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Interferon plays an important role in immune response of ovarian cancer. However, the expression pattern of interferon in
ovarian cancer remains unclear. This study is aimed at exploring the expression profile of interferon-relate genes and
constructing an interferon-based prognostic signature in ovarian cancer. The ovarian cancer samples collected from TCGA
database were viewed as the training set, and ovarian cancer samples collected from GEO datasets were used as the
independent validation sets. Univariate Cox regression analysis and multivariate Cox regression analysis were used to construct
interferon-related signature, which worked as independent prognostic factor. Bioinformatics based on David software, GSEA,
and R software were used to investigate the relationship between immune status and the signature in ovarian cancer. The
signature showed close correlation with the status for ovarian cancer immune microenvironment, which might provide the
possibility for clinical targeted therapy.

1. Introduction

As one of the common gynecological malignancies, the mortal-
ity of ovarian cancer still ranks first among gynecological
tumors [1, 2]. Research showed that the 5-year survival rate of
ovarian cancer patients was only 44% [3]. At present, the first-
line treatment for ovarian cancer patients is still ovarian cancer
reduction surgery combined with chemotherapy. Although
tumor immunotherapy is in full swing, there is no drug target-
ing ovarian cancer immunotherapy for clinical application [4].
One of the main reasons is that ovarian cancer belongs to the
“cold tumor,” which has poor response to immunotherapy. In
fact, most of the prognostic-related signature researches for can-
cer patients are in view of entire transcriptome without consid-
ering the effect of biological process, which cannot reflect the
immune status of cancer. Interferon (IFN) is a kind of cytokines
secreted by host cells, which can participate in immune
response, especially in cancer [5–7].

Nowadays, the researches on immunotherapy are very
promising, such as PD-1/PD-L1 inhibitors and CAR-T ther-
apy [8, 9]. Although the tumor mutation burden (TMB) of
ovarian cancer is high, it still belongs to the category of “cold
tumor,” which means deficiency of T lymphocyte infiltration
in ovarian cancer immune microenvironment, resulting in
not recognizing those tumor antigens [10]. Therefore, the ben-
efit of immune checkpoint inhibitor treatment is less in ovar-
ian cancer. At present, preclinical trials using modified T
lymphocytes target the molecules including NY-ESO-1,
HER2, MUC16, and p53 in ovarian cancer. In addition, the
total response rate of ovarian cancer treated with anti-PD-1
antibody or anti-PD-L1 antibody alone was 10%~25% [11,
12]. Thus, it is important to find out new targets in immuno-
therapy in ovarian cancer, such as IFN-related genes.

As the first type of cytokines found, it was named “inter-
feron” because the protein could interfere with virus replica-
tion. IFN can be divided into three types according to the
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receptors it binds. Each type of IFN can induce a specific
immune response. In addition, IFN-mediated signaling pro-
motes the upregulation of MHC-I and MHC-II and activates
many downstream signal cascades to generate antiviral
defense mechanisms. Studies also showed that IFN partici-
pated in the regulation of immunemicroenvironment in ovar-
ian cancer. The CD8-positive lymphocytes secreted IFN-γ,
which could upregulate PD-L1 in ovarian cancer cells, thus
promoting the progression of tumor [13]. Gao et al. showed
that IFN-γ could inhibit the progression of ovarian cancer
through upregulating SOCS1 to inhibit the phosphorylation
of STAT3 and STAT5, which further inhibited the migration
and invasion and promoted apoptosis of ovarian cancer cells
[14]. In ovarian cancer mouse model, combination of IL-4
pseudomonas exotoxin with IFN-α and IFN-γ could promote
antitumor effect, which activated the mediators of apoptosis
[15]. However, there were no researches focused on studying
the comprehensive role of IFN-related genes played in ovarian
cancer as a prognostic signature.

In our study, we constructed an IFN-related prognostic
signature, which could not only worked as an independent
prognostic predicting factor but also guided clinicians to
pay attention to the role of IFN-related genes played in reg-
ulating the progression of ovarian cancer. Considering the
specific role of IFN played in cancer immunotherapy, we
tried to investigate the relationship between the novel signa-
ture with immunotherapy response, especially the immune
checkpoints and immune status in ovarian cancer.

2. Materials and Methods

2.1. Public Ovarian Cancer Datasets. All the 458 IFN-related
genes were gathered from gene set enrichment analysis (GSEA)

database, including 25 gene sets (Supplementary Table 1). The
normalized gene expression profiles and clinical parameters of
ovarian cancer patients from The Cancer Genome Atlas
(TCGA) database were downloaded from Firehose for further
study. The independent validation microarray ovarian cancer
cohorts were downloaded from the Gene Expression Omnibus
(GEO) database (accession number: GSE26193 and GSE51088)
based on HGU133 Plus 2 platform.

2.2. Construction of the IFN-Related Prognostic Signature. The
univariate and multivariate Cox regression analyses were ana-
lyzed to evaluate the overall survival and gene expression
values of IFN-related genes. The prognostic p value < 0.01
was considered significantly in univariate Cox regression anal-
ysis for further study. The Akaike information criterion (AIC)
method was used to construct the most appropriate model
through multivariate Cox regression analysis and construct
the six-gene prognostic-related signature as follows: risk
score = ð0:51391 × MED1 expressionÞ + ð0:11716 × CCL15
expressionÞ + ð0:91753 × AXL expressionÞ –ð0:14807×FZD5
expressionÞ – ð0:69668 × SLC30A8 expressionÞ + ð0:73590
× POLR3H expressionÞ. The heat map was constructed to
view the relationship between clinical parameters and
signature-related genes. Themutation platform of the signature
genes was analyzed by cBioPortal from the website. In order to
investigate the six IFN-related gene expression levels in various
cancer cell lines and in distinct ovarian cancer cell lines, the
Cancer Cell Line Encyclopedia (CCLE) database was used.

2.3. Kaplan-Meier Plotters. To explore the prognostic value of
the six signature-related genes, the overall survival (OS),
progression-free survival (PFS), and postprogression survival

Table 1: The IFN-related genes with the prognostic p value < 0.01 using univariate Cox regression analysis.

Gene HR z p value

MED1 1.723210145 3.608815486 0.000307598

CCL15 1.179089666 3.491151846 0.000480943

AXL 3.470834022 3.079644755 0.002072476

TLR2 1.021883244 2.817336898 0.00484237

FZD5 0.823927648 -2.750997775 0.005941405

SLC30A8 0.458055386 -2.625493506 0.008652346

POLR3H 2.227603436 2.609654178 0.009063379

Table 2: The IFN-related genes with the prognostic p value < 0.05 using multivariate Cox regression analysis.

Gene Coef z p value

MED1 0.51391 3.415 0.000638

CCL15 0.11716 2.353 0.018634

AXL 0.91753 2.193 0.028311

FZD5 -0.14807 -2.068 0.038654

SLC30A8 -0.69668 -2.351 0.018701

POLR3H 0.73590 2.348 0.018898
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Figure 1: Continued.
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(PPS) were analyzed by the online database called Kaplan-
Meier (K-M) plotter.

2.4. Biological Process and Pathway Enrichment Analysis.
The “limma” R package was performed to ascertain differen-
tially expressed genes (DEGs) related to the signature value
in ovarian cancer from TCGA database. The DEGs between

the high-risk group and the low-risk group were collected.
Genes with logFC > 1:5 or <−1.5 and p value < 0.05 were
collected for further study. David software from online soft-
ware was used to analyze the GO and KEGG analysis.

2.5. Immune Cell Infiltration Analysis. Cell type identification
by estimating the relative subset of known RNA transcripts
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Figure 1: Relationship between IFN-related signature and prognosis in ovarian cancer. (a) The heat map analysis of the six-gene signature
with clinical parameters. (b) The OS analysis based on the signature in TCGA database, the red line represented the high-risk group and the
blue line represented the low-risk group. (c) The DFS analysis based on the signature in TCGA database, the red line represented the high-
risk group and the blue line represented the low-risk group. (d) Construction of nomogram based on the signature and clinical parameters.
(e) Calibration plot of the nomogram based on 5-year survival represented optimal agreement with the ideal model.
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(CIBERSORT) algorithm is a deconvolution algorithm devel-
oped by Binder G, which can accurately convert the expression
data of tissue genes into the expression data for analyzing the
composition and abundance of different immune cells in tis-
sues. After standardizing the data, we transformed the stan-
dardized data into the relative expression data of 22 immune
cells in ovarian cancer by CIBERSORT algorithm; the samples
with p value < 0.05 were selected for further study. Based on
the risk scores, patients were separated into two groups. The
estimated immune cell proportions based on the CIBERSORT
algorithm of the two groups were represented by box plot. The
immune checkpoint inhibitor-related genes were collected; its
relationship with risk scores was analyzed and showed by heat
map. In addition, in order to investigate the relationship
between immune cells and signature-related gene expression,
online tool TIMER 2.0 database was used.

2.6. GSEA. GSEA was performed to investigate the gene set
enrichment analysis based on risk score of the signature in
ovarian cancer. To justify statistical significance, normalized
enrichment score (NES) and false discovery rate (FDR) were
performed.

2.7. DNA Methylation Analysis of the Six Genes from IFN-
Related Signature. To investigate the role that DNA methyla-
tion of the six genes played in ovarian cancer, we used Gene

Set Cancer Analysis (GSCA) database to explore the correla-
tion between DNA methylation status and mRNA expression
levels in ovarian cancer. Moreover, the survival analysis based
on DNA methylation of genes in ovarian cancer was explored
using cBioPortal database and GSCA database.

2.8. miRNA Analysis Based on the IFN-Related Genes. To
investigate the potential miRNAs that correlated with the
six IFN-related genes, we used the miRWalk database to
investigate the potential miRNAs.

2.9. The Correlation between the Small Molecules or Drugs and
the Signature using CMap Database. The CMap database was
used to reflect the relationship among drugs, compounds, and
diseases based on the alterations. Here, we used the CMap data-
base to predict the potential small molecules or drugs targeting
IFN-related signatures. Therefore, 87 genes upregulated in IFN-
related signatures in ovarian cancer with poor prognosis were
collected as candidate genes in the CMap database for analysis.

2.10. Statistical Analysis. In order to analyze the OS, disease-
free survival (DFS), and PFS of ovarian cancer patients,
Kaplan-Meier method and log-rank test were used. Univariate
Cox proportional hazards regression and multivariate Cox
proportional hazards regression were used to construct the
model and analyze whether the gene or the signature could

POLR3H

SLC30A8

FZD5

AXL

CCL15

MED1

0.6%

Genetic alteration Missense mutation (unknown significance) Amplification Deep deletion No alterations

32%

5%

5%

2.3%

2.6%

(a)

0

0.5

1.0

POLR3H

SLC30A8

FZD5

AXL

CCL15

MED1

PO
LR

3H

SL
C3

0A
8

FZ
D

5

A
XL

CC
L1

5

M
ED

1

(b)

Figure 2: Mutation analysis of the six signature-related genes. (a) The mutation rate analysis of the signature-related genes in ovarian cancer
through cBioPortal database, distinct genetic alterations were represented by various colors. (b) The correlation of the six genes based on
Pearson analysis.
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Figure 3: The expressions of the six signature-related genes in ovarian cancer cells based on the CCLE database. (a) The expression values of
the six genes in various cancer cell lines in total. (b) The expression values of the six genes in distinct ovarian cancer cell lines, the red
represented high expression of genes in cell lines and the green represented low expression of genes in cell lines.
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Figure 4: Continued.
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Figure 4: The survival analysis of six genes based on the K-M plotter database. Overall survival, progression-free survival, and
postprogression survival analysis of (a) MED1, (b) CCL15, (c) AXL, (d) FZD5, (e) SLC30A8, and (f) POLR3H. The red line represented
the high-expression group and the black line represented the low-expression group in ovarian cancer.
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Table 3: The OS using univariate and multivariate Cox regression analysis of the signature in TCGA database.

Variable
Overall survival

Univariate Multivariate
HR p value HR p value

The signature 0.570 <0.001 0.593 0.002
Age 1.019 <0.001 1.017 0.021
Grade 1.180 0.055
Stage 1.659 0.003 1.726 0.064
Residual tumor size 0.437 <0.001 1.726 0.025
BRCA1/2 mutation 2.021 <0.001 2.030 0.001
Lymphatic invasion 1.422 0.114
Venous invasion 0.973 0.917

Table 4: The DFS using univariate and multivariate Cox regression analysis of the signature in TCGA database.

Variable
Disease-free survival

Univariate Multivariate
HR p value HR p value

The signature 0.671 0.009 0.589 0.002
Age 1.012 0.058
Grade 1.219 0.051
Stage 1.432 0.084
Residual tumor size 0.478 0.002 0.485 0.005
BRCA1/2 mutation 1.752 0.020 1.862 0.004
Lymphatic invasion 1.491 0.148
Venous invasion 0.714 0.311
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Figure 5: The correlation analysis of the signature and those related genes with the clinical parameters in ovarian cancer. The expression
analysis of signature and genes based on (a) age, (b) grade, (c) stage, and (d) lymphatic invasion. ∗p < 0:05.
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Figure 6: Continued.
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work as the prognostic factor of ovarian cancer patients inde-
pendently. For the convenient analysis of clinical doctors, the
prognostic nomogram was constructed through R software
using rms package, and a calibration plot was created to per-
form the accuracy of nomogram. The relative scores among

six genes were analyzed by Pearson analysis. The Student t
-test was used to analyze the correlation between clinical
parameters and risk scores, the analysis was two-tailed, and
p value < 0.05 was viewed as statistically significant. All these
data was analyzed using GraphPad Prism 7 software.
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Figure 6: The stratified OS analysis of signature based on distinct clinical parameters. The OS of stratified analysis based on (a) age (young
age and old age), (b) grade (early grade and late grade), (c) stage (early stage and late stage), and (d) lymphatic invasion (no lymphatic
invasion and lymphatic invasion). The red line represented the high-risk group, and the blue line represented the low-risk group.
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3. Results

3.1. Construction of an IFN-Related Prognostic Signature for
Ovarian Cancer. 458 IFN-related genes were gathered from
the GSEA database for univariate Cox regression analysis, and
seven genes (MED1, CCL15, AXL, TLR2, FZD5, SLC30A8,
and POLR3H) with p value < 0.01 were collected (Table 1). In
order to construct an IFN-related signature, multivariate Cox
regression analysis was used, and six genes (MED1, CCL15,
AXL, FZD5, SLC30A8, and POLR3H) with p value < 0.05 were
included (Table 2). To investigate the correlation of the six
genes with the clinical parameters in ovarian cancer, a heat
map was constructed in Figure 1(a). Ovarian cancer patients
were separated into two groups due to the expression of risk
scores calculated by the formula above, and the OS and DFS
were analyzed (Figures 1(b) and 1(c)). The results showed that
patients with higher expressions of risk scores showed worse
prognosis, both in OS and DFS. For the convenience of clinical
doctors, a nomogram was constructed to estimate 5-year sur-
vival probability of ovarian cancer patients; the results showed
that the risk scores played an important role in predicting the
prognosis (Figure 1(d)). A calibration plot was constructed to
show the optimal agreement for patients with 5-year survival,
which represented the nomogram with good predictability
(Figure 1(e)). According to the cBioPortal database, we repre-
sented the gene mutation rate in Figure 2(a), and the correla-
tions between the six genes were analyzed by Pearson analysis
(Figure 2(b)). In pan-cancer cell lines, the expression of the
six IFN-related genes was relatively high in ovarian cancer cell
lines among all the cancer types, which meant these genes

played an important role in regulating ovarian cancer
(Figure 3(a)). In ovarian cancer cell lines, the expression of the
six IFN-related genes was quite different in distinct cell lines.
What is important, we found that the expression of CCL15
and FZD5 was relatively low expressed in ovarian cancer cell
lines, which also showed relative small proportion weight in
the signature (Figure 3(b)).

3.2. The SignatureWorked as an Independent Prognostic Factor
for Ovarian Cancer. To investigate prognostic values of the six
genes in ovarian cancer, the K-M plotter database was used to
investigate the OS, PFS, and postprogression survival (PPS) of
these genes. Results showed that the six genes all showed corre-
lation with the prognosis of ovarian cancer patients (Figure 4).
In order to investigate whether the signature worked as prog-
nostic factor for predicting the prognosis of ovarian cancer
independently, the multivariate Cox regression analysis was
performed with the important clinical parameters, such as
age, stage, grade, residual tumor size, BRCA1/2 mutation sta-
tus, lymphatic invasion, and venous invasion of ovarian cancer
patients. In Table 3, we found that the signature worked as an
independent factor in predicting the OS of ovarian cancer.
What is more, we found that the signature could also work
as an independent factor for predicting the PFS of ovarian
cancer in Table 4. To analyze the relationship of the signature
and the six genes with those clinical parameters, including age,
grade, stage, and lymphatic invasion, patients were divided
based on the various clinical parameters (Figure 5). Thus, we
found that the expression of FZD5 and MED1 correlated with
the age, and CCL15 correlated with lymphatic invasion in
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Figure 7: The OS analysis of the signature based on two independent cohorts from GEO database: (a) GSE26193 and (b) GSE51088. The red
line represented the high-risk group, and the blue line represented the low-risk group.
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Figure 8: GO and KEGG analysis of the signature based on the DEGs of the risk score expressions: (a) BP enrichment; (b) MF enrichment;
(c) CC enrichment; (d) KEGG enrichment. The color of the bubbles represented the p value of the signature, and the size of the bubbles
represented the included gene numbers of the signature.
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Figure 9: The immune analysis of the signature correlated with immune status of ovarian cancer. (a) Seven important immune cell
expressions in the two groups. (b) Plasma cells, CD8+ T cells, M2 macrophages, and resting mast cells were significantly correlated with
the signature. (c) Important immune checkpoint inhibitors were analyzed with risk score of the signature in ovarian cancer. ∗p < 0:05; ∗∗
p < 0:01; ∗∗∗p < 0:001; ∗∗∗∗p < 0:0001; NS: not significant.
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Figure 10: The GSEA was analyzed based on the expression of the signature in ovarian cancer.
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ovarian cancer. To investigate the prognostic value of the sig-
nature in stratified cohorts, patients were divided into different
groups according to age, stage, grade, and lymphatic invasion
(Figure 6). The results showed that the signature could identify
patients with prognosis precisely, without considering those
clinicopathological parameters.

3.3. Validation of the Signature in the Independent Cohorts. In
addition to TCGA cohorts, the signature was also validated in
other independent cohorts from GEO dataset, including
GSE26193 and GSE51088. In Figure 7, we analyzed the OS of
the signature in these two datasets, which showed higher
expression of risk scores with worse prognosis of ovarian can-
cer. For further validation of the role that the signature played
in the independent datasets, univariate Cox regression andmul-
tivariate Cox regression survival analyses were used in
GSE26193 and GSE51088, which showed that the signature
could work as an independent prognostic factor for ovarian
cancer patients (Supplementary Tables 2 and 3).

3.4. The Signature Correlated with Immune Response through
GO and KEGG Analysis. According to the risk scores, the
patients were divided into two groups for further analysis. The
DEGs between the high-risk group and the low-risk group were
analyzed by “limma” packages from R software and showed in
Supplementary Table 4. KEGG and GO analyses were used
based on the 91 DEGs and showed the novel signature
correlated with immune response and inflammatory response
of ovarian cancer (Figure 8).

3.5. Immune Cell Infiltration Profile of the IFN-Related
Signature.Due to the previous reports and the functional anal-
ysis of the signature, we further investigated the relationship
between the signature and immune status of ovarian cancer.
Figure 9(a) shows that the 7 important immune cells repre-
sented different expression weights in the two groups based
on the expression of the risk scores. For further analysis, the
expression of plasma cells, M2 macrophage, and resting mast
cells was significantly upregulated in the high-risk group,

and CD8+ T cells was significantly upregulated in the low-
risk group (Figure 9(b)). 31 molecules related with immune
checkpoint inhibitors in cancer were collected, and most of
the molecules showed significant correlation with the signa-
ture (Figure 9(c)). GSEA were analyzed based on the signature
and showed the signature correlated with ovarian cancer
immune microenvironment, including distinct biological
functions of immune cells, such as B cells, T cells, and natural
killer (NK) cells (Figure 10). The specific data of GSEA is
shown in Table 5. To investigate the correlation between the
six genes and immune cells, TIMER 2.0 database was used
(Figure 11). The results showed that AXL correlated withmac-
rophage and neutrophils, FZD5 correlated with M2 macro-
phages, and POLR3H correlated with macrophage and NK
cells. The most important was that MED1 correlated with
macrophages, neutrophils, NK cells, CD4+ T cells, and T cell
regulatory (Tregs), which showed that it was closely related
to the immune microenvironment in ovarian cancer.

3.6. DNA Methylation Analysis of the IFN-Related Genes in
Ovarian Cancer. To analyze the role that methylated
signature-related genes played in ovarian cancer, we first
explored the correlation between mRNA expression levels of
the genes with its DNA methylation in Figure 12. The results
showed that MED1 mRNA expression positively correlated
with its methylation status, while AXL and POLR3H mRNA
expression negatively correlated with its methylation status.
To further investigate whether the methylated genes corre-
lated with prognosis of ovarian cancer patients, OS analysis
based on cBioPortal database is represented in Figure 13(a).
The results showed that the six methylated genes could not
influence the prognosis of ovarian cancer patients. Other sur-
vival analyses including disease-free interval (DFI), disease-
specific survival (DSS), OS, and PFS of the methylated genes
in ovarian cancer were investigated using the GSCA database
in Figure 13(b). In Supplementary Table 5, the results
showed the p value of survival analysis of the six methylated
gene in ovarian cancer. However, there was no significant
correlation between DNA methylation and prognosis value

Table 5: The GSEA statistics data of the signature based on TCGA database.

Enrichment plot ES NES FDR FWER Nominal p value

GO: adaptive immune response 0.6735596 2.3682117 0 0 0

GO: positive regulation of T cell proliferation 0.72983944 2.3148284 0 0 0

GO: leukocyte migration 0.6692668 2.3699362 0 0 0

GO: interleukin-1 production 0.7497201 2.3146412 0 0 0

GO: leukocyte differentiation 0.64995396 2.3203151 0 0 0

GO: mononuclear cell migration 0.7668914 2.3711784 0 0 0

KEGG: toll-like receptor signaling pathway 0.65039474 2.0473661 0 0 0

KEGG: natural killer cell-mediated cytotoxicity 0.6354623 2.0981436 0 0 0

KEGG: cytokine-cytokine receptor interaction 0.6487897 2.2508793 0 0 0

KEGG: primary immunodeficiency 0.7338493 1.9932709 0.0000798 0.001 0

KEGG: B cell receptor signaling pathway 0.6443853 1.9716772 0.000128 0.002 0

KEGG: chemokine signaling pathway 0.6134719 2.0801277 0 0 0
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Figure 11: The six signature-related genes correlated with the immune cell expressions in ovarian cancer through TIMER 2.0 database. (a)
AXL correlated with macrophages and neutrophils. (b) FZD5 correlated with M2 macrophages. (c) POLR3H correlated with macrophages
and NK cells. (d) MED1 correlated with macrophages, neutrophils, NK cells, CD4+ T cells, and T cell regulatory (Tregs).
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in ovarian cancer. Thus, these results suggested that these
signature-related genes could regulate the prognosis of
ovarian cancer patients through its mRNA expression values,
not due to its DNA methylated status.

3.7. miRNA Analysis of the IFN-Related Genes. In Figure 14,
we analyzed the miRNA-regulated networks of the six IFN-
related genes using miRWalk database. The results showed
that the IFN-related genes correlated with multiple miRNAs,
expect for CCL15.

3.8. Investigation of the Small Molecules or Drugs Targeting
IFN-Related Signature in Ovarian Cancer. The small mole-
cules or drugs that might target the oncogenic pathways based
on the expression of IFN-related signature in ovarian cancer
were explored by the CMap database. Due to the risk scores
of the IFN-related signature in ovarian cancer, DEGs were
explored as above. Here, we found 87 genes significantly
upregulated in the high-risk group, which was used for further
analysis in the CMap database. The top 20 positive correlation
drugs and top 20 negative correlation drugs were collected
according to the connectivity scores (Figure 15). The results
showed that the drugs of bromodomain inhibitor PFI-1
(connectivity score = −0:6848, TAS = 0:3792), sorafenib
(connectivity score = −0:6523, TAS = 0:3490), ATM kinase
inhibitor CGK-773 (connectivity score = −0:6488, TAS =
0:4499), and mineralocorticoid antagonist spironolactone
(connectivity score = −0:6349, TAS = 0:3050) with the signa-
ture strength larger than 200 and replicative correlation larger
than 0.2 could be viewed as the candidate drugs targeting IFN
signature in ovarian cancer (Supplementary Table 6).

4. Discussion

Ovarian cancer is one of the most common malignancies in
women with high mortality rate and poor prognosis. Nowa-
days, computational models have been constructed based on
the sequencing analysis to explore the possible biomarkers in
cancer. IFN is a kind of cytokine family with extensive biolog-
ical activities produced by different cells, which function in
antiviral, immune regulation, inhibition of cell proliferation,
and so on. At present, type I interferon has been used in clin-
ical treatment of hematological tumors and solid tumors
[16–18]. Current studies showed that antitumor mechanisms
of IFN mainly included inhibiting the activity of endothelial
cells, which mediated tumor angiogenesis, and enhancing
the immunogenicity of immune cells, including T cells, NK
cells, DC cells, and macrophages, which showed the close rela-
tionship between IFN expression and immune status of can-
cer, thus influencing the prognosis of cancer patients
[19–22]. Here, we first investigated the role that IFN-related
genes played in ovarian cancer; thus, we constructed a novel
IFN-related signature and investigated its role played in
immunotherapy and prognosis of ovarian cancer.

There were six IFN-related genes (MED1, CCL15, AXL,
FZD5, SLC30A8, and POLR3H) included in our signature.
Some studies showed that these genes played an important
role in the pathogenesis of ovarian cancer. In research of colo-
rectal cancer and ovarian cancer, the mutation of MED1 asso-
ciated with microsatellite instability of cancer cells, which
promoted tumorigenesis [23]. CCL15 mainly correlated with
phenotype of ovarian cancer, which showed significantly
upregulated in mucinous ovarian cancer [24]. FZD5 worked
as the receptor of WNT signaling. In HGSOC, Wnt7B-FZD5
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Figure 13: Survival analysis of methylated signature-related genes in ovarian cancer. (a) The OS analysis of six genes’ (MED1, CCL15, AXL,
FZD5, SLC30A8, and POLR3H) methylation in ovarian cancer using cBioPortal database, the red line represented the altered group and the
blue line represented the unaltered group. (b) Total survival analysis (DFI, DSS, OS, and PFS) of six genes’ methylation in ovarian cancer
using the GSCA database.
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Figure 14: Continued.
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signaling could regulate the epithelial phenotype and stem-like
property [25]. In fact, Wnt5A-FZD5 signaling participated in
regulating the adhesion of ovarian cancer cells. As for AXL,
there were lots of researches focused on ovarian cancer, espe-
cially in chemoresistance. Inhibition AXL could promote the
chemosensitivity to cancer cells, especially platinum and tax-
ane in ovarian cancer [26]. In ovarian cancer, AXL could pro-
mote glycolysis mediated by phosphorylating PKM2 at Y105,
thus inhibiting the chemoresistance of ovarian cancer cells to
cisplatin [27]. However, no related researches of SLC30A8
and POLR3H have been studied in ovarian cancer. Although
these genes showed the correlation with progression of ovar-
ian cancer, there was no study that combined these genes as
the biomarker for studying the role they played in influencing
the prognosis of immune status of ovarian cancer.

As a promising therapeutic target in cancer, the role IFN
played in cancer has been widely discussed. Researches showed
that IFN could not only regulate the cancer cells but also influ-
ence cancer immune microenvironment, including cancer-
associated fibroblasts and other immune cells [28–30]. In our
study, we first explored the role IFN played in ovarian cancer
through constructing a prognostic-related signature using
IFN-related genes. The complex role IFN played in ovarian can-
cer has been widely discussed, and no conclusion has been
reached yet. Therefore, we established an IFN-related signature
as a new prognostic model, which divided patients into two
groups, namely, high-risk group and low-risk group. The per-
formance of the signature was verified by survival analysis and
validated by two independent cohorts. The most important
thing was that the signature worked as prognostic factor of
ovarian cancer patients independently. For further validation,
in the stratified analysis, we found that the signature could also
correlate with the prognosis of ovarian cancer independent of

those clinical parameters. As we all know, nomogram is a good
method to predict the prognosis for ovarian cancer patients in
clinic. Therefore, a nomogram was constructed including these
important clinical parameters, with the risk scores of the signa-
ture, which showed that the risk scores of signature was very
important in predicting the prognosis of ovarian cancer.
Through all these validation methods, we found that the signa-
ture worked as the prognostic characteristics for ovarian cancer
patients.

As early as in 1969, it was first reported that IFN could
inhibit tumor growth in animals. In 1986, FDA approved
IFN as the drug for antitumor therapy. However, in recent
years, people began to rethink the important role of IFN in
determining tumor development, disease progression, and
treatment response. Studies showed that mesenchymal stem
cells could promote tumor growth by releasing high concen-
trations of nitric oxide and recruiting macrophages to tumor
sites [31, 32]. After genetic engineering, mesenchymal stem
cells secreted IFNα which could play the antitumor role
[33]. In our study, we found the signature-related genes such
as AXL, FZD5, POLR3H, and MED1 were related to the
immune cell expressions in ovarian cancer. Based on DEGs
between these two groups according to the risk scores, GO
and KEGG analysis combined with GSEA analysis was per-
formed, which showed that immune status and inflamma-
tory status of ovarian cancer were correlated with the IFN-
related signature. In fact, the signature not only correlated
with the immune cells expressions in ovarian cancer micro-
environment but also correlated with different kinds of
immune checkpoint inhibitors. Most importantly, we found
that plasma cells, M2 macrophages, and resting mast cells
were significantly upregulated in the high-risk group, which
showed worse prognosis. At the same time, CD8+ T cells

(e) (f)

Figure 14: Analysis of the miRNA networks according to the signature-related genes in ovarian cancer using miRWalk database: (a) MED1;
(b) CCL15; (c) AXL; (d) FZD5; (e) SLC30A8; (f) POLR3H.
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were upregulated in the low-risk group, which showed favor-
able prognosis. These results reflected the accuracy of our sig-
nature to a certain extent. Thus, we assumed that the novel
IFN-related signature significantly related to the immune
microenvironment status of ovarian cancer, which may be a
new direction of immunotherapy for ovarian cancer.

5. Conclusion

In conclusion, we constructed a novel IFN-related prognos-
tic signature associated with the immune status of ovarian
cancer, validated by two other independent cohorts. There-
fore, this signature could predict the prognosis for ovarian
cancer, which also might be helpful for illustrating the appli-
cation of immunotherapy for ovarian cancer patients.
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