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Purpose. Oral squamous cell carcinoma (OSCC) is the sixth leading cause of cancer-related death worldwide and is characterized
by metastasis and recurrence. We aimed to evaluate the expression of AKT1 and PLK1 in OSCC and identify their correlation
with the clinical and histological features and prognosis of patients with OSCC. Methods. Tissue samples were collected from
70 patients with OSCC and 50 patients with normal oral mucosa. The expression levels of AKT1 and PLK1 in OSCC tissues
and normal oral mucosa were detected by immunohistochemistry. The chi-square test was used to identify correlations
between the expression levels of AKT1 and PLK1 with patients’ clinicopathologic characteristics. Survival analysis was assessed
by the Kaplan–Meier method. Spearman’s rank correlation test was used to determine the relationships between AKT1 and
PLK1 expressions. The bioinformatics database GEPIA was used to verify the experimental results. Results. The chi-square test
and Fisher’s exact test showed that the positive expression rate of AKT1 and PLK1 in OSCC tissue was significantly higher
than that in the normal oral mucosa (P < 0:05). PLK1 expression levels were significantly correlated with tumor stage and size
(P < 0:05). Kaplan–Meier analysis showed that the survival time of AKT1 and PLK1 with high expression was significantly
shorter than that of patients with low expression (P < 0:05). Spearman’s rank correlation test showed a strong correlation
between AKT1 and PLK1 expression in OSCC tissue (R = 0:53; P < 0:05). GEPIA bioinformatics database analysis results show
that the expression and overall survival of AKT1 and PLK1 analysis and the correlation analysis of AKT1 and PLK1 were
consistent with experimental results. Conclusion. AKT1 and PLK1 expressions are associated with the occurrence and
progression of OSCC and may be used as diagnostic and prognostic indicators of OSCC. There may be a correlation between
AKT1 and PLK1 in OSCC tissue.

1. Introduction

Oral squamous cell carcinoma (OSCC) is one of the most
frequent neoplasms worldwide, showing very aggressive
behavior, propensity for lymph-node metastasis, and a lousy
prognosis [1, 2]. OSCC includes cancers of the tongue, lip,
bottom of the mouth, gingival, buccal, posterior molars tri-
angle, and hard palate [3]. Some dysplasia areas in the oral
are high-risk factors for OSCC, such as leukoplakia, erythro-
plakia, erythroleukoplakia, oral lichen planus, oral submu-
cous fibrosis, and oral dysplasia [4]. The prevalence of
OSCC increases with age [3]. There are more than 200,000

new confirmed cases of OSCC in the world every year [5].
Despite improvements in surgical techniques and chemo-
therapy, the prognosis for OSCC remains poor, with a 5-
year overall survival (OS) rate of only 64.4% [6]. Surgery
combined with chemotherapy can improve OS in patients
with OSCC, preoperative chemotherapy can shrink the
tumor, and postoperative chemotherapy can help prevent
tumor recurrence and metastasis. However, after surgery,
radiotherapy, and chemotherapy, most patients will have
severe toxic and side effects such as local defects, malforma-
tions, functional disorders, and drug resistance [7]. Targeted
therapy emphasizes the treatment of diseases at the
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molecular level, with high targeting and specificity, which
dramatically reduces host toxicity and improves the quality
of life of patients [8]. In the past two decades, targeted ther-
apy has become a new approach to treating various human
diseases, including cancer [9]. Several targeted anticancer
agents have been successfully introduced into clinical prac-
tice [10]. However, OSCC is a multifactorial, multistep, mul-
tigene genetic disease, and its molecular pathogenesis is still
not fully understood. Therefore, it is of great clinical signifi-
cance to further study the pathogenesis of OSCC and find
practical molecular markers to predict the prognosis and
for targeted therapy of OSCC.

Polo-like kinase 1 (PLK1), a member of the PLK family,
is a serine/threonine protein kinase and is widely recognized
as an oncogene. PLK1 plays a crucial role in the cell cycle
and drives cell proliferation by promoting mitosis and cyto-
kinesis [11–13]. In addition, PLK1 also has roles in meiosis,
including regulating cancer cell invasiveness and preventing
cancer cell apoptosis [14]. Recent studies have shown that
PLK1 overexpression can promote the development of
breast cancer, renal cell carcinoma, and gastric cancer
[15–17]. AKT (also known as protein kinase B or PKB), with
the subtypes AKT1, AKT2, and AKT3, is a critical intracel-
lular kinase in the PI3K/AKT signaling pathway. It has sig-
nificant roles in cell differentiation, growth, and targeted
therapy of many human malignant tumors [18, 19]. The
PI3K/AKT signaling pathway plays a major role in basic cell
activities such as cell metabolism, cell growth, cell prolifera-
tion, apoptosis, and angiogenesis [20]. Once this pathway
was discovered, many medical studies explored it [21].

However, only a few reports exist on the relationship
between the PI3K/AKT signaling pathway and PLK1 in
OSCC. In this study, the expression of AKT1 and PLK1 in
OSCC tissues and normal oral mucosa was compared, and
the relationship between AKT1 and PLK1 and OSCC clini-
copathology and prognosis were discussed. Our study
explores their potential value as biological and prognostic
markers for the occurrence and progression of OSCC.

2. Material and Methods

2.1. Patients and Tissue Samples. A total of 106 tissue sam-
ples from patients with OSCC and 73 normal oral mucosa
samples from patients treated in the First Affiliated Hospital
of Medical College of Shihezi University in Xinjiang prov-
ince from 2008 to 2012 were collected as the case group
and the control group, respectively. Normal oral mucosa

samples were taken from gingival, tongue, and buccal
mucosa. All patients received no treatment before surgery
and had no other medical history [22]. From the initial sam-
ples, 70 OSCC tissues with complete clinicopathological and
follow-up data and 50 normal oral mucosa specimens were
selected for the study. The research group conducted
follow-up once a year, and the follow-up data of this study
was completed by July 30, 2020. Three cancerous tissue cores
and one noncancerous tissue core (1mm in diameter) were
cut lengthways from each paraffin block and installed in
the new paraffin block with fine steel needles to generate tis-
sue microarrays. This study was approved by the ethics com-
mittee of the First Affiliated Hospital of Shihezi University
(No. 2019-098-01), and informed consent was obtained
from each patient.

2.2. Immunohistochemistry. In this study, the two-step EnVi-
sion method was used for immunohistochemical experi-
ments [23]. First, tissue sections were cut into microarrays
of 4mm, which were adsorbed on a slide. Then, fat was
removed, and the tissue was rehydrated, immersed in Ethyl-
ene Diamine Tetraacetic Acid (EDTA) buffer for heat-
induced antigen extraction, and immersed in 3% hydrogen
peroxide to block endogenous peroxidase activity. Nonspe-
cific antigen staining was blocked with 3% BSA. Finally, pri-
mary antibodies PLK1 (1 : 3:2 × 106, ab155095, Abcam,
Cambridge, UK; gastric carcinoma tissue was used as posi-
tive internal control) and AKT1 (1 : 100, ab81283, Abcam,
Cambridge, UK; human cervical carcinoma tissue was used
as positive internal control) were added to the slide and
incubated overnight at 4°C. The next day, the tablets were
redyed and sealed with hematoxylin after coloring with
Diaminobenzidine (DAB) solution for 1min. Immunohisto-
chemical staining results were evaluated by two pathologists
using a double-blind method, and the immune response
score (IRS) was calculated as the percentage of positive cells
multiplied by the intensity of cell staining (Table 1) [24].
According to IRS values, the results were divided into two
groups, the low-expression group (<6 points) and the
high-expression group (≥6 points). Section repetitions were
performed when tissue chip staining was atypical [25].

2.3. Bioinformatics Database Validation. To improve the
experiment’s reliability, we used the bioinformatics database
for verification. The GEPIA database (http://gepia. cancer-
pku.cn/detail.php) is an online analysis website containing
data from TCGA and GTEx databases for 9,736 tumor sam-
ples and 8,587 normal samples [26]. We used this database
to evaluate the association between high and low expression
of AKT1 and PLK1 in OSCC tissues and patient outcomes.
Finally, we used the GEPIA database to verify the correlation
between AKT1 and PLK1 gene expression in OSCC tissues
and normal oral mucosa.

2.4. Statistical Analysis. The SPSS 23 software was used to
analyze all experimental data in this study. The chi-square
test and Fisher’s exact test were used to examine the correla-
tion between the expression levels of AKT1 and PLK1 and
the clinicopathological characteristics of patients with

Table 1: Immunohistochemical score table.

Positive cells (%) Intensity IRS

Percentage Score Color Score Rank Total score

<5% 0 No color 0 - 0-1

6~25% 1 Yellow 1 + 2-4

26~50% 2 Tan 2 ++ 5-8

51~75% 3 Brown 3 +++ 9-12

76~100% 4
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Figure 1: Continued.
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OSCC. For survival analyses, Kaplan–Meier survival curves
were constructed, and differences were tested by the log-
rank test. OS was defined as the time between the date of
surgery and the date of death from OSCC or the date of
the last contact. The Spearman’s rank correlation test was
used to determine the relationships between AKT1 and
PLK1 expressions. P value was calculated based on a two-

tailed statistical analysis, and statistical significance was set
at P < 0:05.

3. Results

3.1. Expression Rates of AKT1 and PLK1 in OSCC Tissue and
Normal Oral Mucosa. Immunohistochemical results showed

(g) (h)

Figure 1: Expressions of AKT1 and PLK1 in OSCC. Expression of AKT1 in oral squamous cell carcinoma tissues: (a) original magnification
×40 and (b) original magnification ×200. Expression of AKT1 in normal oral mucosa: (c) original magnification ×40 and (d) original
magnification ×200. Expression of PLK1 in oral squamous cell carcinoma tissues: (e) original magnification ×40 and (f) original
magnification ×200. Expression of PLK1 in the normal oral mucosa: (g) original magnification ×40 and (h) original magnification ×200.

Table 2: Positive expression rates of AKT1 and PLK1 proteins in OSCC tissue and normal oral mucosa samples.

Protein and pathology type Number Positive (M ± SD) Negative (M ± SD) P

AKT1

OSCC 70 57 (9:86 ± 0:30) 13 (3:54 ± 0:18) <0.0001
Normal oral tissue 50 7 (7:00 ± 0:48) 43 (1:46 ± 0:20)
PLK1

OSCC 70 41 (10:34 ± 0:29) 29 (3:48 ± 0:19) <0.0001
Normal oral tissue 50 8 (7:00 ± 0:50) 42 (1:61 ± 0:27)
Annotation: M ± SD: mean ± standard deviation.
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Figure 2: AKT1 and PLK1 expression semiquantitative IHC score. Semiquantitative IHC score of (a) AKT1 expression and (b) PLK1
expression. ∗∗∗∗<0.0001.
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that AKT1 was mainly distributed in the nucleus or the cyto-
plasm of OSCC cells (Figures 1(a) and 1(b)). In contrast,
PLK1 was distributed primarily on the nucleus of OSCC
cells (Figures 1(e) and 1(f)), both of which were brown or

yellow-brown. There was little staining of normal oral
mucosa cells (Figures 1(c) and 1(d) and 1(g) and 1(h)).

The positive expression rates of AKT1 and PLK1 in 70
OSCC tissues were 81.4% (57/70) and 58.6% (41/70),

Table 3: Relationships between the expressions of AKT1 and PLK1 and the clinicopathologic characteristics in patients with OSCC.

Parameters Number
AKT1 expression PLK1 expression

Low (M ± SD) High (M ± SD) χ2 P Low (M ± SD) High (M ± SD) χ2 P

Age

≤60 21 6 (3:66 ± 0:21) 15 (10:07 ± 0:59) 0.94 0.33 10 (3:20 ± 0:46) 11 (10:64 ± 0:57) 0.47 0.49

>60 49 7 (3:42 ± 0:29) 42 (9:78 ± 0:35) 19 (3:63 ± 0:17) 30 (10:23 ± 0:35)
Gender

Male 37 6 (3:66 ± 0:21) 31 (9:67 ± 0:44) 0.29 0.59 15 (3:60 ± 0:27) 22 (10:64 ± 0:39) 0.03 0.87

Female 33 7 (3:42 ± 0:29) 26 (10:08 ± 0:41) 14 (3:35 ± 0:28) 19 (10:00 ± 0:45)
Stage

I+II 34 9 (3:44 ± 0:24) 25 (9:44 ± 0:49) 2.73 0.10 19 (3:42 ± 0:25) 15 (10:47 ± 0:50) 5.68 0.02

III+IV 36 4 (3:75 ± 0:25) 32 (10:19 ± 0:37) 10 (3:60 ± 0:30) 26 (10:27 ± 0:37)
T status

≤4 cm 38 9 (3:44 ± 0:24) 29 (9:58 ± 0:46) 1.44 0.23 21 (3:47 ± 0:23) 17 (10:47 ± 0:46) 6.56 0.01

>4 cm 32 4 (3:75 ± 0:25) 28 (10:14 ± 0:38) 8 (3:50 ± 0:37) 24 (10:25 ± 0:40)
N status

N0 60 11 (3:54 ± 0:20) 49 (9:75 ± 0:33) 0.16 0.69 26 (3:42 ± 0:21) 34 (10:09 ± 0:33) 0.63 0.43

N1-3 10 2 (3:50 ± 0:50) 8 (10:50 ± 0:56) 3 (3:66 ± 0:33) 7 (11:57 ± 0:42)
Tumor differentiation

Well 24 3 (3:00 ± 0:57) 21 (10:25 ± 0:37) 0.89 0.34 11 (3:44 ± 0:27) 13 (10:68 ± 0:34) 0.29 0.58

Moderate+poorly 44 10 (3:70 ± 0:15) 36 (9:19 ± 0:49) 18 (3:54 ± 0:28) 28 (9:61 ± 0:54)
Smoking history

Yes 21 3 (3:66 ± 0:33) 18 (9:66 ± 0:55) 0.36 0.55 8 (3:87 ± 0:12) 13 (11:15 ± 0:45) 0.14 0.71

No 49 10 (3:40 ± 0:22) 39 (9:94 ± 0:36) 21 (3:33 ± 0:26) 28 (9:96 ± 0:36)
The history of drinking

Yes 9 2 (3:50 ± 0:50) 7 (8:62 ± 0:88) 0.03 0.86 4 (3:75 ± 0:25) 5 (11:2 ± 0:80) 0.64 0.80

No 61 12 (3:50 ± 0:19) 49 (10:06 ± 0:31) 25 (3:40 ± 0:22) 36 (10:22 ± 0:32)
Annotation: M ± SD: mean ± standard deviation.
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Figure 3: Survival analysis of AKT1 and PLK1 expression and prognosis of oral squamous cell carcinoma patients. Survival analysis of (a)
AKT1 expression and (b) PLK1 expression and prognosis of oral squamous cell carcinoma patients.
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respectively. The positive expression rates of AKT1 and
PLK1 in 50 normal oral mucosae were 14% (7/50) and
16% (8/50), respectively. The results showed that the expres-
sion rates of AKT1 and PLK1 in OSCC tissues were signifi-
cantly higher than those in the normal oral mucosa (P < 0:05
; Table 2 and Figures 2(a) and 2(b)).

3.2. Relationships between the Expressions of AKT1 and
PLK1 and the Clinicopathologic Characteristics in Patients
with OSCC. The expression levels of AKT1 proteins in 70
OSCC tissues had no significant correlation with patients’
age, sex, tumor stage, tumor size, lymph nodes, tumor differ-
entiation, or smoking and alcohol consumption history
(P > 0:05; Table 3). The expressions of PLK1 in the 70 OSCC
tissues showed a significant correlation with patients’ tumor
stage and size (P < 0:05). In contrast, no significant associa-
tions were observed between PLK1 expression and patient’
age, sex, lymph nodes, tumor differentiation, or smoking
and alcohol consumption history (P > 0:05; Table 3).

3.3. The Impact of AKT1 and PLK1 Expression on Overall
Survival. To assess the prognostic impact of AKT1 and
PLK1 expression in patients with OSCC, we used Kaplan–
Meier survival analysis to assess the association between
AKT1 and PLK1 expression and OS. The results showed that
the survival time of patients with high AKT1 and PLK1
expression was statistically different from those with low
AKT1 and PLK1 expression (P < 0:05; Figures 3(a) and
3(b)). In other words, patients with high AKT1 and PLK1
expression had a shorter postoperative survival.

3.4. Relationship between AKT1 and PLK1 Expression in
OSCC and Normal Oral Mucosa. Immunohistochemical
staining analysis of AKT1 and PLK1 showed that AKT1
and PLK1 were coexpressed in 35/70 (50%) OSCC tissues,
but for 15/70 (21.4%) OSCC tissues, there was no association
between AKT1 and PLK1. Correlation analysis showed that

in OSCC tissues, PLK1 was positively correlated with
AKT1 (R = 0:53; P < 0:0001; Table 4). In normal oral
mucosa, 2/50 (4%) of normal oral mucosa had positive coex-
pression of AKT1 and PLK1, while 41/50 (82%) of normal
oral mucosa tissues showed no association, and correlation
analysis showed that PLK1 was not correlated with AKT1
(R = 0:19; P = 0:17; Table 5). Thus, there was a significant
correlation between AKT1 and PLK1 expression in OSCC
tissues but no correlation in the normal oral mucosa.

3.5. Verifying AKT1 and PLK1 Results with the
Bioinformatics Database. The results of bioinformatics data-
base verification showed that the expression of AKT1 and
PLK1 in OSCC tissue was significantly higher than that in
the normal oral mucosa (P < 0:05; Figures 4(a) and 4(b)).
Similarly, the survival time of patients with high AKT1 and
PLK1 expression in OSCC was significantly lower than that
of patients with low AKT1 and PLK1 expression (P < 0:05;
Figures 4(c) and 4(d)). Finally, correlation analysis of
AKT1 and PLK1 showed a significant correlation between
AKT1 and PLK1 expression in OSCC (R = 0:39; P = 2:8E −
20). On the other hand, there was no correlation between
AKT1 and PLK1 expression in normal oral tissues (R = 025
; P = 0:11; Figures 4(e) and 4(f)).

4. Discussion

Oral squamous cell carcinoma (OSCC) is the third most
common cancer in developing countries and the sixth most
common cancer globally [27]. Today, with the continuous
development of molecular biology, it has been found that
cancer was caused by genetic, metabolic, inflammatory,
and epigenetic factors [28]. These lead to abnormal cell
physiology and signal pathway conduction, which led to
abnormal cell proliferation and differentiation, eventually
developing into cancer [29].

AKT1 is a threonine/serine protein kinase. Phosphory-
lated AKT1 is the active form of AKT1. It is released from
the cell membrane into the cytoplasm and is involved in
molecular processes that promote cell growth and prolifera-
tion, such as glucose metabolism, protein synthesis, and
antiapoptotic activity [30]. AKT activation depends on the
PL3K pathway and is considered a key node in this pathway.
AKT1 is essential for cell growth and survival [31], where
high activation of AKT1 leads to excessive cell proliferation
and malignant transformation [32]. Many different mecha-
nisms mediate its activation during tumorigenesis and devel-
opment. The effect of AKT1 on tumorigenesis and
progression is demonstrated in a model showing that malig-
nant tumor formation is closely related to cell infection with
a retrovirus vector expressing AKT1 [33].

PLK1, a PLK subtype, is a highly conserved serine/thre-
onine protein kinas [34]. During the DNA damage response,
PLK1 enzyme activity promotes homologous
recombination-mediated repair in collaboration with
PARP1 and CHK1 [35]. It is clear that PLK1 is key to main-
taining the normal operation of the cell cycle. PLK1 overex-
pression is associated with tumorigenesis. In contrast, PLK1
inhibitors act on multiple stages of cell mitosis, such as

Table 4: The relationships between AKT1 and PLK1 protein
expression in OSCC tissue.

PLK1 expression
- + R P

AKT1 expression

- 15 6 0.53 <0.0001
+ 14 35

Table 5: The relationships between AKT1 and PLK1 protein
expression in normal oral mucosa.

PLK1 expression
- + R P

AKT1 expression

- 41 6 0.19 0.17

+ 1 2

Annotation: R > 0:8: highly correlated; 0:5 < R < 0:8: moderate correlation;
0:3 < R < 0:5: low correlation; R < 0:3: irrelevant.
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Figure 4: Continued.
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blocking centrosome maturation, spindle formation, and
cytokinesis, thereby disrupting cell division and cycle pro-
gression and ultimately leading to tumor cell death [12].
Studies have shown that PLK1 is overexpressed in colorectal
cancer [36], pancreatic cancer [37], gastric cancer [38], pros-
tate cancer [39], thyroid cancer [40], bladder cancer, and
other tumors [41], and the high expression of PLK1 indi-
cates poor clinical prognosis.

After the expression of PLK1 is reduced, the prolifera-
tion of tumor cells is inhibited, and apoptosis occurs, thus
preventing the occurrence and development of tumors and
improving prognosis [42]. Due to this, PLK1-targeting
inhibitors have attracted the attention of researchers. Some
studies have shown that BI2536, Volasertib, and
GSK461364 can effectively inhibit the expression of PLK1,
and BI2536 has entered phase I clinical trials for colorectal
cancer, liver cancer, fallopian duct cancer, and other cancers
[43–45].

PI3K/Akt and PLK1 have been extensively studied in
tumors, but few studies on PI3K/Akt and PLK1 in OSCC.
The results of this study showed that the expression of
AKT1 and PLK1 in OSCC tissues was significantly higher
than that in the normal oral mucosa, which suggests the high
expression of AKT1 and PLK1 may play an important role
in the occurrence of OSCC. Subsequently, we analyzed the
correlation between the expression of AKT1 and PLK1 in
OSCC tissues and the clinicopathologic parameters of
tumors. The results showed that the expression levels of
AKT1 in OSCC tissues were not significantly correlated with
age, sex, tumor stage, tumor size, lymph nodes, tumor differ-
entiation, or smoking and alcohol consumption history. This
may be because our sample size was small, so further expan-
sion of our collection was warranted. However, the expres-
sions of PLK1 in OSCC tissues were significantly correlated
with tumor stage and size; but no significant associations

were observed with age, sex, lymph nodes, tumor differenti-
ation, or smoking and alcohol consumption history. These
results suggested that PLK1 played an important role in
the development of OSCC. Finally, we applied Kaplan–
Meier analysis to determine the survival of OSCC patients.
The results showed that the postoperative survival of
patients in the group with high AKT1 and PLK1 expression
was significantly lower than that in the group with low
AKT1 and PLK1 expression, showing that AKT1 and
PLK1 were closely related to the survival rate of patients with
OSCC. These findings suggested that AKT1 and PLK1 can
be used as prognostic markers for OSCC patients.

In addition, we also studied the relationship between
AKT1 and PLK1 in OSCC tissues. Studies had shown that
the upregulated expression of PLK1 can activate the PI3K/
AKT signaling pathway, promote the proliferation of gastric
mucosal epithelial cells, and increase the possibility of gastric
cancer [46]. In addition, miR-1224-5P in osteosarcoma
directly targets PLK1 through the PI3K/AKT signaling path-
way to activate autophagy and cell invasion [47]. Consistent
with these findings, we confirm that PLK1 and AKT1 were
significantly correlated in OSCC. In other words, there was
a correlation between the two, and they may promote each
other’s expressions.

Finally, to improve the credibility of this study, we used a
bioinformatics database to verify the differential expression
of AKT1 and PLK1 in OSCC tissues and normal oral
mucosa, showing that the expression of AKT1 and PLK1
in OSCC was significantly higher than that in the normal
oral mucosa. The survival time of patients with high AKT1
and PLK1 expression in OSCC was significantly lower than
that of patients with low AKT1 and PLK1 expression. The
correlation analysis of AKT1 and PLK1 in OSCC tissues
and normal oral mucosa was validated. The results showed
that AKT1 and PLK1 were significantly correlated in OSCC

4

5

6

7

8

2 3 4 5 6 7

Log2 (PLK1 TPM)

Lo
g2

 (A
K

T1
 T

PM
)

P = 2.8e–20
R = 0.39

(e)

6.5

6.0

5.5

5.0

4.5

4.0

Lo
g2

 (A
K

T1
 T

PM
)

1 2 3 4

Log2 (PLK1 TPM)

P = 0.11
R = 0.25

(f)

Figure 4: GEPIA database was used to verify the experimental results. Differences in (a) AKT1 expression and (b) PLK1 expression in oral
squamous cell carcinoma tissues and normal oral mucosa. Survival analysis of (c) AKT1 expression and (d) PLK1 expression in oral
squamous cell carcinoma patients. Relationship between AKT1 and PLK1 expression in (e) oral squamous cell carcinoma tissues and (f)
normal oral mucosa. ∗P < 0:05.
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tissues but not in the normal oral mucosa. The results of the
bioinformatics database validation were consistent with the
experimental results, suggesting that AKT1 and PLK1 have
potential research value in OSCC.

5. Conclusion

In conclusion, our results suggest that the expressions of
AKT1 and PLK1 are closely related to the occurrence, devel-
opment, and prognosis of OSCC. In addition, we found a
significant correlation between the expressions of these two
molecules in OSCC, which may be involved in the transfor-
mation of normal oral mucosa to OSCC. However, the
details of the regulation mechanism of AKT1 and PLK1
need to be further verified by a large quantum of clinical
data and long-term follow-up information combined with
relevant molecular biology and cytology experiments.
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