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The abundance of gut microbiota is significantly decreased in patients with colorectal tumors compared to healthy groups.
However, few studies have been conducted to correlate the differences in gut microbiota in colon cancer patients with different
prognosis. In this study, we analysed the gut microbiota among patients with colon cancer and determined the microbial
characteristics of COAD and divided the overall survival of COAD data into the high- and low-risk groups. In addition, we
established a microbiome-related gene map and determined the association between microbial features and immune cell
infiltration in COAD. In comparison with the low-risk group, the high risk group of COAD samples exhibited a decreased
proportion of activated CD4 T cells as well as an increased proportion of M2 macrophages. The current data suggested that
different gut flora backgrounds lead to different gene expression profiles, which in turn affect immune cell typing and
colorectal tumor prognosis.

1. Introduction

Colon cancer is one of the leading causes of cancer deaths
worldwide [1], and there are many studies on the molecular
mechanisms of colon carcinogenesis, among which the reg-
ulation of the intestinal microecosystem that determines
the expression of oncogenes is a hot topic [2]. Fusobacter-
ium nucleatum and anaerobic streptococci can promote
the occurrence, development, and treatment of colorectal
tumors [3, 4]; probiotics such as lactobacilli can inhibit the
occurrence and development of colorectal tumors and can
improve postoperative indicators and reduce complications
in patients with colorectal cancer [5]. Therefore, it is impor-
tant to genotype the gut microbiota profile before treating
patients with colon cancer, which requires an understanding

of the correlation between the gut microbiota profile and the
overall risk of colon cancer.

It has been known that both innate and adaptive immu-
nities are involved in the development of tumors and gut
microbiota play a key role in regulating the intestinal immu-
nity [3, 6]. The altered immunity predisposes the host to
acquire adenomatous or carcinogenic changes or impact
the prognosis of the colorectal cancer patients. For example,
Fusobacterium nucleatum induces mucin secretion and
inflammatory cytokines during contact or invasion of
colonic cells and also inhibits the immune process against
tumors and suppresses the activity of natural killer cells, thus
promoting the development of colorectal cancer [7]. How-
ever, few comprehensive studies have been conducted to
correlate the differences in gut microbiota in colon cancer
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patients with their immune cell profiles and the prognosis of
patients.

This study analysed the composition and differences in
the gut microbiota of colon cancer patients. Significant dif-
ferences in the gut microbiota of colon cancer patients were
found at the family levels. We used the corresponding gut
microbiota to study the prognostic risk and grouping of
colon cancer patients. And differential gene expression pro-
files associated with them were identified.

2. Materials and Methods

2.1. Collection and Processing of the COAD RNAseq Dataset.
The RNA sequencing dataset and the clinically related data
for COAD originated from the TCGA database (https://
portal.gdc.carcinoma.gov/), which consists of 410 samples.
The raw gene expression dataset was processed. Probe IDs
received the annotation toward the gene from the correspond-
ing platform annotation profile of the GDC website, and the
raw matrix data received the quantile normalization and
log2 conversion. Samples with missing data were excluded.

2.2. Building a Microbial Signature. The association between
COAD microbiome and overall survival time in TCGA cases
was studied. Univariate Cox regression analysis was carried
out for identifying the genes associated with survival (p value
< 0.05). Subsequently, the significance of candidate genes
was selected using variable importance in a randomized sur-
vival forest (RSF) algorithm. A risk score model with the
selected microbial signature was built using multivariate
Cox regression approaches. In addition, the Kaplan-Meier
test was employed for a number of gene features, and p
values (log) were determined. Receiver operating character-
istic (ROC) analysis was performed for 3- and 5-year overall
survival rates, and area under the curves (AUCs) were deter-
mined for assessing the specificity and sensitivity of the
microbial signature.

2.3. Microbiome Analysis. Based on the operational taxo-
nomic unit (OTU) results generated by sample sequencing,
the phyloseq R package was used to calculate the alpha
diversity distance matrices. Microbiome analysis was other-
wise done using microbiomeanalyst.ca website. Alpha

Table 1: Top gut microbial correlating with high or lower risk of colon cancer mortality.

Gene Coefficie nt P value Gene Coefficient P value

Piscirickettsiaceae 247.19 P < 0.001 Mesoaciditogaceae -140.792 P < 0.001

Syntrophaceae 114.643 P < 0.001 Hyphomonadaceae -107.232 P < 0.001

Listeriaceae 87.535 P < 0.001 Bacillaceae -85.157 P < 0.001

Aquificaceae 86.796 P < 0.001 Thermoanaerobacterales_Family_IV._Incertae_Sedis -72.364 P < 0.001

Comamonadaceae 79.195 P < 0.001 Peptococcaceae -61.483 P < 0.001

Ignavibacteriaceae 62.405 P < 0.001 Alcanivoracaceae -59.424 P < 0.001

Mariprofundaceae 54.515 P < 0.001 Actinomycetaceae -56.622 P < 0.001

Chromobacteriaceae 41.484 P < 0.001 Syntrophorhabdaceae -56.583 P < 0.001

Limnochordaceae 40.748 P < 0.001 Rickettsiaceae -54.024 P < 0.001

Acidothermaceae 39.392 P < 0.001 Ruminococcaceae -53.921 P < 0.001

Phyllobacteriaceae 36.895 P < 0.001 Rhodospirillaceae -48.748 P < 0.001

Symbiobacteriaceae 35.305 P < 0.001 Alicyclobacillaceae -43.438 P < 0.001

Bacteroidaceae 35.118 P < 0.001 Oscillochloridaceae -41.465 P < 0.001

Salinisphaeraceae 35.031 P < 0.001 Gallionellaceae -39.995 P < 0.001

Chitinivibrionaceae 34.137 P < 0.001 Methylothermaceae -37.641 P < 0.001

Marinilabiliaceae 33.292 P < 0.001 Mycobacteriaceae -36.452 P < 0.001

Frankiaceae 33.195 P < 0.001 Caldisericaceae -36.349 P < 0.001

Marinifilaceae 32.807 P < 0.001 Sporichthyaceae -35.514 P < 0.001

Oleiphilaceae 32.446 P < 0.001 Cryptosporangiaceae -33.537 P < 0.001

Halobacteriovoraceae 31.806 P < 0.001 Burkholderiaceae -33.496 P < 0.001

Puniceicoccaceae 30.899 P < 0.001 Fimbriimonadaceae -32.953 P < 0.001

Magnetococcaceae 28.051 P < 0.001 Kordiimonadaceae -31.766 P < 0.001

Nannocystaceae 26.418 P < 0.001 Saccharospirillaceae -31.468 P < 0.001

Porticoccaceae 25.824 P < 0.001 Jiangellaceae -29.333 P < 0.001

Nakamurellaceae 24.696 P < 0.001 Promicromonosporaceae -28.741 P < 0.001

Eubacteriaceae 23.719 P < 0.001 Legionellaceae -26.135 P < 0.001

Rubrobacteraceae 23.458 P < 0.001 Cellvibrionaceae -21.792 P < 0.001

Ferrimonadaceae 22.347 P < 0.001 Gordoniaceae -21.702 P < 0.001
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Figure 1: Continued.

3Disease Markers



diversity refers to the diversity of species in a given region or
ecosystem and is commonly measured by the Shannon’s and
Simpson’s indices. Shannon’s index is correlated with the
diversity, while Simpson’s index is inversely proportional
to the diversity. Beta diversity analysis is a comparative
analysis between groups of species diversity among different
ecosystems or microbial communities to obtain similarities
or differences in community composition among different
grouped samples.

2.4. Statistical Methods. Statistics investigations were carried
out with R software (version 3.6.0). Kaplan-Meier tests and
ROC analysis were performed as we described previously
[8, 9]. In brief, we utilized the “survivor” and “survROC”
software packages in both analyses [10]. Optimal cut-off
data points were calculated using the “survminer” package
[11]. Single-variate and multivariate Cox regression correla-
tions were used to assess the prognosis-correlated factors of
interest. Hazard ratios and 95% confidence intervals were
presented for all the prognosis-correlated factors.

Analysis of differences between groups was performed
using GraphPad Prism 8.0 software. Measures were shown
as the mean ± standard deviation. Student t-tests were used
for comparisons between two groups if they met a normal
distribution and had a homogeneous variance.

3. Results

3.1. Building a Microbial Signature. COAD tumor micro-
biomes were obtained from the pan cancer microbiome of
cBioportal website and then integrated with their respective
clinical data. To screen for the crucial survival-related fac-
tors, the microbial from COAD tumor were analysed using
multivariate Cox regression for the TCGA dataset, and the
risk scoring system was then built using these 180 microbials
with multivariate Cox analysis using the TCGA clinical data-
set (Table 1). In accordance with the formula, a risk score
was calculated for the respective cases. COAD tumor in the
TCGA dataset was then divided into the high-risk and
low-risk cohorts with the optimal cut-off data for the risk
score. Kaplan-Meier curves showed that the high-risk group
survived for shorter periods in comparison with those
patients in the low-risk cohort (Figure 1(a)). ROC curve
analysis of the COAD cases was plotted, and this showed
an AUC of 1 for 3- and 5-year survivals (Figure 1(b)). Sub-
sequently, the microbials were screened based on with the
best cut-off data, and 15 were significantly downregulated
and Frankiaceae was upregulated (Figures 1(c) and 1(d)).
Kaplan-Meier curves also confirmed that Frankiaceae is
associated with the high risk and Lactobacillaceae is classi-
fied as the beneficial factor (Figures 1(e) and 1(f)).
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Figure 1: Identification of COAD prognosis correlated microbiome. (a) Kaplan-Meier (KM) analysis of the risk group that was defined with
prognosis correlated microbiome in the TCGA dataset for COAD. (b) Three- and five-year ROC survival curves of the risk groups for
COAD TCGA dataset. (c) A volcano plot of the differential microbials in the two risk groups of COAD. (d) List of the top differential
microbials. Kaplan-Meier (KM) survival analysis of (e) Frankiaceae and (f) Lactobacillaceae in the COAD patients.
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3.2. Microbiome Analysis of the High- and Low-Risk Groups.
The analysis of the community composition both COAD
groups showed the gut microbiota in patients with colon
and rectal cancer at the Phylum level (Figures 2(a) and
2(b)). Based on the genus level, alpha diversity analysis of
samples from the high- and low-risk groups showed that
the difference in Shannon’s index was not statistically signif-
icant; Simpson’s index was also not statistically significant
(Figure 2(c)). NMDS analysis showed that at the family level,
the difference in bacterial gut microbiota community
between the two groups was significant (Figure 2(d)), sug-
gesting a significant difference in the composition of gut
microbiota between high- and low-risk patients. A random
forest “classification” approach was used to find key bacteria
associated with groupings (Figure 2(e)).

3.3. DEG Identification. COAD cases in the TCGA dataset
were categorized according to high- or low-risk score. To
screen for the crucial survival-related factors, the DEGs from
the two risk groups were analysed with Wilcoxon’s test and
were enriched for the KEGG pathway analyses (Figures 3(a)
and 3(b)). GSEA KEGG pathway analyses were done using
webgestalt.org website [8]. Of those pathways, PPAR signal-
ing was upregulated and the IL17 signaling was decreased in

the high risk group (Figures 3(c) and 3(d)). Interestingly,
IL1beta and IL23 were downregulated, which refers to a
decreased IBD signaling (data not shown). These function
data are correlated with the estimated infiltration of immune
cell subsets into the COAD tumor samples, which is
obtained using the CIBERSORT deconvolution of COAD
bulk-seq data (Figure 3(e)).

3.4. Constructing a Microbial-Related Gene Signature. The
DEGs of the COAD high- or low-risk groups were analyzed
using single-variate Cox regression for the TCGA dataset,
and a total of 2 genes were identified to be significantly cor-
related to survival in these patients (p < 0:05) (Figure 4(a)).
The risk scoring system was then built using these 20 genes
with multivariate Cox analysis using the TCGA dataset.
Kaplan-Meier curves showed that the high-expressing group
survived for fewer periods in comparison with those patients
in the low-risk cohort (Figure 4(b)). To estimate the predic-
tive power of genetic characteristics, ROC curve analysis of
the COAD cases were plotted and this showed an AUC of
0.795 for 3 year-survival and 0.802 for 5 year-survival
(Figure 4(c)). This provides a potential microbial-related
gene signature for the assessment of COAD patients before
their further treatment.
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Figure 2: Microbiome analysis of the high- and low-risk groups of COAD. (a) Composition of the gut microbiota at the phylum level in
patients with high and low risk. (b) Core microbiome analysis of family level. (c) Alpha diversity analysis of samples in the high and low
risk dataset. (d) Two-dimensional scatter plot of nonmetric multidimensional scale analysis of gut microbiota family gate levels in
COAD cancer patients. (e) A random forest “classification” approach was used to find key bacteria associated with groupings.
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Figure 3: Continued.
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Figure 3: Profiling the gene expression of the high-risk microbiome-related genes. (a) A volcano plot of the DEGs between high- and low-
risk groups of COAD samples. (b) Bar graphs showing the enriched KEGG pathways of the risk DEGs. GSEA plots showed the upregulated
(c) PPAR signaling and the downregulated (d) IL17 signaling. (e) Bar graphs showing the CIBERSORT estimated infiltration of immune cell
subsets into the COAD high- and low-risk samples.
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Figure 4: Constructing a microbiome related prognosis gene signature for COAD. (a) A volcano plot showing the significant genes obtained
from Cox regression analysis of survival-related DEGs in the high- and low-risk groups of COAD samples. (b) KM investigation of the risk
model for the significant gene signatures. (c) Three- and five-year ROC curves of COAD TCGA dataset for the gene signatures.
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4. Discussion

After human birth, a large number of microorganisms start
to colonize and reproduce in the intestine, inducing the forma-
tion of the body’s immune system and playing an important
role in body homeostasis [12]. In addition to gastrointestinal-
related diseases, dysbiosis of gut microbiota also plays a con-
tributing role in the pathogenesis of Parkinson’s disease and
Alzheimer’s disease, and microbiomics has become a major
research hotspot at present [13, 14]. Previous studies have dem-
onstrated that the abundance of gut microbiota is significantly
decreased in patients with colorectal tumors compared to
healthy groups [15]. However, few studies have been conducted
to correlate the differences in gut microbiota in colon cancer
patients with different prognoses. In this study, we analysed
the composition and differences of gut microbiota among
patients with colon cancer.

Using a Cox proportional risk model, we determined the
microbial characteristics of COAD and divided the overall
survival of COAD data into two risk groups, with high-risk
cases showing a poorer prognosis. In addition, we estab-
lished a microbiome-related gene map and determined the
association between microbial features and immune cell
infiltration in COAD using the TCGA dataset. The high-
risk group of COAD samples exhibited a decreased propor-
tion of activated CD4 T cells as well as an increased propor-
tion of M2 macrophages, indicating the impact of high risk
microbials on the activation and differentiation of macro-
phage and T cells (Figure 3(e)). However, a further study
would be expected to investigate the underlying mechanism.

The composition and function of intestinal commensal
bacteria vary among colon cancers with different prognoses,
as do the interactions between hosts and microorganisms. The
entire intestine is a vast mutually beneficial ecosystem. By divid-
ing the intestinal commensal gut microbiota into additional
subgroups, we can gain a clearer understanding of the molecu-
lar mechanisms of action of the different gut microbiota. Dys-
biosis and translocation are strongly associated with colorectal
cancer, and microbiome analyses are expected to be very valu-
able noninvasive biomarkers for colorectal cancer diagnosis.
In addition, gut microbiota are potential therapeutic targets to
inhibit the proliferation and metastasis of colorectal cancer.

It is well known that the successful application of
immune checkpoint blockade is attributed to the ability of
the antitumor immune response, which largely depends on
T cell activation. However, tumor-infiltrated cells often
exhibit T-cell exhaustion. In this study, we explored the
tumor immune environment using the information of
microbiomics from COAD patients and constructed a prog-
nostic signature, which may facilitate to screen patients for
immunotherapy. However, our study was retrospective. In
the future, the researchers need more prospective studies to
further apply and validate our findings.
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