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The process of placental invasion is essential for a successful pregnancy. Leptin is involved in trophoblast invasiveness, and its
dysregulation is connected with a series of diseases, including preeclampsia. However, the knowledge of the precise
mechanisms in leptin-induced trophoblast invasiveness is still limited. According to the present research, transwell assay
suggested that leptin is a dose- and time-dependent regulator in inducing HTR-8/SVneo cell invasion. Western blot analysis
and immunofluorescence staining revealed that leptin-induced MMP9 expression is essential in the invasion process of HTR-8/
SVneo cells. Mechanistically, we demonstrated that leptin activated β-catenin via the crosstalk between the MTA1/WNT and
PI3K/AKT pathways. Besides, we showed that downregulating the key molecules in the signaling pathways by siRNA can
inhibit leptin-induced MMP9 expression and further suppress invasion of HTR-8/SVneo cells. In conclusion, our study
revealed a new regulatory mechanism of leptin-induced HTR-8/SVneo cell invasiveness and will provide novel insights into the
causes and potential therapeutic targets for diseases related to dysregulation of trophoblast invasion in the future.

1. Introduction

At the early stage of pregnancy, the invasion of trophoblast
cells into the uterus is essential for implantation and subse-
quent placental development [1]. The invasion of extravil-
lous trophoblasts includes recognition, adhesion, matrix
degradation, penetration of basal membrane, and invasion
in uterine wall, which is regulated by intricate and compre-
hensive factors [1]. If the invasion is insufficient, a series of
pregnancy complications may occur, such as growth retar-
dation, miscarriage, or preeclampsia [2–4]. Besides, it can
cause placenta accreta while the invasion into the myome-
trium is excessive [5]. Therefore, the invasion process must
be precisely regulated. However, previous studies did not
well identify the exact mechanisms of placenta invasion. As

a result, the intensive study targeting to the molecular mech-
anisms of placental invasion is necessary to the diagnosis
and therapy in clinic.

Discovered at the end of 1994, Leptin is a 16 kDa poly-
peptide hormone containing 167 amino acids, which is pro-
duced by the obese gene [6]. Studies have reported that
leptin not only regulates appetite and energy expenditure
at the hypothalamic level but also plays an important role
in inflammation, reproduction, and angiogenesis through
transmembrane leptin receptor (leptin-R) [7–10]. During
pregnancy, leptin is respectively synthesized by adipose tis-
sue and the placenta, leading to more elevated levels of circu-
lating leptin than in prepregnancy state [11–13]. Hence, the
dysregulation of leptin is liable to inducing the reproductive
and gestating disorders. In recent years, accumulating
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evidence implied the role of leptin in the regulation of tro-
phoblast invasiveness [14–16]. However, how the leptin
affects cytotrophoblast invasion is still not clear.

As a kind of calcium-dependent, zinc-containing endo-
peptidases, matrix metalloproteinases (MMPs) are essential
to the degradation of the extracellular matrix (ECM) and
successful implantation [17]. Studies have shown that
MMPs are important to placental development, inflamma-
tion, angiogenesis, tumor invasion, and metastasis in the
physiological and pathophysiological processes [18–20]. In
addition, MMP9 is crucial for trophoblast invasion [21,
22], and aberrant expression of MMP9 in extravillous tro-
phoblasts is linked to preeclampsia [23]. Furthermore, leptin
was also reported to participate in the invasive processes by
modulating the expression of MMPs [24]. Thus, studying
the mechanism regulating the leptin-induced MMP9 expres-
sion will provide novel insights into the underlying matrix
degradation and extravillous trophoblast invasion in the
future.

Acting as a nuclear transcriptional regulator, β-catenin
regulates proliferation, migration, and differentiation. And
there have been studies demonstrated that β-catenin can
promote the trophoblast hyperplasia and invasion [25, 26].
In humans, there are three WNT signaling pathways, includ-
ing canonical WNT/β-catenin pathway, noncanonical
WNT/Ca2+ pathway, and noncanonical planar cell polarity
pathway. Among them, WNT/β-catenin is the most widely
studied, and its aberrant activation has been reported in a
variety of diseases, including invasion [27–30]. MTA1, the
first discovered number of metastasis-associated gene
(MTA) family, acts as a cancer progression-related genes in
the invasion and metastasis of breast, ovarian, gastrointesti-
nal, and colorectal cancer [31, 32]. However, whether MTA1
could mediate WNT/β-catenin signaling in trophoblast cells
remains largely unknown.

Phosphatidylinositol 3-kinase (PI3K) is a kind of enzyme
that phosphorylates the 3′-OH of the inositol ring of phos-
phatidylinositol [33]. When it is activated, it can induce
the production of phosphatidylinositol 3,4,5-triphosphate
(PIP3), leading to activation of the serine/threonine kinases
AKT. PI3K/AKT pathway is reported as the regulator of
numerous cellular functions including proliferation, inva-
sion, metabolism, and angiogenesis [33]. However, whether
PI3K/AKT pathways play a role in trophoblast cell invasion
and whether there exists a crosstalk between WNT/β-
catenin and PI3K/AKT pathways in trophoblast cell inva-
sion need to be elucidated.

Taken together, our study manages to investigate the
effect of leptin on HTR-8/SVneo cell invasion and the poten-
tial underlying mechanisms.

2. Materials and methods

2.1. Reagent and Cell Culture. Recombinant human leptin
(Solarbio, China) was dissolved in ddH2O to 100μg/ml.
HTR-8/SVneo cells were cultured in RPMI 1640 Medium
(Gibco, USA) supplemented with 10% fetal bovine serum
(FBS) (Gibco, USA) and 1% penicillin-streptomycin in a

humidified atmosphere containing 5% CO2 at 37
°C and then

treated with or without leptin.

2.2. Cell Transfection. The MTA1 siRNA, AKT1 siRNA,
WNT1 siRNA, and β-catenin siRNA were synthesized by
Genomeditech (Shanghai, China). And transfection was per-
formed according to the manufacturer’s protocols. The tar-
get sequences were designed as the following: MTA1
siRNA: 5′-GAACAUCUACGACAUCUCC-3′; AKT1
siRNA: 5′-GACGGGCACAUUAAGAUCA-3′; WNT1
siRNA: 5′-GGUUCCAUCGAAUCCU-

GCA-3′; β-catenin: 5′-CCUUCACUAUGGACUACCA-
3′; MMP9: 5′-CACGCACGACGUCUUCCAGUA-3′; nega-
tive control siRNA: 5′-UUCUCCGAACGUGUCACGU-3′.
The transfection was performed by using Lipofectamine
3000 reagent (Thermo Fisher Scientific, USA).

2.3. Transwell Assay. Transwell Matrigel invasion assay was
used to measure the capacity of HTR-8/SVneo cell invasion.
Briefly, dilute Matrigel (1 : 4) (BD Biosciences, USA) in
serum-free RPMI 1640 medium and put 50μl of the diluted
Matrigel into the upper chamber of 24-well transwell inserts
(8μm pores; BD Biosciences) then incubate the transwell at
37°C 3-4 h for gelling. Cells suspended in 100μl serum-free
RPMI 1640 medium were added to the upper chamber.
600μl RPMI 1640 medium containing 10% FBS was added
into the lower chamber. After being treated with different
interventions for intended time at 37°C, cells were fixed with
4% paraformaldehyde and penetrated with 0.3% Triton X-
100. After removing noninvading cells, dying with hematox-
ylin, the cells were counted with a light microscope (200x,
magnification).

2.4. Wound-Healing Assay. HTR-8/SVneo cells were seeded
into 6-well plates, and when confluence reached to 90%, cells
were scratched vertically with the same width. Then, wash
away the scratched cells before putting the rest into the incu-
bator for further culture. Photographs of five random fields
in each chamber were obtained at 0 h and 24 h after scratch.
And the percentage of wound closure was analyzed by calcu-
lating ðA − BÞ/A × 100%. A and B represent the scratch
width after cell migration at 0 and 24 h, respectively.

2.5. RNA Extraction and Quantitative Real-Time PCR (qRT-
PCR) Analysis. Total RNA was extracted from HTR-8/
SVneo cells using TRIzol reagent (Takara, Japan), and
cDNA was synthesized using PrimeScript RT Reagent Kit
(Takara, Japan). According to the manufacturer’s protocol,
the qPCR reaction was performed on LightCycler® 480
Real-Time PCR System (Roche, USA). The sequences of
the primers used in qRT-PCR are listed in Table 1. β-Actin
was used as the internal control, and the relative expression
of target genes were calculated using the 2−ΔΔCT method.

2.6. Western Blot Analysis. HTR-8/SVneo cells grown to
confluency were washed with ice-cold PBS three times and
lysed in RIPA buffer (Beyotime Biotechnology, China) con-
taining proteinase inhibitors and phosphatase inhibitors
(Solarbio, China). After being denatured, equal protein
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(about 20μg) was separated using SDS-PAGE and trans-
ferred to PVDF membranes (Millipore, USA). The mem-
branes were then blocked with 5% milk or BSA for 2 h at
room temperature and incubated with primary antibodies
overnight at 4°C. Following incubation with the secondary
antibody at room temperature for 1 h, the level of the pro-
teins was quantified using ECL reagent (MilliporeSigma,
USA) and imaged by the Amersham Imager 600 (GE,
USA). β-Actin was used as the control of total proteins.
Nuclear protein was extracted with a Nuclear and Cytoplas-
mic Extraction Kit (CW0199, CoWin BioSciences, China),
and histone 3 was used as the control of nuclear proteins.
The following primary antibodies were used: MMP9
(ab76003), MTA1 (ab71153), WNT1 (ab15251), AKT
(ab179463), GSK3β (ab32391), β-catenin (ab32572), histone
3 (ab1791), β-actin (ab6276) (Abcam, USA); p-AKT
(Ser473) (#4060), p-GSK3β (Ser9) (#9322) (Cell Signaling
Technology, USA).

2.7. Immunofluorescence Staining. HTR-8/SVneo cells were
seeded in the 6-well chamber slides followed by different
interventions. The treated cells were fixed with 4% parafor-
maldehyde, penetrated with 0.1% Triton X-100, blocked
with 5% BSA for 30min at room temperature, and then
incubated with primary antibody at 4°C overnight. After
washing with PBS for three times, cells were dyed with
DyLight 594-conjugated IgG (ab150080, Abcam, USA) for
1 h at 37°C under dark conditions. Next, cells were washed
with PBS in triplicate, followed by incubation with DAPI
for 10min. Finally, cells were observed under a fluorescence
microscope (Olympus, Japan).

2.8. Statistical Analysis. Data analysis was performed with
GraphPad Prism 8 and Adobe Photoshop. The experimental
results were presented as mean ± SD. Differences between
the two groups were analyzed by Student’s t-test while dif-

ferences among multiple groups were analyzed by one-way
ANOVA. P < 0:05 was considered a statistically significant
difference. All experiments were conducted at least in
triplicate.

3. Results

3.1. Leptin Exposure Induces HTR-8/SVneo Cell Invasion.
Previous studies have shown that leptin is involved in the
cytotrophoblast invasion. To confirm whether leptin stimu-
lation induced the invasion of HTR-8/SVneo cells, we
divided the cells into two groups. One was treated with exog-
enous leptin (0, 50, 100, 200, and 400 ng/ml) for 24h; the
other was treated for 0 h, 12 h, 24 h, and 36 h with 200 ng/
ml leptin. To detect the invasiveness of HTR-8/SVneo cells,
both of the groups were performed under a transwell assay,
and the results revealed that leptin can increase the HTR-
8/SVneo cell invasion in a dose-dependent (Figure 1(a))
and time-dependent (Figure 1(b)) manner.

3.2. Leptin Induces HTR-8/SVneo Cell Invasion by Promoting
MMP9 Expression. Considering that MMP9 is crucial for
trophoblast invasion, we explored the function of MMP9
in the process of leptin-induced invasion in HTR-8/SVneo
cells. As shown in Figures 2(a) and 2(b), HTR-8/SVneo cells
were incubated with (0, 50, 100, and 200ng/ml) leptin for
24 h, and Western blot analysis and immunofluorescence
staining demonstrated that leptin stimulation promoted
MMP9 expression in HTR-8/SVneo cells. Meanwhile, with
the increase of leptin concentration, the expression level of
MMP9 is also enhanced. Subsequently, we silenced MMP9
with siRNA and confirmed the knockdown efficiencies with
Western blot analysis and qRT-PCR (Figure 2(c)). By per-
forming transwell assay and wound-healing assay, we
observed that knockdown of MMP9 significantly alleviated
leptin-induced invasion (Figures 2(d) and 2(e)), indicating
that leptin induces HTR-8/SVneo cell invasion by promot-
ing MMP9 expression.

3.3. Leptin Induced β-Catenin Activation in HTR-8/SVneo
Cells. To clarify the role of β-catenin in leptin-induced
HTR-8/SVneo cell invasion, we detected the level of β-
catenin with the stimulation of leptin. Firstly, treating
HTR-8/SVneo cells with leptin (200 ng/ml) for 24 h, and
the following Western blot showed that leptin increased
the protein levels of nuclear β-catenin (Figure 3(a)). Besides,
we administrated leptin (0, 50, 100, and 200ng/ml) in HTR-
8/SVneo cells for 24h, and immunofluorescence staining
indicated that leptin promoted the nuclear translocation of
β-catenin in a dose-dependent manner, manifesting consis-
tent result with Western blot analysis (Figure 3(b)). Collec-
tively, these data suggested that leptin induced β-catenin
activation.

3.4. Leptin Mediates β-Catenin Activation through the
Crosstalk between MTA1/WNT and PI3K/AKT Pathways in
HTR-8/SVneo Cells. It is known that β-catenin is the pivotal
molecule of WNT/β-catenin signaling pathway. Thus, we
detected whether MTA1/WNT signaling pathway is
involved in β-catenin activation in HTR-8/SVneo cells. To

Table 1: The sequences of the primers used in qRT-PCR.

Name Sequence

MTA1
F 5′-TGGAGAACCCGGAAATGGTG-3′
R 5′-TCCAGGTAGGACTTGAGCGA-3′

WNT1
F 5′-CGATGGTGGGGTATTGTGAA-3′
R 5′-GGAACTGCCACTTGCACTC-3′

AKT1
F 5′-GGACAAGGACGGGCACATTA-3′
R 5′-CGACCGCACATCATCTCGTA-3′

β-Catenin
F 5′-GCAGCGACTAAGCAGGAAGG-3′
R 5′-CTGTCACCAGCACGAAGGAC-3′

MMP9
F 5′-TTCAGGGAGACGCCCATTTC-3′
R 5′-AACCGAGTTGGAACCACGAC-3′

β-Actin
F 5′-GAAGAGCTACGAGCTGCCTGA-3’
R 5′-CAGACAGCACTGTGTTGGCG-3′
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address this question, we conducted Western blot analysis to
detect the expression of MTA1, WNT1, and GSK3β in HTR-
8/SVneo cells treated with 200ng/ml leptin for 24h. As
shown in Figure 4(a), leptin exposure significantly improved

the protein level of MTA1, WNT1, and p-GSK3β (Ser9)
when compared with the control. Then, we silenced the
expression of MTA1 and WNT1 in HTR-8/SVneo cells
using MTA1 siRNA and WNT1 siRNA, respectively. The
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Figure 1: Leptin exposure induces HTR-8/SVneo cell invasion. (a) HTR-8/SVneo cells were treated with exogenous leptin (0, 50, 100, 200,
and 400 ng/ml) for 24 h, and invasive potential was measured by transwell assay. Scale bar = 2mm. ∗P < 0:05 vs. leptin (0 ng/ml), ∗∗P < 0:05
vs. leptin (50 ng/ml), and ∗∗∗P < 0:01 vs. leptin (100 ng/ml); ns: no significance. (b) HTR-8/SVneo cells were treated for 0 h, 12 h, 24 h, and
36 h with 200 ng/ml leptin, and transwell assay was conducted to analyze their invasive potential. Scale bar = 2mm. ∗P < 0:05 vs. leptin (0 h)
and ∗∗P < 0:01 vs. leptin (12 h); ns: no significance. Data are shown as mean ± SD. All experiments were performed in triplicate.
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Figure 2: Continued.
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knockdown efficiencies were confirmed by Western blot
analysis and qRT-PCR (Figure 4(b)). Next, we conducted
Western blot analysis to examine their downstream effec-
tors. Results showed that MTA1 knockdown inhibited
leptin-induced WNT1, p-GSK3β (Ser9), and nuclear β-
catenin expression (Figure 4(c)) while WNT1 knockdown
inhibited leptin-induced p-GSK3β (Ser9) and nuclear β-
catenin expression (Figure 4(d)), suggesting that MTA1
locates upstream of WNT1 and WNT1 locates upstream of

GSK3β. Interestingly, suppressing MTA1 or WNT1 levels
did not totally inhibit the level of leptin-induced p-GSK3β
(Ser9) and nuclear β-catenin, suggesting the presence of an
MTA1/WNT1-independent mechanism to regulate leptin-
induced p-GSK3β (Ser9) and β-catenin. Recently, there has
been reported a “crosstalk” between the WNT/β-catenin
and PI3K/AKT pathways by GSK3β. Considering the role
of PI3K/AKT signaling pathway in invasion, we further
detected the effect of PI3K/AKT in regulating leptin-
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Figure 2: Leptin induces HTR-8/SVneo cell invasion by promoting MMP9 expression. (a) HTR-8/SVneo cells were treated with exogenous
leptin (0, 50, 100, and 200 ng/ml) for 24 h, and MMP9 protein levels were measured by Western blot analysis. Data are shown asmean ± SD;
∗P < 0:01 vs. leptin (0 ng/ml), ∗∗P < 0:01 vs. leptin (50 ng/ml), and ∗∗∗P < 0:01 vs. leptin (100 ng/ml). (b) Representative
immunofluorescence images of MMP9 in HTR-8/SVneo cells treated with exogenous leptin (0, 50, 100, and 200 ng/ml) for 24 h. Scale bar
= 50μm. (c) The knockdown efficiency of MMP9 was analyzed by Western blot analysis and qRT-PCR. ∗P < 0:05 vs. control. (d) The
results of transwell assay in HTR-8/SVneo cells treated with MMP9 siRNA or scramble siRNA (Scr) in the presence or absence of
200 ng/ml leptin for 24 h. Scale bar = 2mm. Data are shown as mean ± SD; ∗P < 0:01 vs. control, #P < 0:01 vs. leptin. (e) Results from the
wound-healing assay are expressed as the percentage of wound closure. Magnification, 100x. Data are shown as mean ± SD; ∗P < 0:01 vs.
control, #P < 0:01 vs. leptin. All experiments were performed in triplicate.
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induced p-GSK3β (Ser9) and activation of β-catenin in
HTR-8/SVneo cells. As shown in Figure 4(a), leptin expo-
sure increased the protein level of p-AKT (Ser473), while
inhibition of AKT by AKT siRNA (Figure 4(e)) reduced
leptin-mediated increase in p-GSK3β (Ser9) and nuclear β-
catenin (Figure 4(f)). In a word, our study suggested both
MTA1/WNT and PI3K/AKT pathways were involved in
the regulation of leptin-mediated activation of β-catenin.

3.5. MTA1/WNT and PI3K/AKT Pathways Participated in
Leptin-Induced HT-R8/SVneo Cell Invasion through
Promoting MMP9 Expression. Further, we studied whether
MTA1/WNT/GSK3β/β-catenin and PI3K/AKT/GSK3β/β-
catenin pathways were involved in the expression of
MMP9 and the invasion of leptin-induced HTR-8/SVneo
cells. Firstly, we constructed β-catenin siRNA and verified
the knockdown efficiency (Figure 4(e)). By performing
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Figure 3: Leptin induced β-catenin activation in HTR-8/SVneo cells. (a) HTR-8/SVneo cells were treated with exogenous leptin (200 ng/ml)
for 24 h, and the expression of β-catenin from nuclear and cytoplasmic fractions was detected by Western blot. Histone 3 was used as a
nuclear marker and β-actin as a cytoplasmic marker. The relative β-catenin nuclear-to-cytoplasmic (N/C) ratio was calculated with
nuclear β-catenin (normalized to histone 3) to cytoplasmic β-catenin (normalized to β-actin). Data are shown as mean ± SD; ∗P < 0:01
vs. leptin (0 ng/ml). (b) Representative immunofluorescence images of β-catenin in HTR-8/SVneo cells treated with exogenous leptin (0,
50, 100, and 200 ng/ml) for 24 h. Scale bar = 50μm. All experiments were performed in triplicate.
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Figure 4: Continued.
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Western blot and immunofluorescence staining, we
observed that the silence of β-catenin reduced the protein
levels of MMP9 (Figure 5(a)). In addition, compared with
control cells, the expression of MMP9 was also reduced in

MTA1 siRNA, AKT siRNA, and WNT1 siRNA cells treated
with leptin (Figure 5(b)), indicating that MTA1, AKT,
WNT1, and β-catenin are involved in the regulation of
MMP9. Subsequently, the transwell assay and wound-
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Figure 4: Leptin mediates β-catenin activation through the crosstalk between MTA1/WNT and PI3K/AKT pathways in HTR-8/SVneo cells.
(a) HTR-8/SVneo cells were treated with exogenous leptin (0 and 200 ng/ml) for 24 h, and MTA1, WNT1, p-GSK3β (Ser9), and p-AKT
(Ser473) levels were detected by Western blot. Data are shown as mean ± SD; ∗P < 0:01 vs. leptin (0 ng/ml). (b) The knockdown
efficiencies of MTA1 and WNT1 were analyzed by Western blot analysis and qRT-PCR. ∗P < 0:05 vs. control. (c) HTR-8/SVneo cells
were transfected with MTA1 siRNA or scramble siRNA (Scr) in the presence or absence of 200 ng/ml leptin for 24 h, and Western blot
analysis was performed to detect the expression of MTA1, WNT1, p-GSK3β (Ser9), and nuclear β-catenin. ∗P < 0:01 vs. control and
#P < 0:01 vs. leptin. (d) HTR-8/SVneo cells were transfected with WNT1 siRNA or scramble siRNA (Scr) in the presence or absence of
200 ng/ml leptin for 24 h, and Western blot analysis was performed to detect the expression of WNT1, p-GSK3β (Ser9), and nuclear β-
catenin. ∗P < 0:01 vs. control and #P < 0:01 vs. leptin. (e) The knockdown efficiencies of AKT and β-catenin were analyzed by Western
blot analysis and qRT-PCR. ∗P < 0:05 vs. control. (f) HTR-8/SVneo cells were transfected with AKT siRNA or scramble siRNA (Scr) in
the presence or absence of 200 ng/ml leptin for 24 h, and Western blot analysis was performed to detect the expression of AKT, p-
GSK3β (Ser9), and nuclear β-catenin. ∗P < 0:01 vs. control and #P < 0:01 vs. leptin. All experiments were performed in triplicate.
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healing assay were carried out, and we observed that knock-
down of AKT, MTA1, WNT1, or β-catenin significantly
impaired the invasion ability of leptin-induced HTR-8/
SVneo cells (Figures 5(c) and 5(d)). Given our results, we
conclude that MTA1/WNT/GSK3β/β-catenin and PI3K/
AKT/GSK3β/β-catenin pathways promote the expression
of MMP9 and play an indispensable role in leptin-induced
cell invasion.

4. Discussion

Studies have showed that the establishment and mainte-
nance of biological pregnancy required moderate invasion
of trophoblast cells into the endometrial. Leptin, which is
elevated in pregnancy, is indispensable in the procession of
trophoblast invasiveness [16, 34], and leptin-R was detected
to be strongly expressed in the distal extravillous
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Figure 5: MTA1/WNT and PI3K/AKT pathways participated in leptin-induced HTR-8/SVneo cell invasion through promoting MMP9
expression. (a) Western blot and immunofluorescence staining of MMP9 levels in HTR-8/SVneo cells treated with β-catenin siRNA or
scramble siRNA (Scr) in the absence or in the presence of 200 ng/ml leptin for 24 h. Scale bar = 50μm. (b) Western blot and
immunofluorescence staining of MMP9 levels in HTR-8/SVneo cells treated with MTA1, AKT, and WNT1 in the absence or in the
presence of 200 ng/ml leptin for 24 h. Scale bar = 50μm. (c) The results of transwell assay in HTR-8/SVneo cells treated with MTA1
siRNA, AKT siRNA, WNT1 siRNA, β-catenin siRNA, or scramble siRNA (Scr) in the absence or in the presence of 200 ng/ml leptin for
24 h. Scale bar = 2mm. Data are shown as mean ± SD; ∗P < 0:01 vs. Control and #P < 0:01 vs. leptin. (d) Results from the wound-healing
assay are expressed as the percentage of wound closure. Magnification, 100x. Data are shown as mean ± SD; ∗P < 0:01 vs. control and
#P < 0:01 vs. leptin. All experiments were performed in triplicate.
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cytotrophoblastic cells of cell columns [35]. Consistent with
previous studies, the transwell assay showed the close con-
nection between the leptin and trophoblast invasiveness
and further revealed that leptin can promote the invasion
of HTR-8/SVneo cells in a dose- and time-dependent
manner.

The process of trophoblastic cell invasion involves
matrix metalloproteinases (MMPs) to mediate the degrada-
tion of extracellular matrix (ECM) [36, 37]. A previous study
reported that inhibited expression of MMP9 can decrease
the invasive capability of trophoblasts [38]. Additionally, at
the embryo implantation site by human and mouse tropho-
blasts, the high expression of MMP9 has also been indicated
to be involved in the invasive behavior [39]. On the contrary,
the deficiency of MMP9 in mouse embryos brings about fail-
ure in trophoblast differentiation and invasion shortly after
implantation [39], implying that MMP9 is an important fac-
tor in trophoblast invasion. As it is mentioned above, we
observed that leptin stimulation can promote the expression
of MMP9 in a concentration/time-dependent manner and
identify MMP9 as the modulator to the proinvasion effect
of leptin on HTR-8/SVneo cells.

Increasing evidences have shown that β-catenin could
enhance the invasion of trophoblast, while inhibited β-
catenin could damage the function of trophoblast [40, 41].
In the present study, Western blot analysis and immunoflu-
orescence staining revealed that the nuclear protein expres-
sion of β-catenin in leptin-induced HTR-8/SVneo cells was
statistically higher than the control group, proving that lep-
tin may induce the invasion of HTR-8/SVneo cells via pro-
moting the nuclear translocation of β-catenin.

Besides, researches demonstrated that the level of β-
catenin is the core molecule to the activation of WNT/β-
catenin signaling pathway [28]. With the absence of WNT,
cytoplasmic β-catenin is phosphorylated by a multiprotein
destruction complex which is composed of glycogen syn-
thase kinase 3β (GSK3β), casein kinase 1 (CK1), tumor sup-
pressor adenomatous polyposis coli (APC) gene product,
and scaffolding protein Axin, leading to ubiquitination and
subsequent degradation by the proteasomal system [42].
Instead, when in the presence of a WNT ligand, binding of
WNT to the Frizzled receptor inhibits the multiprotein
destruction complex and then prevents it from phosphory-
lating β-catenin. Thus, β-catenin accumulates in the cyto-
plasm and travels to the nucleus to regulate transcription
of target genes [43]. A recent study has demonstrated that
MTA1 is expressed in human trophoblast cells at a rather
high level [32], revealing that MTA1 has a potential role in
normal human trophoblast cell. In this study, we observed
a significant increase of MTA1, WNT1, and p-GSK3β
(Ser9) in leptin-induced HTR-8/SVneo cells and found a sig-
nificant repression of WNT1, p-GSK3β (Ser9), and nuclear
β-catenin when knocking down MTA1 by siRNA, suggest-
ing that MTA1 may mediate WNT/β-catenin signaling in
HTR-8/SVneo cells. Intriguingly, silencing MTA1 or
WNT1 did not totally inhibit the expression of p-GSK3β
(Ser9) and nuclear β-catenin in leptin-treated HTR-8/SVneo
cells. Thus, we speculate that there may be other MTA1/

WNT1-independent mechanisms to regulate leptin-
induced p-GSK3β (Ser9) and nuclear β-catenin.

PI3K/AKT pathway, another important pathway to
mediate invasion [44–46], has been described to be activated
by leptin in the placenta [47, 48]. Generally, activated AKT,
which is phosphorylated at the Ser473 site, induces the inac-
tivation of GSK3β through phosphorylating GSK-3β at Ser9,
thereby inhibiting the degradation of β-catenin, leading to
the accumulation of β-catenin in the cytoplasm [49, 50]. In
our present study, we demonstrated the crosstalk between
the WNT/β-catenin and PI3K/AKT pathway via GSK3β in
HTR-8/SVneo cells. By performing Western blot, we
observed a significant increase of p-AKT (Ser473) in
leptin-induced HTR-8/SVneo cells, and inhibition of AKT
reduced the expression level of p-GSK3β (Ser9) and nuclear
β-catenin. Besides, we revealed that MTA1/WNT/GSK3β/β-
catenin and PI3K/AKT/GSK3β/β-catenin pathways pro-
moted the expression of MMP9 and augmented leptin-
induced cell invasion by conducting loss-of-function analy-
sis, enriching the exploration of cell invasion.

5. Conclusions

In summary, our study discovered a link between the leptin
and MMP9 in leptin-induced HTR-8/SVneo cell invasion
and illuminated a potential mechanism that leptin promoted
MMP9 upregulation via the crosstalk between MTA1/WNT
and PI3K/AKT pathways (Figure 6), which will provide a
new therapeutic target for the clinical prevention and treat-
ment of trophoblast invasion in the future.
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