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Nonalcoholic steatohepatitis (NASH), a progression of nonalcoholic fatty liver disease (NAFLD), is a clinical syndrome
characterized by liver steatosis, inflammation, and hepatocellular damage. Ganlu powder (GLP) is a classic traditional Chinese
medicine prescription that has shown favorable treatment effects on NASH. However, the underlying therapeutic mechanisms
are still poorly understood. This study is aimed at exploring the potential mechanism of GLP in the treatment of NASH via
network pharmacology and molecular docking. PubMed and CNKI databases were used to identify the components of GLP.
Swiss and STITCH databases were employed to obtain corresponding drug targets. NASH targets were adopted from the
Therapeutic Target Database (TTD), DisGeNET, DrugBank, GeneCards, and MalaCards databases. Cytoscape software was
utilized to construct “drug-ingredient-target-disease” networks and the protein-protein interaction (PPI) network of GLP in
NASH. AKT1 was identified as the key target. The GO functional enrichment analysis revealed that GLP might treat NASH by
modulating the inflammatory response and regulating phosphatidylinositol 3-kinase signaling. The KEGG analysis showed that
GLP might treat NASH by regulating the tumor necrosis factor (TNF) signal pathway by affecting the role of AKT1.
According to the network pharmacology results, a virtual docking of active compounds with AKT1 was carried out, and the
results indicated that the 7 components, berberine, epiberberine, jatrorrhizine, coptisine, palmatine, evodiamine, and
rutecarpine, can bind stably with AKT1 and have higher binding energy than AKT1 inhibitors. The overall study findings
suggest that GLP may treat NASH by regulating AKT1.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is one of the
most common chronic liver diseases in the world [1]. It
is a chronic metabolic disease caused by genetic and envi-
ronmental factors and a hepatic presentation of metabolic
syndrome. According to statistics, NAFLD is affecting
approximately 20%-30% of the world population, which
has become an increasingly serious public health problem
[2, 3]. Nonalcoholic steatohepatitis (NASH), a severe form
of NAFLD, is characterized by hepatic steatosis, inflamma-

tion, and hepatocyte injury. NASH can progress to cirrho-
sis and liver cancer and lead to poor clinical consequences
[4, 5]. It was estimated that around 20% of NAFLD
patients developed NASH in 10-15 years [6], and this rate
is expected to rise to 27% in 2030, with NASH-associated
all-cause mortality rising to up to 40% [7, 8]. Changes in
lifestyle, such as regular exercise and developing healthy
dietary habits, are primary strategies for managing NASH
[9]. Notwithstanding this, it is often challenging for NASH
patients to maintain a healthy lifestyle as it is often diffi-
cult for them to change their established living habits
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and the health benefits from lifestyle modifications often
take a long time to emerge [10]. More importantly, life-
style changes are frequently insufficient to improve
patients’ conditions, and pharmacological treatment is
therefore needed.

Currently, there are no drugs approved for the treatment
of NASH by the U.S. Food and Drug Administration (FDA).
NASH is not unifactorial but a common multifactorial con-
dition; thus, the effect of treatment for a single target is sub-
optimal [11]. Traditional Chinese medicine (TCM), which
has been used in China for more than 2000 years, possesses
the advantages of multicomponent, multitarget, and multi-
pathway and thus has a great potential for improving hepatic
steatosis and reducing inflammation [12, 13]. Ganlu powder
(GLP), also known as Ganlu san or Coptis-Evodia herb cou-
ple, was a classic TCM formula initially recorded in Sheng ji
zong lu and composed of two herbs, namely Coptidis Rhi-
zoma and Evodiae Fructus, which have been mainly used
for the treatment of gastrointestinal diseases including diar-
rhea, dysentery, and other inflammatory diseases. Pharma-
cological studies showed that GLP can lower blood lipids,
improve inflammation, and regulate cholesterol metabolism.
Zhang et al. [14] found that GLP is also effective for treating
NASH. It can effectively improve the symptoms of NAFLD
patients, reduce liver inflammation, improve liver steatosis,
regulate glucose and lipid metabolism, and lower body
weight and waist circumference of obese individuals, with-
out raising apparent adverse reactions.

As with many other TCMs, the underlying mechanisms
of GLP in treating NASH remain poorly understood. The
nature of TCM makes it difficult for traditional methods to
fully understand how these herbs with multiple active ingre-
dients exert their synergistic biological effects through multi-
ple targets and pathways in human beings [15, 16]. Network
pharmacology is an emerging discipline proposed by profes-
sor Hopkins in 2007 [17]. This approach breaks the previous
concept of a single ingredient/single target/disease and can
thus be used as a useful tool in the studies of the “multicom-
ponent, multitarget, and multibiological regulation function
synergy” model of Chinese herbs [18, 19]. In this study, we
studied the potential targets of GLP for NASH using net-
work pharmacology and used the maximum degree value
to identify the core targets in the gene network that indicate
the role of the nodes in network pharmacology. DAVID
database was used for enrichment analysis to determine
the Gene Ontology and KEGG pathways that involved
GLP. The results of network pharmacology were validated
by virtual molecular docking, a computational chemistry
technique based on the known ligand and receptor structure,
used to simulate the binding interactions of bioactive com-
ponents with core targets [20]. These analyses were able to
provide valuable insight in understanding the molecular
mechanisms of GLP in the treatment of NASH.

2. Materials and Methods

2.1. Bioactive Compounds and Target Fishing. Two data-
bases, PubMed (https://pubmed.ncbi.nlm.nih.gov/) and
CNKI (https://www.cnki.net/), were utilized for bioactive

compounds screening. The chemical structure of the compo-
nents was drawn by ChemDraw 15.0. Swiss ADME was used
to predict the drug-like properties and gastrointestinal
absorption of the obtained ingredients of GLP, and the
ingredients that did not meet the criteria were excluded. In
order to comprehensively obtain the targets of bioactive
components of GLP, the collected ingredients were imported
into STITCH and Swiss Target Prediction for target predic-
tion. During STITCH retrieval, the species was set to “homo
sapiens”; during the Swiss Target Prediction retrieval, the
SMILES number of the corresponding components was
uploaded for target fishing. Finally, the targets downloaded
from the two databases were merged and deduplicated, after
which the targets of GLP were obtained.

2.2. NASH Targets Acquisition. Five databases including
Therapeutic Target Database, DisGeNET, DrugBank, Gene-
Cards, and MalaCards were used for NASH targets screen-
ing; “nonalcoholic steatohepatitis” was used as the keyword
for retrieval [21]. The obtained data from different databases
were combined for analysis.

2.3. Drug-Compounds-Target-Disease Network Construction.
The obtained targets of 7 compounds of GLP and NASH-
related targets were merged together and delineated with
the Venn diagram plotted by an online tool (http://www
.bioinformatics.com.cn/plot_basic_proportional_2_or_3_venn_
diagram_028). The intersection of GLP and NASH-related

Table 1: The ADME properties of 7 components of GLP.

Compound
GI

absorption
Drug likeness

Lipinski Ghose Veber Egan Muegge

Berberine High Yes Yes Yes Yes Yes

Epiberberine High Yes Yes Yes Yes Yes

Jatrorrhizine High Yes Yes Yes Yes Yes

Coptisine High Yes Yes Yes Yes Yes

Palmatine High Yes Yes Yes Yes Yes

Evodiamine High Yes Yes Yes Yes Yes

Rutecarpine High Yes Yes Yes Yes Yes

Abbreviations: ADME: absorption, distribution, metabolism, and excretion
(ADME); GI: gastrointestinal; GLP: Ganlu powder.

242 70 809

GLP NASH

Figure 1: The 70 overlapped genes between NASH and GLP.
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targets was derived. The “drug-component-target-disease” inter-
action was established through Cytoscape3.7.1. In the network,
nodes represent the compounds of GLP and the targets of
NASH, edges represent the relationship between each node,
and the number of edges is defined as “degree.”

2.4. Protein-Protein Interaction (PPI) Network Construction.
The STITCH database is a platform for exploring known
and predicted interactions between compounds and proteins
[22]. Seventy common targets of the drug and the disease
were introduced into the STRING database, the organism
was set as “homo sapiens,” and the confidence level was set
to “high confidence (confidence score > 0:7).” The PPI inter-
action network was downloaded, and the degree of the nodes
was analyzed using the R language (version 3.6.3). The topo-
logical properties of the network were calculated with the
Cytoscape Network Analyzer plugin in Cytoscape 3.7.2.

2.5. GO and KEGG Enrichment Analyses. Gene Ontology
(GO) is a widely used bioinformatic method for annotating
genes, typically including biological processes (BP), molecu-
lar function (CC), and molecular functions (MF). KEGG is
an important technique for analyses of functions between
different genes. To better interpret the functions of those
overlapped targets, GO and KEGG enrichment analyses
were conducted using the Database for Annotation, Visuali-
zation, and Integrated Discovery (DAVID), and the top 20
terms with p value < 0.01 were plotted by bar graphs or bub-
ble map [23].

2.6. Molecular Docking. Based on the results of network
pharmacology, the three-dimensional (3D) structure of the
core target was downloaded from the Protein Data Bank
(PDB) database (http://www.rcsb.org/). Meanwhile, we
searched the inhibitors of core targets from DrugBank and

PubMed. The protein structure was processed using PyMOL
(version 1.7.2.1) to remove excess ligands, including remov-
ing water molecules and excess Mg2+, Cu2+, and SO42-.
ChemDraw was then used to optimize small ligand mole-
cules and save the files in a mol2 format. The standardized
proteins and ligands were imported into AutoDockTools
(version 1.5.6) and converted into a PDBQT format. Using
the AutoDock Vina software (version 1.1.2), we ran a pro-
gram for molecular docking using docking parameters; the
complex conformation with the minimum binding energy
and highest binding affinity for each molecule was selected
for further analysis [24]. Generally, the binding energy < 0
kcal/mol indicates that the ligand can bind to the receptor
protein, while the binding energy ≤ −5:0 kcal/mol reveals
that the ligand and the protein have a good binding ability
[25]. Finally, the docking result was visualized by PyMOL
and Discovery Studio.

3. Results

3.1. Bioactive Ingredients and Corresponding Targets. By
searching PubMed and CNKI, we obtained the ingredients
of the two herbs of GLP. After the screening of absorption,
distribution, metabolism, and excretion (ADME) properties,
we retained 7 main ingredients (5 in Coptidis Rhizoma and 2
in Evodiae Fructus) including berberine, palmatine, jatror-
rhizine, coptisine, epiberberine, evodiamine, and rutecar-
pine. The ADME properties of each component are shown
in Table 1. Although the literature reports that there are
some other components in Coptis and Evodia, they were
not considered in this analysis due to their relatively low
content. Afterwards, we obtained 32 targets from STITCH,
637 targets from SwissTargetPrediction, and 312 targets
were retained after merging and deduplication.

Figure 2: Drug-ingredient-target-disease network of GLP. The orange node represents drug, the green nodes represent ingredients, the blue
nodes represent targets, and the red node represents disease (NASH).
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Figure 3: The protein-protein interaction (PPI) network.
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Figure 4: Ranking chart of the degree value of the PPI network. The x-axis represents the number of neighboring proteins of the target
protein. The y-axis represents the target proteins.
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3.2. NASH Targets Screening. “Nonalcoholic steatohepatitis”
was set as a search term and subjected to these five data-
bases: TTD, DisGeNET, DrugBank, GeneCards, and Mala-
Cards, from which 0, 434, 0, 652, and 48 targets were
obtained, respectively. 879 NASH-related targets were iden-
tified after mergence and duplicate removal.

3.3. GLP-Compounds-Targets-NASH Network. After obtain-
ing the GPL targets and the NASH targets, the Venn dia-
gram was generated by mapping the intersection
(Figure 1). The “GLP-compounds-targets-NASH” network
was built with Cytoscape. In the complex network
(Figure 2), the relationship between the identified active
components and 35 targets is characterized by a total of 48
nodes and 44 edges.

3.4. PPI Network Analysis. Importing the 70 junction targets
of GLP and NASH into the STRING database, we con-
structed a PPI network with 62 nodes and 235 edges
(Figure 3). In the figure, the top 8 targets are AKT1, TP53,
STAT3, MAPK8, EGFR, TNF, CASP3, and PIK3CA, among

which AKT1 has the highest degree (Figure 4), indicating
that it may be a key target of GLP in the treatment of NASH.

3.5. GO and KEGG Enrichment Analyses. The DAVID web
was used to perform GO and KEGG enrichment analyses
of 70 intersected targets, the top 20 items with p-values <
0:01 were visualized. In the BP category (Figure 5), the inter-
sected genes were significantly enriched to protein phos-
phorylation, signal transduction, inflammatory response,
protein autophosphorylation, regulation of phos-
phatidylinositol 3-kinase signaling, etc. The KEGG enrich-
ment analysis revealed that the 70 intersected genes were
highly related to NAFLD, HIF-1 signaling pathway, and
insulin resistance, especially the TNF signaling pathway
(Figures 6 and 7). Interestingly, AKT1 was involved in vari-
ous processes.

3.6. Molecular Docking Evaluation. To further confirm
whether the bioactive compounds of GLP can directly inter-
act with the core target, the binding energy and dominant
mode between the compounds with the key target were eval-
uated through molecular docking. The results show that all 7
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Figure 5: The Gene Ontology (GO) analysis of the 70 overlapping gene symbols associated with NASH. The x-axis represents the categories
in the GO of the target genes, while the y-axis represents the p value (-log10) in the GO of the target genes.
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components of GLP could be docked to AKT1 (PDB id:
3OCB), and they are located in the active pocket of the
inhibitor resveratrol, which fits well in the docking position
(Figure 8). The drug molecule and the protein receptor form
various intermolecular forces, such as hydrogen bonds, C-H
bonds, π-Alkyl, and other interaction forces (Figure 9). In
addition, the 7 components have higher binding energy than
the AKT1 inhibitor, resveratrol (Table 2).

4. Discussion

NASH is a metabolic stress liver injury strongly correlated
with insulin resistance and genetic susceptibility, which can
progress to liver cirrhosis and hepatocellular carcinoma. In
addition, patients with NASH are at an increased risk of car-
diovascular disease (CVD). The benefit of maintaining a
healthy lifestyle is self-evident. The vast majority of patients,
however, have difficulties in adhering to these healthy living
habits, and the effect of behavioral changes on body weight
and blood glucose management is often suboptimal. Due
to the multiple and complex pathogenesis of NASH, there
are no approved drugs for treatment. With the advancement
of clinical medical research, the advantages of Chinese
herbal medicine in the treatment of NASH have attracted
substantial attention. As a historically old formula of TCM,
the therapeutic effects of GLP on NASH attract our atten-

tion. In this study, 7 main active ingredients and 312 poten-
tial therapeutic targets of GLP, together with 879 NASH
potential targets and 70 common targets, were screened
using network analysis. As the complex network described,
AKT1 is considered the core target of GLP in NASH
treatment.

AKT1 is a member of the AKT kinase family, which reg-
ulates glycolipid metabolism, proliferation, and cell survival
through a series of downstream substrates. Usually, the acti-
vation of AKT requires two key phosphorylation processes.
Phosphoinositide-dependent protein kinase 1 (PDK1) ini-
tially phosphorylates AKT on threonine 308 (T308), an
active phosphorylation site of AKT, leading to the activation
process; mTORC2 then phosphorylates AKT on serine 473
to fully activate AKT [26].

In lipid metabolism, activated AKT induces the activa-
tion of mTOR, which subsequently recruits CRTC2 as a
complex to promote SREBP-1 activity and adipogenesis.
Yu et al. [27] found that transplanting the AKT plasmid into
the mice through the tail intravenous injection can acceler-
ate liver steatosis and inflammatory damage. AKT regulates
fat synthesis factor SREPB-1 through the PI3K-AKT-mTOR
signaling pathway, which increases the fatty acid synthesis
and lipid content of liver cells and accelerates the NAFLD
progression. In NASH animal models, it was also found that
the PI3K-AKT signal was activated, leading to an aggravated
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Figure 6: The KEGG pathway enrichment result of the 70 overlapping genes. The x-axis represents the fold enrichment of each pathway,
the y-axis represents the main pathways (p value < 0.01), the size of the bubble indicates target counts in each pathway, and the color of the
bubble indicates the p value.

6 Disease Markers



liver damage. Inhibiting this pathway can markedly attenu-
ate hepatocyte injury, inhibit hepatic stellate cell activation,
and delay hepatic fibrosis progression [28, 29]. Nong and
Chen [30] found that the Tiaogan Quzhi formula could
improve the liver steatosis, inflammatory infiltration, and
cell necrosis of NAFLD rats through the PI3K/AKT-mTOR

signaling pathway. Similarly, Fan et al. found that another
TCM formula, Tangganjian decoction, improves the hepatic
glucose and lipid metabolism in rats with type 2 diabetes
mellitus (T2DM) and NAFLD via activating the IRS/PI3K/
AKT signaling pathway [31]. In general, AKT1 plays a cru-
cial role in glucose and lipid metabolism and thus is a

Figure 7: The KEGG pathway map of GLP treats NASH. The red nodes within the predicted signaling pathway represent the targets
relevant with the corresponding pathway.

Figure 8: 3D docking conformation of 7 ingredients and resveratrol with AKT1. In the figure, the red stick represents resveratrol, the green
stick represents berberine, the yellow stick represents epiberberine, the pink stick represents jatrorrhizine, the blue stick represents coptisine,
the orange-yellow stick represents palmatine, the white stick represents evodiamine, and the black stick represents rutecarpine.
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promising therapeutic target for metabolic diseases. The PPI
result in our study revealed that GLP is effective in improv-
ing and treating NASH, possibly due to its regulation of
AKT1.

According to the GO enrichment analysis result, the
common targets of GLP and NASH were enriched to inflam-
matory response and regulation of phosphatidylinositol 3-
kinase signaling, and AKT1 was also involved in these bio-
logical processes. Accumulating evidence has revealed that

NASH is a metabolic inflammatory disease induced by
lipid-oversupplied steatosis, and chronic inflammation is
the main driver of NASH and one of the clinical features
used to distinguish NASH from NAFLD [4, 32, 33]. In ani-
mal models of NASH, NF-κB mRNA expressions in liver tis-
sues were significantly increased. Other clinical studies also
found that the NF-κB activity was increased in NASH
patients. AKT regulates NF-κB signal transduction through
phosphorylation of IKKα, which leads to the degradation
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of IκB [34]. This process releases NF-κB from the cytoplasm
into the nucleus to further regulate the expression of down-
stream target genes and finally mediate multiple pathological
processes such as liver inflammation and apoptosis. The evi-
dence indicates that GLP may reduce liver damage by regu-
lating the release of downstream inflammatory factors
through AKT1.

KEGG enrichment results showed that the TNF signal-
ing pathway was the most important signaling pathway,
which involved the core target AKT1. TNF has two types:
tumor necrosis factor-alpha (TNF-α) and tumor necrosis
factor-beta (TNF-β). TNF-α, mainly secreted by activated
macrophages, can promote the expression of proinflamma-
tory factors and participate in systemic inflammation.

Table 2: Molecular docking of 7 bioactive ingredients and the inhibitor with AKT1.

Compound Structure Receptor Binding energy (kcal/mol)

Berberine

O

O

O

O

AKT1 -9.30

Epiberberine
O

O

O

ON

AKT1 -10.40

Jatrorrhizine
O

O

OH

O N

AKT1 -8.80

Coptisine
O

O

O

O

N

AKT1 -10.20

Palmatine
O

O

O

ON

AKT1 -8.70

Evodiamine
N

O

NH
N
H

AKT1 -11.00

Rutecarpine
N

O

N N
H

AKT1 -10.40

Resveratrol

O−H
H

H

HH

O

O−H

AKT1 -8.50
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Insulin resistance is involved in the development and pro-
gression of NASH. In NASH progression, TNF-α induces
the activation of JNK, leading to the Ser site on the IRS pro-
tein in the phosphorylated insulin signaling pathway and
consequently resulting in insulin resistance [35]. Our results
showed that GLP could regulate the TNF signaling pathway
through AKT1; thus, it might reduce insulin resistance in
patients with NASH.

The protein-small molecular docking analysis showed
that all 7 components of GLP were successfully docked to
AKT1, located in the active pocket of resveratrol and fitting
well in the active pocket. Meanwhile, the 7 components have
better binding energy than the AKT1 inhibitor, resveratrol.
The drug molecules and the protein receptors form multiple
intermolecular forces, including hydrogen bonding, C-H
bonding, π-alkyl hydrogen bonding, and other interactions.
The docking score revealed that berberine, epiberberine,
coptisine, evodiamine, and rutecarpine had higher interac-
tion energy with AKT1 than resveratrol. This suggests that
they were the most important active components contribut-
ing to the therapeutic effects of the GLP on NASH. It has
been reported that berberine can induce autophagy by inhi-
biting mTOR, AKT, and MAPK (ERK, JNK, and p38) path-
ways [36]. Additionally, berberine induces autophagic death
in acute lymphoblastic leukemia (ALL) cells by inactivating
AKT/mTORC1 signaling [37]. Epiberberine is an alkaloid
with low toxicity and exerts various activities including anti-
adipogenesis via AKT and ERK pathways [38]. In an in vitro
experiment, epiberberine inhibits the phosphorylation of
AKT, which then downregulates the major transcription fac-
tors of adipogenesis during adipocyte differentiation [39].
Coptisine can inhibit LPS-stimulated inflammation by
blocking nuclear factor-kappa B, MAPK, and PI3K/AKT
activation in macrophages, demonstrating its anti-
inflammation properties. Evodiamine and rutecarpine, two
alkaloids isolated from the unripe fruit of Evodia Fructus,
were identified as two major active substances of Evodiae
Fructus. Evodiamine inhibits cell proliferation by inducing
cellular apoptosis via suppressing the PI3K/AKT pathway
[40]. Moreover, evodiamine can significantly reduce the pro-
duction of proinflammatory cytokines and inhibit the activa-
tion of inflammation-related pathways such as AKT, NF-κB
p65, ERK1/2, p38, and JNK [41]. Nie et al. [42] found that
Rutecarpine ameliorates hyperlipidemia and hyperglycemia
in fat-fed, streptozotocin-treated rats via regulating the
IRS-1/PI3K/AKT signaling pathway. Although Nie et al.’s
study did not report whether this bioactive compound
directly inhibits AKT1, our docking result supports the pos-
sible protein-small molecule interaction.

5. Conclusion

In summary, this study tackles the molecular mechanism of
GLP in the treatment of NASH based on bioinformatics and
system pharmacology. Our findings indicate that multiple
compounds in GLP may play a role in the treatment of
NASH through the synergy of targets and signaling path-
ways. The active ingredients of GLP can act on the key gene
target AKT1 and exert pharmacological effects through the

TNF signaling pathway. Due to the limitations of biological
calculation methods, future research with in vitro and
in vivo experiments is needed to verify our findings.
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