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Objective. Evidence proves that integrins affect almost every step of hepatocellular carcinoma (HCC) progression. The current
study aimed at constructing an integrin-based signature for prognostic prediction of HCC. Methods. TCGA-LIHC and ICGC-
LIRI-JP cohorts were retrospectively analyzed. Integrin genes were analyzed via univariate Cox regression, followed by
generation of a prognostic signature with LASSO approach. Independent factors were input into the nomogram. WGCNA was
adopted to select this signature-specific genes. Gene Ontology (GO) enrichment together with Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis were conducted to explore the function of the dysregulated genes. The abundance of
tumor microenvironment components was estimated with diverse popular computational methods. The relative importance of
genes from this signature was estimated through random-forest method. Results. Eight integrin genes (ADAM15, CDC42,
DAB2, ITGB1BP1, ITGB5, KIF14, LIMS2, and SELP) were adopted to define an integrin-based signature. Each patient was
assigned the riskScore. High-riskScore subpopulation exhibited worse overall survival, with satisfying prediction efficacy. Also,
the integrin-based signature was independent of routine clinicopathological parameters. The nomogram (comprising integrin-
based signature, and stage) accurately inferred prognostic outcome, with the excellent net benefit. Genes with the strongest
positive interaction to low-riskScore were primarily linked to biosynthetic, metabolic, and catabolic processes and immune
pathways; those with the strongest association with high-riskScore were principally associated with diverse tumorigenic
signaling. The integrin-based signature was strongly linked with tumor microenvironment components. Among the genes from
this signature, LIMS2 possessed the highest importance, and its expression was proven through immunohistochemical staining.
Conclusion. Altogether, our study defined a quantitative integrin-based signature that reliably assessed HCC prognosis and
tumor microenvironment features, which possessed the potential as a tool for prognostic prediction.

1. Introduction

Liver cancer remains the sixth most commonly diagnosed
cancer together with the third most deadly cancer, with an
estimated 906,000 new cases as well as 830,000 deaths glob-
ally [1]. Asian countries have the highest incidence of pri-
mary liver cancer cases, reporting approximately 72.5% of
the world’s cases [2]. Hepatocellular carcinoma (HCC) con-
tributes 80% of all cases worldwide [3]. Elderly male together
with Asian populations are still the highest risk groups for

HCC. The preferred therapy of HCC remains surgery, which
is the only method to achieve long-term survival and even a
cure [4]. Radiofrequency ablation is the treatment of choice
for malignancies that are extremely early in their stages as
well as tumors that are early in their stages but cannot be
removed surgically [5]. Ultrasound is well poised to address
this need due to its low cost, portability, safety, and excellent
temporal resolution. The role of ultrasound for HCC screen-
ing has been well established and supported by multiple
international guidelines. Nonetheless, HCC patients are
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generally in intermediate or advanced stages. Transcatheter
arterial chemoembolization is the standard of care for
patients with intermediate HCC, resulting to the median
survival of 25–30 months [6]. Molecular-targeted agents,
sorafenib, etc. have been developed against advanced HCC
[7]. Regrettably, liver toxicity and weak anti-tumor effect
contribute to treatment failure and low survival benefit.
Recently, immune-based therapies have generated notable
improvement in clinical outcome of HCC [8]. Despite this,
current immunotherapies only induce durable response for
minority of HCC patients. Altogether, it is of significance
to select potent therapeutic targets, and determine more reli-
able tools for stratifying HCC patients together with prog-
nostic prediction.

Integrins cross the plasma membrane as well as connect
the extracellular matrix (ECM) to the cytoskeleton, as ele-
mentary cell adhesion receptors mediating cellular and tis-
sue functions [9]. Altered expression of integrins is
commonly detected in HCC [10]. They profoundly affect
almost every step of HCC progression from primary tumor
development to metastases [10, 11]. Additionally, integrins
correlate to the acquisition of drug resistance and immune
escape [12, 13]. In addition to tumor cells, integrins are pres-
ent in components within tumor microenvironment, which
critically regulate their contributions to tumor progression
[14]. For instance, SPON2 facilitated the recruitment of
M1-like macrophages as well as mitigates HCC metastases
through integrin signaling [10]. Cancer-associated fibro-
blasts facilitate vascular invasion of HCC through lowering
integrin β1 [15]. Blockade of integrin signaling can attenuate
HCC progression through hindering key signaling events in
tumor microenvironment and tumor cells. Hence, integrins
together with integrin-dependent functions have been
regarded as attractive therapeutic targets against HCC [16].
In addition to this, integrins may become imaging biomark-
ers for evaluating the efficacy of anti-angiogenic or anti-
tumor agents [17]. Moreover, integrin-targeted nanoparti-
cles with varying anti-tumoral payloads are a definitely
promising research field to lower toxicity linked to systemic
radio- or chemotherapy [18]. To date, the now prognostic
model based on integrin-related genes were rarely reported.
Based on accumulated evidence, the current study con-
ducted a comprehensive analysis of multidimensional
integrin-relevant genomic data across HCC, and defined a
quantitative integrin-based signature that may evaluate
HCC prognostic outcome together with tumor microenvi-
ronment traits, which might open up a novel insight into
improving HCC outcomes together with determining
patients’ therapeutic regimens.

2. Materials and Methods

2.1. Data Acquisition. Transcriptome data and clinical infor-
mation of HCC patients were acquired from TCGA-LIHC as
the training cohort. Under removal of patients with incom-
plete survival data, 343 HCC patients were included.
Another RNA-seq dataset ICGC-LIRI-JP with 229 HCC
samples obtained from the ICGC database were adopted
for verification.

2.2. Collection of Integrin Gene Set. The Molecular Signa-
tures Database offers the annotated gene sets that involve
biochemical pathways, signaling cascades, and expression
profiling from published research together with other bio-
logical concepts [19]. We collected 128 integrin genes from
this popular database, involving four biological process
terms (integrin activation, integrin-mediated signaling path-
way, positive regulation of integrin activation, and regula-
tion of integrin activation) together with one cellular
component terms (integrin complex).

2.3. Definition of an Integrin-Based Signature. Prognostic
significance of integrin genes was firstly evaluated. Through
adopting univariate-cox regression approach, integrin genes
with p < 0:05 were selected, and input into least absolute
shrinkage and selection operator (LASSO) [20]. This analy-
sis was conducted utilizing glmnet package [21]. The regres-
sion coefficient was computed utilizing multivariate-cox
regression. The integrin-based signature-derived riskScore
was generated through combination of regression coefficient
together with transcript level of each integrin gene in this
signature. With the median riskScore, patients were classi-
fied as low- and high-riskScore subpopulations. This classifi-
cation was verified through PCA and tSNE approaches.
Overall survival (OS) analysis was implemented with
Kaplan–Meier (K-M) method together with log-rank test.
Area under the receiver operating characteristic curve
(AUC) was computed with “timeROC” package. Uni-
together with multivariate-cox regression methods were
adopted for inferring the independency of the integrin-
based signature as a prognostic parameter. Through the
use of subgroup analysis, we were able to deduce the sensi-
tivity of this signature in prognostic prediction.

2.4. Nomogram Construction. Nomogram was generated
through incorporating independent risky factors (riskScore
and stage) via adopting rms package. ROC curves were uti-
lized for reflecting the predictive capability of the nomo-
gram. Concordance index (C-index) was employed to
estimate the nomogram discrimination through bootstrap
approach with 1000 resamples. Calibration curve was graph-
ically assessed through drawing the actual OS rate against
the probability predicted by this nomogram, with the 45°

line for the ideal prediction. Decision curve analysis was
employed to evaluate the net benefit of the nomogram, rou-
tine clinicopathological parameters, and riskScore.

2.5. Weighted Gene Coexpression Network Analysis
(WGCNA). WGCNA package [22] was adopted to select
the riskScore-specific modules. The transcriptome profiling
was utilized as input for WGCNA, and riskScore was com-
puted as well as defined as the clinical traits. A signed
scale-free coexpression gene network was guaranteed via set-
ting an appropriate power β value and scale-free R2 value as
the soft threshold parameters. Afterwards, we constructed a
coexpression matrix in accordance with β value, and the
input gene expression matrix for classifying genes with sim-
ilar expression pattern into the same gene module, thus pro-
ducing a coexpression module. Association of module
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Eigengenes with riskScore were estimated with Eigengenes
function. Heatmap was generated for visualizing the associ-
ation of each coexpression module with riskScore. Modules
with the strongest association with riskScore were selected
as the riskScore-specific modules.

2.6. Functional Enrichment Analysis. Gene Ontology (GO)
enrichment together with Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis were conducted
through adopting clusterProfiler package [23]. For prevent-
ing high false discovery rate (FDR) in multiple tests, q
-value was inferred for FDR control. A gene set was regarded
as significantly enriched if a p < 0:05 and false discovery rate
<0.025.

2.7. Estimation of Tumor Microenvironment Components.
Seven computational approaches were employed to infer
components within tumor microenvironment. Tumor
Immune Estimation Resource (TIMER) adopts deconvolu-
tion approach to estimate the level of six tumor-infiltrating
immune subsets from gene expression profiling [24].
CIBERSORT applies transcriptome profiles with a prede-
fined immune signature matrix to calculate the deconvolu-
tion of 22 tumor-infiltrating immune cells in a given
sample on the basis of support-vector regression [25]. quant-
TIseq quantifies the fraction of 10 immune cell types utiliz-
ing bulk RNA-sequencing data [26]. MCPcounter
quantifies the absolute abundance of 8 immune together
with 2 stromal cell subsets within heterogeneous tissues
through transcriptomic profiles [27]. XCELL infers 64
immune, and stromal cell types via adopting gene
signature-based approach [28]. EPIC estimates the propor-
tion of immune and cancer cells utilizing bulk gene expres-
sion profiling [29]. Associations of riskScore and genes in
the integrin-based signature with the abundance of tumor
microenvironment components were estimated with Spear-
man’s correlation test.

2.8. Random-Forest Analysis. The relative importance of
genes in the integrin-based signature was ranked via imple-
menting random-forest analysis, and the gene with the high-
est importance was determined. LIMS2 transcript level was
compared between low- and high-riskScore subpopulations.
Association of LIMS2 transcript level with riskScore was
inferred with Spearman’s correlation test. Immunohisto-
chemical staining of LIMS2 in HCC and normal tissue was
acquired from the Human Protein Atlas.

2.8.1. Patients and Tissue Samples. The study was approved
by the Ethic Committee of The National Hospital of Enshi
Autonomous Prefecture. Written informed consent on the
use of clinical specimens from each patient was achieved.
Eight pairs of HCC tissues and matched nontumor tissues
were acquired from HCC patients with written informed
consents who received surgical resection at The National
Hospital of Enshi Autonomous Prefecture. These tissue sam-
ples were confirmed by pathological diagnoses and stored at
-80°C until use.

2.8.2. RT-qPCR. Total RNA from HCC specimens and non-
tumor specimens was extracted by the use of the TRIzol kit
(Invitrogen, China). A reverse transcription kit was applied
to synthesize the cDNA. Based on the instructions of the
SYBR Premix Ex Taq kit (Takara, Dalian, China), Real-
time PCR experiments were carried out. The relative quanti-
fication of genes was assessed using the 2−ΔΔCt method. The
primer sequences were presented as follows: LIMS2 5′-
GCACCGGCACTATGAGAAGAA-3′ (forward) and 5′-
ACGGGCTTCATGTCGAACTC-3′ (reverse), GAPDH 5′-
GCCACATCGCTCAGACACCAT-3′, and 5′-CCCATA
CGACTGCAAAGACCC-3′.

2.9. Statistical Analysis. All statistical tests were conducted
with R software (R Statistical Software, R Foundation for
Statistical Computing, Vienna, Austria). p < 0:05 indicated
statistical significance.

3. Results

3.1. Definition of an Integrin-Based Signature for HCC
Prognostic Outcome. To observe the prognostic signature of
integrin genes, the current study carried out univariate-cox
regression analysis in TCGA-LIHC cohort. Among 128
integrin genes, 35 exhibited significant correlations to OS
(Figure 1(a)). Among them, FBLN1, FLNA, ITGB1, ITGA3,
LAMA5, CDH17, SRC, COL16A1, ITGA2, ZYX, ITGAM,
ITGAV, NME2, ABL1, CD63, ILK, PTGER4, PRKD1,
ADAM9, PTK2, ITGA5, DAB2, ADAM15, BCAR1, ITGB5,
LIMS1, RCC2, CTNNA1, ITGB1BP1, KIF14, RAP1B, and
CDC42 act as risky factors, with LIMS2, SELP, and APOA1
as protective factors. These prognostic integrin genes were
adopted for defining an integrin-based signature with
LASSO approach (Figures 1(b) and 1(c)). The formula of
the integrin-based signature was as follows: riskScore =
0:0827089185245466, ∗ADAM15 transcript level +
0:0709032023435198, ∗CDC42 transcript level +
0:128150636135253, ∗DAB2 transcript level +
0:196471754226477, ∗ITGB1BP1 transcript level +
0:121662581037157, ∗ITGB5 transcript level +
0:207623740869238, ∗KIF14 transcript level + ð−
0:31147424622991Þ, ∗LIMS2 transcript level + ð−
0:0983574871616035Þ, and ∗SELP transcript level
(Figure 1(d)). With K-M curve together with log-rank test,
the prognostic implication of each gene in integrin-based
signature was further verified across TCGA-LIHC. Conse-
quently, highly expressed SELP and LIMS2 correlated to
more favorable OS, with highly expressed KIF14, ITGB5,
DAB2, CDC42, ADAM15, and ITGB1BP1 linked to poorer
OS (Figures 1(e)–1(l)).

3.2. The Integrin-Based Signature Excellently Predicts HCC’s
OS Outcome. We stratified TCGA-LIHC together with
ICGC-LIRI-JP cases into low- and high-riskScore subpopu-
lations following the median riskScore (Figures 2(a) and
2(b)). Both in two cohorts, more dead cases were observed
in high-riskScore subpopulation (Figures 2(c) and 2(d)).
ADAM15, CDC42, DAB2, ITGB1BP1, ITGB5, and KIF14
displayed higher transcript level in high- than low-
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Figure 1: Continued.
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Figure 1: Definition of an integrin-based signature for HCC prognostic outcome in TCGA-LIHC cohort. (a) Forest diagram illustrates the
significant correlations of 35 integrin genes with HCC OS. Red, risky factor; and green, protective factor. (b) LASSO coefficient profiling of
35 prognostic integrin genes describes that the alterations in the magnitude of the variable coefficients shrinks as the penalty value increases.
(c) Penalty diagram shows the partial likelihood deviance under diverse penalty values. (d) The coefficient of each gene in the integrin-based
signature. (e–l) K-M curves of OS outcomes between highly and lowly expressed SELP, LIMS2, KIF14, ITGB5, DAB2, CDC42, ADAM15, or
ITGB1BP1 groups. OS difference was estimated with log-rank test.
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Figure 2: Calculation of the integrin-based signature-derived riskScore in TCGA-LIHC together with ICGC-LIRI-JP cohorts. (a)
Distribution of riskScore across TCGA-LIHC cases. Vertical dashed line denotes the median riskScore. TCGA-LIHC cases are classified
as low- and high-riskScore subpopulations. (b) Distribution of riskScore across ICGC-LIRI-JP cases. (c) Survival time and status across
TCGA-LIHC cases with increasing riskScore. Blue, alive; red, dead. (d) Survival time and status across ICGC-LIRI-JP cases with
increasing riskScore. (e) Heatmap visualizes transcript level of genes in the integrin-based signature across low- and high-riskScore
subpopulations from TCGA-LIHC cohort. Blue, low transcript level; red, high transcript level. (f) Heatmap exhibits transcript level of
genes in the integrin-based signature across low- and high-riskScore subpopulations from ICGC-LIRI-JP cohort.
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Figure 3: The integrin-based signature excellently predicts HCC’s OS outcome. (a) K-M curves depict the OS outcome of two
subpopulations stratified by the median riskScore in TCGA-LIHC cohort. OS difference was inferred with log-rank test. (b) ROC curves
validate the prediction efficacy of riskScore for OS at one, two together with three years in TCGA-LIHC cohort. (c) PCA plots
demonstrate the discrepancy between low- and high-riskScore subpopulations from TCGA-LIHC cohort at the transcriptome level. (d)
tSNE plots prove the discrepancy between low- and high-riskScore subpopulations from TCGA-LIHC cohort at the transcriptome level.
(e) K-M curves show the OS outcome of two subpopulations stratified by the median riskScore in ICGC-LIRI-JP cohort. OS difference
was computed utilizing log-rank test. (f) ROC curves validate the prediction efficacy of riskScore for OS at one, two together with three
years in ICGC-LIRI-JP cohort. (g) PCA plots demonstrate the discrepancy between low- and high-riskScore subpopulations from ICGC-
LIRI-JP cohort at the transcriptome level. (h) tSNE plots prove the discrepancy between low- and high-riskScore subpopulations from
ICGC-LIRI-JP cohort at the transcriptome level.
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riskScore subpopulation, with lower transcript level of SELP,
and LIMS2 in high-riskScore subpopulation across TCGA-
LIHC as well as ICGC-LIRI-JP cases (Figures 2(e) and 2(f)).

Afterwards, OS outcome was compared between sub-
populations across TCGA-LIHC. In contrast to high-
riskScore patients, those with low-riskScore possessed the
notable advantage in OS outcome (Figure 3(a)). ROC curves
were plotted to investigate the prediction efficacy of the
integrin-based signature. Consequently, AUC values of OS
at one, two together with three years were all exceeding 0.7
(Figure 3(b)), proving that this signature excellently pre-
dicted HCC’s OS outcome. To verify the discrepancy
between low- and high-riskScore subpopulations, we
adopted PCA and tSNE approaches across TCGA-LIHC.

As a result, low-riskScore patients signally distinguished
from those with high-riskScore at the transcriptome level
(Figures 3(c) and 3(d)).

Next, the current study observed whether the integrin-
based signature generalized to other cohorts. Similarly, we
computed riskScore of patients from ICGC-LIRI-JP cohort,
which were then classified as low- and high-riskScore subpop-
ulations. As expected, poorer OS outcome was proven in high-
riskScore subpopulation (Figure 3(e)). In addition, AUC
values of OS at one, two together with three years were all over
0.7 (Figure 3(f)). PCA and tSNE demonstrated the arresting
discrepancy between subpopulations (Figures 3(g) and 3(h)).

The integrin-based signature is independent of routine
clinicopathological parameters.
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Figure 4: The integrin-based signature is independent of routine clinicopathological parameters across TCGA-LIHC. (a, b) Forest diagram
shows the associations of riskScore and routine clinicopathological parameters with OS outcome utilizing uni- and multivariate-cox
regression approaches. (c–h) K-M curves of low- and high-riskScore subpopulations in diverse subgroups stratified by routine
clinicopathological parameters.
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Next, the present study estimated the associations of
riskScore and routine clinicopathological parameters with
OS outcome across TCGA-LIHC utilizing univariate-cox
regression approach. Consequently, riskScore together with
stage were linked with poor OS outcome (Figure 4(a)).

Multivariate-cox regression approach was adopted to infer
whether riskScore was independent of routine clinicopatho-
logical parameters. As illustrated in Figure 4(b), riskScore
together with stage acted as independent risky factors of
TCGA-LIHC. The sensitivity of riskScore in prognosis
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Figure 5: Generation of an integrin-based signature- and stage-based nomogram into HCC clinical practice in TCGA-LIHC cohort. (a) The
nomogram incorporating two independent risky factors (riskScore together with stage) for HCC. (b) ROC curves of OS at one, two together
with three years. (c) The C-indices of various variables in short- and long-term OS outcomes. (d) Calibration plots of the nomogram for
predicting the probability of OS at one, three, together with five years. (e–g) Decision curve analysis curves for inferring the bet benefits.
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Figure 6: Selection of integrin-based signature-specific genes across TCGA-LIHC. (a) Gene dendrogram acquired through average linkage
hierarchical clustering. The colored row below the dendrogram depicts the module assignment determined with dynamic tree cut approach.
(b, c) Selection of the optimal soft threshold in accordance with scale independence together with mean connectivity. (d) Associations of
coexpression modules with low- and high-riskScore specimens. Each module comprises correlation coefficient together with p value. (e)
GO enrichment terms of genes in turquoise module. The length of the columns indicates the count of enriched genes. (f) KEGG
pathways of genes in turquoise module. Red denotes high enrichment, and blue denotes low enrichment. The size of the dots represents
the count of enriched genes. (g, h) GO enrichment terms together with KEGG pathways of genes in yellow module.
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Figure 7: Continued.
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prediction was measured in diverse subgroups stratified by
routine clinicopathological parameters (sex, grade, or stage).
In each subgroup, high-riskScore subpopulation possessed
worse OS outcome in contrast to low-riskScore subpopula-
tion (Figures 4(c)–4(h)).

3.3. Generation of an Integrin-Based Signature- and Stage-
Based Nomogram into HCC Clinical Practice. Two indepen-
dent risky factors (riskScore together with stage) were
selected for generating a nomogram for HCC prognostic
prediction (Figure 5(a)). Firstly, points for riskScore and
stage were derived in TCGA-LIHC cases. Total points were
acquired through adding the points of two risky factors,
and the corresponding location of the point of each patient
was observed in the line of total points. At last, the probabil-
ity of one-, three- together with five-year OS for HCC was
referred through plotting a straight line on the bottom three
rows. ROC curves and C-indices were adopted for evaluating
the prediction accuracy of the nomogram. AUC values of OS
at one, two together with three years were all over 0.7
(Figure 5(b)), and the C-indices were over 0.7 for short-
and long-term OS outcomes (Figure 5(c)). In addition, cali-
bration curve illustrated that the one-, three- together with
five-year OS probability predicted by this nomogram was
consistent with the actual OS rate (Figure 5(d)). Above evi-
dence proved the excellent prediction efficacy of this nomo-
gram. Decision curve analysis curves at one-, three- together
with five-year OS displayed the potential for clinical applica-
tion as well as better net benefits (Figures 5(e)–5(g)).

3.4. Selection of Integrin-Based Signature-Specific Genes.
WGCNA was employed for identifying integrin-based
signature-specific genes across TCGA-LIHC. Transcriptome
data and clinical trait (low- and high-riskScore) were input
into WGNCA. The first power value when the index of
scale-free topologies was up to 0.90 was set as the optimal
soft threshold power (β) for establishing a scale-free net-
work, and genes with similar expression patterns were
assigned to the same coexpression module utilizing dynamic
tree cut approach, thus generating 12 coexpression modules
(Figures 6(a)–6(c)). Afterwards, associations of coexpression
modules with low- and high-riskScore were evaluated. Tur-

quoise module exhibited the strongest positive interaction
to low-riskScore (Figure 6(d)). In addition, yellow module
displayed the strongest positive association with high-
riskScore. Thus, genes in turquoise and yellow modules were
regarded as integrin-based signature-specific genes.

Next, biological implication of integrin-based signature-
specific genes was assessed. Genes in turquoise module were
primarily linked to biosynthetic, metabolic, and catabolic
processes together with immune pathways (Figures 6(e)
and 6(f)). Genes in yellow module primarily correlated to
diverse tumorigenic signaling (Figures 6(g) and 6(h)).

3.5. Interactions of the Integrin-Based Signature with
Components within Tumor Microenvironment. Diverse com-
putational approaches were adopted for inferring the inter-
actions of the integrin-based signature with components
within tumor microenvironment across TCGA-LIHC. Over-
all, high-riskScore exhibited higher abundance of immuno-
suppressive cells, and the riskScore was positively
correlated to immunosuppressive cells (Figures 7(a) and
7(b)). In addition, genes from the integrin-based signature
(ADAM15, CDC42, DAB2, ITGB1BP1, ITGB5, KIF14,
SELP, and LIMS2) were strongly linked with the abundance
of components within tumor microenvironment
(Figures 7(c)–7(i)).

3.6. The Importance of LIMS2 from the Integrin-Based
Signature in HCC. Random-forest approach was adopting
for assessing the relative importance of genes in the
integrin-based signature. Consequently, LIMS2 possessed
the highest importance (Figure 8(a)). In contrast to low-
riskScore subpopulation, lower transcript level of LIMS2
was observed in high-riskScore subpopulation
(Figure 8(b)). In addition, LIMS2 transcript level was nega-
tively linked to riskScore (Figure 8(c)). Immunohistochemi-
cal staining demonstrated that LIMS2 protein displayed low
expression level in normal tissue, without detection in HCC
tissue (Figures 8(d) and 8(e)). Finally, we performed RT-
PCR and found that LIMS2 expression was distinctly
decreased in HCC specimens compared with nontumor
specimens (Figure 8(f)).
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Figure 7: Interactions of the integrin-based signature with components within tumor microenvironment across TCGA-LIHC. (a) Heatmap
illustrates the abundance of tumor microenvironment components in low- and high-riskScore subpopulations utilizing diverse
computational approaches. (b) Associations of riskScore with the abundance of tumor microenvironment components. (c–i) Interactions
of genes from the integrin-based signature and riskScore with the abundance of tumor microenvironment components computed
through CIBERSORT, XCELL, CIBERSORT-ABS, QuantTIseq, MCPcounter, EPIC together with TIMER approaches. ∗p < 0:05; ∗∗p <
0:01; ∗∗∗p < 0:001.
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4. Discussion

Despite the notable improvement in HCC research, patients’
outcome remains depressing [30]. Hence, it is imperative to
search for novel tools for HCC prognostic prediction. Evi-
dence demonstrates that integrins affect almost every step
of HCC progression [10]. Herein, eight integrin genes
(ADAM15, CDC42, DAB2, ITGB1BP1, ITGB5, KIF14,
LIMS2, and SELP) were selected and adopted to define an
integrin-based signature. High-riskScore subpopulation dis-
played worse OS, with satisfying prediction efficacy. In addi-
tion, the integrin-based signature was independent of

routine clinicopathological parameters. To facilitate clinical
practice, we produced the integrin-based signature- and
stage-based nomogram that accurately inferred prognostic
outcome, with the excellent net benefit.

Accumulated evidence proves the significance of genes
from the integrin-based signature in HCC. For instance,
ADAM15 metalloproteinase, a multidomain disintegrin pro-
tease, is linked to prognostic outcome, infiltration of
immune cells together with apoptosis in HCC [31]. CDC42
stimulates tumor growth, angiogenesis together with metas-
tatic potential of HCC [32]. DAB2 mitigates tumor growth
and metastasis of HCC [33]. ITGB1BP1 induces HCC
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Figure 8: The importance of LIMS2 from the integrin-based signature in HCC. (a) Assessment of the relative importance of genes in the
integrin-based signature through adopting random-forest approach across TCGA-LIHC. (b) Transcript level of LIMS2 in low- and high-
riskScore subpopulations across TCGA-LIHC. (c) Association of transcript level of LIMS2 with integrin-based signature-derived
riskScore across TCGA-LIHC. (d, e) Immunohistochemical images of LIMS2 in normal and HCC tissues from the Human Protein Atlas.
Bar, 200μm. (f) RT-PCR was applied to examine the expression of LIMS2 in HCC specimens and nontumor specimens. ∗∗p < 0:01.
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metastasis through epithelial-mesenchymal transition [34].
ITGB5 motivates HCC tumorigenesis via elevating β-
catenin stability [35]. KIF14 suppression may interfere with
cell cycle progression together with cytokinesis through hin-
dering p27 ubiquitination signaling in HCC [36]. In addi-
tion, KIF14 expedites growth and sorafenib resistance in
HCC [37]. Microwave responsive nanoplatform through
SELP-mediated drug delivery exhibits the excellent efficacy
in treating HCC with distant metastasis [38].

To unveil the mechanisms underlying the integrin-based
signature-derived riskScore, specific genes were selected,
respectively. Genes with the strongest positive interaction
to low-riskScore were primarily correlated to biosynthetic,
metabolic, and catabolic processes and immune pathways.
In addition, genes with the strongest association with high-
riskScore were principally linked with diverse tumorigenic
signaling. Above data reflected the prognostic difference
between low- and high-riskScore subpopulations.
Tumorigenesis-related inflammation results in the accumu-
lation of immune cells within tumors together with the sur-
rounding environment, which contributed to tissue
remodeling as well as damage in their functions [39].
Immune cells and nonimmune components comprise the
immediate surrounding of tumor cells, named tumor micro-
environment [40]. Components within tumor microenvi-
ronment exert dual roles in HCC. Tumor
microenvironment was in charge of immune surveillance
together with immunoediting [41]. In addition, it facilitates
invasive tumor growth, metastatic potential as well as eva-
sion from immune surveillance [42]. The current evidence
proved the interactions of the integrin-based signature and
their genes with tumor microenvironment components
across HCC.

Among genes from the integrin-based signature, LIMS2
possessed the highest importance. LIMS2 was negatively
linked with riskScore and exhibited low expression in
HCC. Additionally, its expression in HCC was proven via
immunohistochemical staining. Previously, LIMS2 inhibi-
tion contributed to enlargement of liver and tumorigenesis
[43]. Epigenetic silencing of LIMS2 has been found in gastric
cancer [44]. Extracellular vesicles secreted by mesenchymal
stem cells inhibit the progression of cervical cancer by trans-
ferring the microRNA miR-331-3p, which reduces the level
of methylation of LIMS2 in cancer cells [45]. Our study pre-
sented for the first time the importance of LIMS2 in HCC.
LIMS2 might become a potent therapeutic target of HCC.

Nonetheless, this study has a few disadvantages. Firstly,
we utilized the LASSO approach to filter prognostic integrin
genes. Regrettably, the disadvantages of this approach itself
possibly resulted in missing some integrin genes with equally
important contributions when adjusting the regression coef-
ficients. In addition, clinical features incorporated in the
independent analysis of the prognostic signature together
with the establishment of the nomogram were traditionally
considered crucial factors influencing HCC tumorigenesis.
Nonetheless, a few clinical elements with similar contribu-
tions, dietary habits, etc., were not incorporated in our study
as a result of insufficient patients’ information, which might
impact our conclusions. In addition, the efficacy of the prog-

nostic signature used to assess immunotherapeutic response
will be further proven in large clinical trials.

5. Conclusion

In summary, the integrin-based signature was generated and
verified, which possessed predictive significance of HCC
prognostic outcome. Our findings supported the notions
that integrin genes notably correlated to patients’ outcome.
In clinical practice, to measure the transcript level of only
ADAM15, CDC42, DAB2, ITGB1BP1, ITGB5, KIF14,
LIMS2, and SELP might be a cost-effective application and
enabled to offer accurate prognostic prediction of HCC.
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