 7(g). The lucifer-
ase reporter assay revealed that miR-525-5p mimics cotrans-
fected with CSDE1-WT notably reduced the relative
luciferase activity in cells (Figure 7(h)). Furthermore, RNA
pull-down results showed that miR-525-5p could band with
CSDE1 (Figure 7(i)). In addition, RIP and qRT-PCR for
CSDE1 and miR-525-5p revealed that miR-525-5p and
CSDE1 were specifically enriched in the AGO2 antibody
immunoprecipitated complexes (Figure 7(j)). These findings
indicated that miR-525-5p could directly bind with CSDE1.

3.6. CSDE1 Functioned as an Oncogene in BC Cells. We used
siRNA or overexpression plasmids to inhibit or overexpress
CSDE1 in BC cells, respectively (Figures 8(a), 8(b), and S1A).
Cell growth assays verified that the knockdown of CSDE1
notably suppressed cell growth and colony-forming activity,
while overexpression of CSDE1 promoted them (Figures 8(c)
and 8(d)). Flow cytometry and TUNEL staining demon-
strated that downregulation of CSDE1 markedly promoted
cell apoptosis. The overexpression of CSDE1 showed the
opposite effects (Figures 9(a) and 9(b)). All these outcomes
suggested that CSDE1 promoted cell proliferation and inhib-
ited cell apoptosis, thereby functioning as an oncogene in BC
cells.

3.7. LICN01234 Promoted BC Progression by Relieving the
Repression of miR-525-5p on CSDE1. The biological func-
tions of LINC01234 were verified in the above experiments.
However, it was unclear how LINC01234 worked with miR-
525-5p and CSDE1 together. In the rescue experiments,
CSDE1 was significantly decreased by miR-525-5p mimics
and rescued by LINC01234 overexpression (Figures 10(a),
10(b), and S1B). An increase in miR-525-5p inhibited cell
growth and stimulated cell apoptosis, while overexpression
of LINC01234 reversed miR-525-5p mimics-mediated cellu-
lar phenotypes (Figures 10(c)–10(e)). These results implied
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Figure 6: Overexpression of miR-525-5p promotes breast cancer cell apoptosis. (a, b) Flow cytometry and terminal deoxynucleotidyl
transferase biotin-dUTP nick end labeling staining results display that upregulation of miR-525-5p markedly promotes cell apoptosis.
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that LICN01234 competitively combined with miR-525-5p
to relieve the repression of CSDE1, thus propelling BC
progression.

4. Discussion

Breast cancer is a complex and heterogeneous cancer. In
recent years, several lncRNAs have piqued the interest of
researchers and have been demonstrated to play vital func-
tions in BC. However, lncRNAs are massive in number,
making those that have been reported in BC merely the

“the tip of the iceberg.” In this study, we used TCGA data-
base and filtrated out a number of aberrantly expressed
lncRNAs. LINC01234 goaded our interest since it was
upregulated in BC and related to poor prognosis in BC
patients.

LINC01234, located on chromosome 12, plays an active
role in several cancers. Suppression of LINC01234 expres-
sion was found to restrain liver cancer progression via the
mediation of the miR-513a-5p/USP4/TGF-β axis [32].
LINC01234 was also shown to regulate the progression of
clear cell renal cell carcinoma cells by HIF-2a pathways
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[33]. In our study, LINC01234 was highly expressed in 101
pairs of BC patients’ tissues and BC cells and was signifi-
cantly associated with BC tumor size. LINC01234 promoted
BC cell growth and inhibited cell apoptosis. These out-
comes imply that LINC01234 can act as an oncogene to
accelerate BC progression and may be a potential therapeu-
tic target for BC. Besides, LINC01234 markedly accelerated
cell migration and proliferation of MDA-MB-231 cells
in vitro and inhibited neoplasia in vivo [19]. LINC01234
was also shown to promote cell proliferation and tumor
metastasis in triple-negative breast cancer (TNBC) [34].
Here, we paid close attention to the role of LINC01234 in
cell proliferation and found that LINC01234 overexpression
promoted cell growth in vitro. The role of LINC01234 in
cell migration and invasion of BC cells needs to be further
investigated.

Depending on their localization, lncRNAs in the cyto-
plasm bear miRNA-complementary sites as a sponge and
regulate gene expression [35]. In this study, FISH results
showed that LINC01234 was mainly expressed in the cyto-
plasm, suggesting that it functions as a miRNA sponge.
Recent studies showed that LINC01234 promotes cancer
development as a miRNA sponge and can regulate multiple
miRNAs, including miR-27b-5p [17], miR-525-5p [34],
miR-106b [36], miR-193a-5p [37], miR-433 [38], miR-340-
5p and miR-27b-3p [39], miR-1284 [40], miR-637 [41],

miR-140 [42], miR-642a-5p [43], and miR-204-5p [44]. Fur-
thermore, miR-525-5p has been found to act as a potential
tumor suppressor miRNA in various cancers, such as colo-
rectal cancer [45], chordoma [46], lung adenocarcinoma
[47], non-small-cell lung cancer [22], triple-negative breast
cancer [34], and thymoma and thymic carcinoma [23],
among others. However, the role of miR-525-5p in BC
remains scarcely known. Here, we predicted that LICN01234
would have binding sites for miR-525-5p, which has been
reported as an antioncogene in several cancers. Our findings
revealed that LICN01234 and miR-525-5p levels were
inversely correlated in BC samples and confirmed the direct
interaction between LICN01234 and miR-525-5p. We also
observed that miR-525-5p could inhibit cell proliferation
and facilitate cell apoptosis, thereby directly opposing the
effects of LINC01234, further supporting the role of
LINC01234 as an endogenous sponge for miR-525-5p.

Recent studies describe a complex interplay among
lncRNAs, miRNAs, and mRNAs. Abundant lncRNAs, as
ceRNAs or “sponges” of miRNAs, alter the stability and
translation of miRNAs-target-mRNAs and interfere with
signaling pathways [48, 49]. We predicted and verified that
miR-525-5p targeted binding to CSDE1. CSDE1 was signif-
icantly overexpressed in BC cells, where they enhanced cell
growth and inhibited apoptosis. In the rescue experiments,
CSDE1 levels were significantly reduced when miR-525-5p
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was overexpressed but were soon rescued by the addition of
pcDNA-LINC01234, suggesting that LINC01234 counter-
acted the inhibition of miR-525-5p on CSDE1, a phenome-

non that was further confirmed in cellular functional
experiments. All these results indicate that LINC01234 can
be used as a ceRNA to competitively adsorb miR-525-5p,
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Figure 10: LICN01234 promotes breast cancer progression by relieving the repression of miR-525-5p on CSDE1. (a, b) In the rescue
experiments, CSDE1 is significantly decreased by miR-525-5p mimics, which are rescued by LINC01234 overexpression. (c, d)
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thus weakening the inhibition of miR-525-5p on the down-
stream target gene CSDE1, thereby enhancing the oncogenic
effect of CSDE1, which may have profound effects in BC
development.

CSDE1, a conserved RNA binding protein, is also called
upstream of N-Ras (UNR); it has a high capacity for binding
with RNA [50, 51]. It can not only decide the translation ini-
tiation and expression of certain mRNAs but also determine
the stability and abundance of these mRNAs [52]. Besides,
CSDE1 has been recorded to facilitate tumor progression
by driving a posttranscriptional program [50, 53]. miR-212
and miR-132 cluster can hinder thyroid cancer progression
by directly targeting CSDE1 [54]. The above evidence is in
line with our results. We found that LINC01234 had tumor-
promoting effects in BC by attenuating the suppression of
miR-525-5p on CSDE1. Duan et al. analyzed the target genes
of CSDE1 in BC. A total of 826 CSDE1-associated target genes
were mainly associated with ribosomes, transcriptional misre-
gulation, and metabolic pathways [55]. Another investigation
discovered that CSDE1 could regulate the expression of c-
Myc, Rac-1, PTEN, and vimentin in colorectal cancer [56].
Besides, CSDE1 was also verified to have tumor-promoting
effects in melanoma by regulating the translation of vimentin
and Rac-1 [53]. Moreover, Tian et al. [57] revealed that UNR
facilitated the migration of glioma cells by binding to the 3′
UTR of RPL9 and PTEN. These findings imply that CSDE1
participates in cancer cell signaling pathways. We speculate
that LINC01234 may ultimately function via the miR-525-
5p/CSDE1 pathway in BC, given CSDE1-mediated down-
stream complex regulatory networks. Therefore, further stud-
ies into these pathways are warranted to thoroughly
investigate the pathogenesis of BC.

5. Conclusion

Our research indicated that LINC01234 was increased and
correlated with poor clinical outcomes in BC. LINC01234
enhanced cell growth and restrained cell apoptosis in BC.
Moreover, LINC01234 functioned as a ceRNA to increase
CSDE1 expression levels, by sponging miR-525-5p, causing
BC progression. LINC01234 might be used as one of the
potential biomarkers and therapeutic targets in BC.
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