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Background. Nonspecific orbital inflammation is a common ophthalmopathy with a high prevalence among adult females. Yet, its
molecular mechanisms behind are poorly understood. Regulation of gene expression probably plays an important role in this
disease. Thus, we utilized gene coexpression networks to identify key modules and hub genes involved in nonspecific orbital
inflammation. Methods. Data of gene expression in nonspecific orbital inflammation samples (n = 61) and healthy samples
(n = 28) were obtained from the public Gene Expression Omnibus database. Afterward, differentially expressed genes were
performed. Then, weighted correlation network analysis was done to define the key modules. Next, functional enrichment
analysis was conducted by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway in key modules. Finally, a
protein-protein interaction network and Cytohubba plugin were used to screen hub genes. Results. Differential expression of
716 genes was identified, among which 169 genes were upregulated and 547 genes were downregulated in the nonspecific
orbital inflammation group. In weighted correlation network analysis, we clarified 2 key modules (MEturquoise and MEblue)
that are likely to play key roles in nonspecific orbital inflammation. Functional enrichment analysis indicated that these genes
are predominately involved in immune response and matrix homeostasis. In addition, among 2 key modules, there are 20 hub
genes identified. Conclusion. With this new approach, we identified several genes that could be critical to pathologies of
nonspecific orbital inflammation. These findings may contribute to further therapeutic target development.

1. Introduction

Nonspecific orbital inflammation (NSOI), an idiopathic
chronic proliferative inflammatory disease, was first described
in 1905 by Birch-Hirschfield [1]. It is also known as
“idiopathic orbital inflammatory syndrome” or “orbital pseudo-
tumor.” NSOI accounts for approximately 6%–16% of all
orbital lesions and 11% of orbital tumors [2–4]. It is prevalent
among middle-aged adults, especially females [5, 6]. The
detailed pathophysiological cause for NSOI remains unknown.
Some studies suggest it might be correlated with Streptococcal
pharyngitis, viral upper respiratory infection, or other autoim-
mune disorders, such as rheumatologic disease, multifocal
fibrosclerosis, and Crohn disease [7, 8]. The typical clinical fea-
ture of NSOI is an acute onset of orbital ache and headache, lid

swelling, and proptosis with unilateral polymorphous lymphoid
infiltration [5, 9]. For treatment, steroids are the standard ther-
apeutics [10]. The recurrence rate is still higher than 50% even
with proper corticosteroid treatment [11]. Thus, further under-
standing of the molecular mechanism of NSOI is essential for
the development of novel therapeutic approaches to prevent
recurrence as well as improve the outcomes of patients.

With the support of bioinformatic tools, high-throughput
data analysis was widely used to systematically identify the
functional networks of genes in different disease models, thus
providing important clues for molecular mechanism studies
[12, 13]. In NSOI-related studies, by using microarrays,
Rosenbaum et al. have identified the gene expression profile
NSOI [14]; moreover, they found there is no significant differ-
ence between granulomatosis with polyangiitis (GPA) and
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NSOI [15]. However, little is known about the hub genes
which are closely related to the pathogenesis of NSOI. Herein,
we used a novel tool, weighted gene coexpression network
analysis (WGCNA), to identify the potential molecular inter-
action and correlation networks in this disease. WGCNA is
an effective bioinformatic method to clarify synergetic
expressedmodules and to identify the relationship of gene net-
works at the transcriptome level [16]. It can provide high sen-
sitivity to genes with low abundance or marginal fold changes
[17]. In recent years,WGCNA has been successfully applied in
different disease models to generate correlation networks, fur-
ther identifying candidate biomarkers or therapeutic targets
[18–21].

In our study, WGCNA was used to analyze the differen-
tially expressed genes (DEGs) from 89 samples from a public
dataset. Then, key gene modules related to DEGs were
defined. We also examined the biological functions and
pathways of genes in the key modules. These informative
genes identified in our study may provide a novel insight
into the understanding of the pathogenesis of NSOI. More-
over, the findings may be significant to new therapeutic tar-
get development for the treatment of NSOI patients.

2. Methods

2.1. Data Preparation and Preprocessing. The WGCNA data-
set related to NSOI was downloaded from NCBI GEO
(http://www.ncbi.nlm.nih.gov/geo) with accession number
GSE58331, which consists of 89 samples (28 samples of nor-
mal control, 61 samples of NSOI). The (HG-U133_Plus_2)
Affymetrix Human Genome U133 Plus 2.0 Array platform
was used. Prior to WGCNA analysis, DEGs from the candi-
date genes were identified using the limma package in R
from the Bioconductor website: (http://www.bioconductor
.org/packages/release/bioc/html/limma.html). P < 0:05 and
jlog2 ðfold changeÞj > 1 were considered the cut-off criteria.

2.2. Screening NSOI-Related Key Modules Based on WGCNA.
WGCNA [16] is a typical biologic algorithm for construct-
ing gene coexpression networks. We used the WGCNA to
analyze the expression values of the DEGs obtained in the
previous screening in each group and screened the modules
and genes associated with NSOI. Firstly, to calculate the
adjacency matrix, the trait-based node significance measure
was calculated with the following formula:

Sij = cor i,jð Þ
�
�
�

�
�
�, ð1Þ

where i and j stand for the expression gene i and j, respec-
tively. The Pearson coefficient of these two vectors was
defined as cor. To improve the robustness of the coexpres-
sion network, this transition was designed to give more
weight to the strong connections. Meanwhile, we decreased
the value of weak connections in the predicted coexpression
network.

Subsequently, a power function was then applied to cor-
relate the adjacency of genes:

aij = power Sij ,βð Þ: ð2Þ

Afterward, the adjacency matrix was converted to a
topological matrix using the following formula:

wij =
lij + aij

min ki, kj
� �

+ 1 − aij
: ð3Þ

The topological properties were also confirmed. Then,
the dynamic tree cut method was used to accomplish mod-
ule identification. Highly similar modules were identified
by cluster analysis and then merged with a height cut-off
of 0.95. Furthermore, the p value of gene expression differ-
ence between the NSOI group and control was evaluated
with a Student t-test. The significant gene was defined by
the log P value. The mean value of gene significance (GS)
derived from modules comprising gene was defined as mod-
ule significance (MS).

2.3. Functional Enrichment Analysis in Key Modules. To
understand the functional significance of DEGs in NSOI-
related key modules, the Gene Ontology (GO) enrichment
analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis were performed by
using the R package. We used DAVID 6.7 (https://david-d
.ncifcrf.gov/) online tools to conduct the GO analysis. GO
enrichment analysis consists of cellular component (CC),
molecular function (MF), and biological process (BP). The
cut-off of P value < 0.05 was regarded as significant.

2.4. Protein-Protein Interaction (PPI) Network Analysis. The
PPI network of DEGs was established using the Search Tool
called TRING [22] (Version: 10.0, http://www.string-db.org/
) to predict and analyze the interactions between proteins
encoded by DEGs. In the network, nodes represent genes
and edges represent the interactions between the nodes.
Then, the software Cytoscape (Cytohubba plugin) [23] (Ver-
sion: 3.2.0, http://www.cytoscape.org/) was used to perform
the network analysis.

2.5. Identification of Hub Genes. Based on the PPI network,
the software Cytoscape (Cytohubba plugin) [23] (Version:
3.2.0, http://www.cytoscape.org/) was used to perform the
network analysis. The molecular Complex Detection algo-
rithm was used within Cytoscape to detect crucial gene clus-
ters based on the DEG coexpression network. The top 10 of
the high degree genes in each module were identified based
on the MCC method.

3. Results

3.1. Identification of DEGs between NSOI and Healthy
Controls. To identify the DEGs, the gene microarray data
of 89 samples (28 samples of normal control and 61 samples
of NSOI) were downloaded from the GEO database. After
normalization, batch correction, and gene annotation, gene
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Figure 1: The heatmap (a) and volcano plot (b) of DEGs between NSOI and healthy controls.
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expression distribution of each sample was depicted. Subse-
quently, a total number of 716 DEGs were identified, of
which 169 genes were upregulated and 547 genes were
downregulated in the NSOI group. The gene expression
heatmap and volcano plot are shown in Figures 1(a) and
1(b), respectively.

For bars on the top, the light blue bar indicates a normal
sample, while the light red bar indicates the NSOI sample.

3.2. Identification of Key Modules Based on WGCNA. To bet-
ter understand the gene expression network of NSOI,
WGCNA was performed on the obtained 716 DEGs. Firstly,

1.0

Sc
al

e f
re

e t
op

ol
og

y 
m

od
el

 fi
t,

sig
ne

d 
Rˆ

2 0.5

0.0

–0.5

5

Soft threshold (power)

1

2

3

4

65
7 8 9 1011121314151617181920

10 15 20

Scale independence
1

2

3
4

5 6 7 8 9 1011121314151617181920

250

M
ea

n 
co

nn
ec

tiv
ity

Mean connectivity

200

150

100

50

0
5

Soft threshold (power)

10 15 20

(a)

1.0
Gene dendrogram and module colors

0.9

0.8

H
ei

gh
t

0.7

0.6

Dynamic tree cut

(b)

–0.72
(7e–18)

0.47
(5e–07)

0.6
(2e–11)

0.33
(7e–04)

0.34
(4e–04)

–0.34
(4e–04)

–0.33
(7e–04)

–0.6
(2e–11)

–0.47
(5e–07)

0.72
(7e–18)

1

0.5

0

–0.5

–1

MEgery

MEgreen

MEblue

MEbrown

MEturquoise

Normal

Module-trait relationships (GEO)

NOSI

(c)

G
en

e s
ig

ni
fic

an
ce

 fo
r N

O
SI

Module membership vs. gene significance
cor = 0.7, p = 2.8e–43

0.6

0.7

0.5

0.4

0.3

0.0

0.1

Module membership in blue module

0.2 0.4 0.6 0.80.0

0.6

0.5

0.4

0.3

0.2

G
en

e s
ig

ni
fic

an
ce

 fo
r T

um
or

Module membership turquoise module

Module membership vs. gene significance
cor = 0.16, p = 5.7e–40

0.0

0.1

0.2 0.4 0.6 0.8 1.0

(d)

Figure 2: Identification of key modules based on WGCNA: (a) analysis of the scale-free topology model fit index for soft threshold powers
(β) and the mean connectivity for soft threshold powers. (A) Displays the influence of soft-thresholding power (x-axis) on a scale-free fit
index (y-axis). (B) Shows the influence of soft-thresholding power (x-axis) on mean connectivity (degree, y-axis). The approximate scale-
free topology can be attained at the soft-thresholding power of 8. (b) A cluster dendrogram was built based on the dissimilarity of the
topological overlap, together with assigned module colors. (c) Heatmaps of the plot of the adjacencies in the hub gene network include
the trait weight. (d) The scatter plots of gene significance (GS) versus Module Membership (MM) of MEturquoise and MEblue.
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Figure 3: Functional enrichment analysis of genes in MEturquoise and MEblue by GO and KEGG analyses. (a) Bubble plot showed results
of GO analysis (BP, CC, and MF) in MEturquoise module. (b) Barplot showed KEGG analysis of genes in MEturquoise module. (c) GO
analysis (BP, CC, and MF) of genes in MEblue. (d) KEGG analysis of genes in MEblue.
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network topology analysis was performed to obtain rela-
tively balanced scale independence and mean connectivity
of the WGCNA. As shown in Figure 2(a), the X-axis shows
matrix weighting power while the Y-axis shows a quadratic
correlation index derived from log ðkÞ and log ðPðkÞÞ of
the corresponding network. In this figure, when the correla-
tion index reached 0.90, we took power as 8. Subsequently, a
hierarchical clustering tree (dendrogram) of the 716 genes
was analyzed (Figure 2(b)). Then, five modules (MEtur-
quoise, MEbrown, MEblue, MEgreen, and MEgrey) were
generated with the setting of MEDissThres as 0.25
(Figure 2(c)), of which MEturquoise was identified as the
key module which has the strongest positive correlation with
trait weight of NSOI, while MEblue has the strongest nega-
tively correlation with trait weight of NSOI. The scatter plots
of gene significance (GS) versus Module Membership (MM)
of MEturquoise and MEblue are shown in Figure 2(d).
Taken together, MEturquoise and MEblue were considered
to be the key modules in the NSOI. Both of them were taken
into further study.

3.3. Functional Enrichment Analysis of Genes in
MEturquoise and MEblue. To clarify the biological functions
associated with NSOI in the MEturquoise, functional
enrichment analyses including GO and KEGG pathway
enrichment analyses were performed. For GO biological
processes, genes in MEturquoise were significantly enriched
in “lymphocyte differentiation,” “T cell activation,” and
“lymphocyte activation” (Figure 3(a)). For KEGG pathway
analysis, the genes were mainly enriched in “cytokine−cyto-
kine receptor interaction” and “primary immunodeficiency”
(Figure 3(b)). In genes of MEblue, the GO analysis revealed
that the most significant GO terms were “organismal
homeostasis,” “extracellular matrix,” and “cell−substrate
adhesion” (Figure 3(c)). The KEGG pathway analysis
showed that the most significantly enriched pathways were
“drug metabolism−cytochrome P450,” “fluid shear stress
and atherosclerosis,” and “Wnt signaling pathway.”
(Figure 3(d)) Pathway analysis suggested that local inflam-
mation was involved in the development of NSOI.

3.4. PPI and Coexpression Networks to Identify Hub Genes
Associated with NSOI. Subsequently, PPI network analysis
was used to predict and analyze the interactions between
proteins encoded by DEGs in MEturquoise and MEblue.
As shown in Figures 4(a) and 4(b), for the whole network,
there were 152 nodes in the MEturquoise and 105 nodes
in the MEblue. As highly connected genes in the key mod-
ules (MEturquoise and MEblue), they play significant parts
in the biological processes of NSOI. We chose the top 10
genes ranked by degree of the protein-protein interaction
nodes as candidate hub genes (Table 1). In MEturquoise,
identified hub genes were GNAI1, CXCR4, CCR7, CXCL10,
CCL21, CCL19, CXCL13, CXCL9, HEBP1, and HCAR1
(Figures 5(a) and 5(b)), and in MEblue, hub genes include
SDC2, IGFBP5, FBN1, FSTL1, CHRDL1, SPARCL1, LYZ,
LTF, OLFM4, and TIMP2 (Figures 5(c) and 5(d)).

The node size is based on the PPI degree value.

4. Discussion

In recent years, the high-throughput sequencing technique
generates huge data for biological studies. Until now, the

(a) (b)

Figure 4: PPI network analysis in MEbrown (a) and MEblue (b).

Table 1: Top 10 in network string ranked by MCC method in
MEturquoise and MEblue.

Ranked by MCC MEturquoise MEblue
Gene name Score Gene name Score

1 GNAI1 3628923.0 SDC2 121.0

2 CXCR4 3628804.0 IGFBP5 121.0

3 CCR7 3628801.0 FBN1 121.0

4 CXCL10 3628801.0 FSTL1 120.0

5 CCL21 3628800.0 CHRDL1 120.0

6 CCL19 3628800.0 SPARCL1 120.0

7 CXCL13 3628800.0 LYZ 48.0

8 CXCL9 3628800.0 LTF 48.0

9 HEBP1 3628800.0 OLFM4 48.0

10 HCAR1 3628800.0 TIMP2 48.0
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majority of the existing bioinformatic tools concentrate
only on unweighted networks [14]. However, WGCNA is
a comprehensive novel statistical approach that can be used
for both weighted and unweighted correlation networks
and to further explore the module (cluster) structure in a
network. Moreover, it also can be used to rank genes or
modules in independent datasets to identify the hub genes
[16]. In our study, 2 modules including the turquoise mod-
ule (MEturquoise) and the blue module (MEblue) were
considered to be the key modules in NSOI by using
WGCNA. GO and KEGG pathway enrichment analyses
were performed on genes in these two modules and identify
that inflammation and immune-related pathways are
broadly involved in NSOI.

The development of NSOI is a complex, heterogeneous,
and multifactorial process [24]. In the present study, the
results from GO and KEGG pathway analyses suggested
that immune cells, including lymphocyte and T cells, were
closely associated with the pathogenesis of NSOI. More-
over, the imbalance of cellular homeostasis and dysfunc-
tion of the extracellular matrix could be the other
molecular mechanism of NSOI development. Previous
studies suggested that aberrant immune-mediated produc-
tion of fibrogenic cytokines leads to the progression of
NSOI [25, 26]. Followed studies have focused on NSOI-
related immunophenotypic features. Lowen et al’s [27]
study enrolled 55 cases for exploring the histopathologic
and immunohistochemical pattern of NSOI; they found
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Figure 5: Hub gene identification in MEturquoise and MEblue. Genes labeled with red were considered hub genes.
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that NSOI displayed a predominance of T cells, which
coordinates with our results. Despite the immune alter-
ation, variable degrees of collagen deposition also are con-
sidered an essential pathologic change of NSOI as
previously reported [28, 29]. However, the cellular mecha-
nism remains not fully understood.

PPI networks are useful in cell functions and disease
mechanism prediction, especially for relationships between
the species through conserved pathways and protein com-
plexes, and discover new therapeutic targets [30, 31]. In this
study, based on the DEGs in MEturquoise and MEblue, we
identified 152 nodes in the MEturquoise and 105 nodes in
the MEblue in the whole PPI network. Then, hub genes in
each module were identified based on the Cytohubba degree.
The hub genes include GNAI1, CXCR4, CCR7, CXCL10,
CCL21, CCL19, CXCL13, CXCL9, HEBP1, HCAR1, SDC2,
IGFBP5, FBN1, FSTL1, CHRDL1, SPARCL1, LYZ, LTF,
OLFM4, and TIMP2. Among them, GNAI1, which is known
as G protein subunit alpha i1, has the highest connection
degree. GNAI1 is a member of the GNA family which is
abundantly expressed in immune cells; it mainly participates
in G protein-coupled receptor (GPCR) and non-GPCR sig-
naling pathways [32, 33]. Studies reported that GNAI1
may have effects on angiogenesis by regulating VEGF-
induced Akt-mTOR and Erk-MAPK activation [34]. More-
over, GNAI1 could act as a tumor suppressor in colon can-
cer by regulating the IL6 signaling pathway [35]. The genes
of chemokines and chemokine receptors, such as CXCR4,
CCR7, CXCL10, CCL21, CCL19, CXCL13, and CXCL9,
were enriched in NSOI tissue, suggesting that chemokine-
related factors may play important roles in the pathologic
process of NSOI. Recently, studies demonstrated that
chemokine-related pathways, e.g., IGF-1R and PPARγ sig-
naling pathways, were involved in NSOI [36, 37]. However,
the mechanism of GNAI1 and chemokines in NSOI is insuf-
ficient and needs further investigation.

In summary, with WGCNA network analysis, our study
identifies a coexpression module in genes of patients with
NSOI. Two modules (MEturquoise and MEblue) were found
highly enriched in multiple pathways. Furthermore, the
identified 20 hub genes have the potential to be biomarkers
for the diagnosis and treatment of NSOI.
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