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Emerging research has substantiated that pyroptosis-related biomarkers were mightily related to the clinical outcome of patients
with clear cell renal cell carcinoma (ccRCC). However, a single-gene biomarker’s moderate predictive power is insufficient, and
more accurate prognostic models are urgently needed. We conducted this investigation in order to develop a robust
pyroptosis-related gene signature for use in risk stratification and survival prognosis in colorectal cancer. We downloaded
transcriptomic data and survival information of ccRCC patients from TCGA. Bioinformatic methods were used to generate a
pyroptosis-related gene signature based on data from TCGA training cohort. ROC curve, uni- and multivariate regression
analyses were used for the prognostic assays. What is more, we explored the relationship between model-based risk score and
the tumor microenvironment. Herein, 11 pyroptosis-related hub genes (CASP9, TUBB6, NFKB1, BNIP3, CAPN1, CD14,
PRDM1, BST2, SDHB, TFAM, and GSDMB) were determined as risk signature for risk stratification and prognosis prediction
for ccRCC. Kaplan-Meier curves, ROC curves, and risk plots were employed to analyze and verify its performance in all
groups. Multivariate assays exhibited that risk score could be an independent prognostic factor for patients’ OS. ESTIMATE
algorithm showed a higher immune score in the group of high-risk. Overall, a novel pyroptosis-related gene signature
generated can be employed for prognosis prediction of ccRCC patients. This may assist in individual treatment of clinical
decision-making.

1. Introduction

Renal cell carcinoma is a malignant tumor originating from
the urinary tubular epithelial system of the renal paren-
chyma and accounts for 2-3% of malignant cancers in adults
[1]. RCC can have several histological subtypes, the most
common of which is clear cell renal cell carcinoma (ccRCC)
and accounts for 70%-85% of cases [2]. ccRCC often lacks
clinical manifestations in its early stages and is detected in
more than half of patients during physical examinations or

other diseases. Additionally, about 30% of the patients are
already found to have distant metastases at the time of initial
consultation, often presenting with pathological fractures,
cough, hemoptysis, etc.

Before 2005, cytokine therapy was used to treat advanced
renal cell carcinoma, but the effect was poor [3]. With tar-
geted drugs and immune checkpoint inhibitors, some
patients have improved survival [4]. However, the prognosis
of most patients remains unsatisfactory. What is more, some
patients are not sensitive to the above treatments and may
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suffer from side effects, emphasizing individualized treat-
ment for patients with ccRCC [5]. Therefore, an effective
prediction model is required for the prediction of the strati-
fication of patients accurately. In recent years, the availabil-
ity of large public datasets of gene expression provides an
opportunity to develop new predictive tools based on
prognosis-related genes.

Pyroptosis is a programmed cell death that induced by
gasdermin-mediated inflammasomes [6]. Pyroptosis is rec-
ognized as a crucial part in removing various bacterial and
viral infections [7]. Dysregulation of pyroptosis may lead
to lowered efficiency and malfunction of pathogen clearance,
motivating impaired adaptive immune defenses and conse-
quently tissue damage [8]. Gasdermins belong to the gasder-
min superfamily, including six members in human. GSDMD
and GSDME were reported as essential participants in the
pyroptosis. In the classic inflammatory pathway, a series of
pathogen-associated molecular patterns (PAMP) or
danger-associated molecular patterns (DAMP) activate
inflammasomes. Then, GSDMD is cleaved into two frag-
ments by the activated caspase-1. Additionally, Rogers
et al. demonstrated that GSDME is cleaved explicitly by
caspase-3 to produce its N-terminal fragment, which is per-
forated at the plasma membrane to induce pyroptosis.

Recently, emerging evidence indicated that pyroptosis
was chemically induced in tumor cells in the absence of
any bacterial or viral infection [9]. In some cases, particu-
larly in cancer treatment, cell death may be favorable for
human health [10]. The activation of pyroptosis can
inhibit the onset and progression of cancer [11]. Chemo-
therapy drugs, reagents, and natural products have been
shown to activate pyroptosis and inhibit tumor progres-
sion. For instance, in lung cancer, topotecan, bleomycin,
actinomycin-D, and doxorubicin can induce pyroptosis
through caspase-3 cleavage of a gasdermin [12]. In mela-
noma cells, loss of eEF-2K inhibited autophagy and
increased pyroptosis, thereby modulating cellular sensitiv-
ity to doxorubicin [13]. Moreover, As2O3 nanoparticles
(As2O3-NPs) increase the expression of GSDME-N in
hepatocellular carcinoma cells, which resulting in pyropto-
sis [14]. In osteosarcoma, dioscin suppresses the growth of
tumor cells via inducing apoptosis, pyroptosis, and in vitro
and in vivo [15].

In the initial and progression of ccRCC, there are limited
studies on the pyroptosis-associated genes. During the
occurrence and development of ccRCC, the specific mecha-
nisms of pyroptosis remain unclear. To take advantage of
the complementary value of genes and clinicopathological
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Figure 1: A flowchart depicting the gene signature of ccRCC found in this study, as well as its entire analysis.
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features, a complete predictive model for individuals with
ccRCC was developed by combining pyroptosis-associated
genes with clinical factors.

2. Materials and Methods

2.1. Data Collection. The transcriptomic data, including 539
ccRCC specimens and 72 nontumor specimens, were down-
loaded from The Cancer Genome Atlas database (https://
portal.gdc.cancer.gov/). All data have been standardized by
FPKM. After excluding duplicate samples and samples lack-
ing survival data, we finally obtained RNA sequencing data
of 72 normal kidney specimens and 530 ccRCC specimens.
The correlated clinical characteristics of all patients were
also obtained.

2.2. Identification of Differentially Expressed PRGs (DE-
PRGs). The GeneCards database has a thorough list of PRGs,
which was used to create this list. For the purpose of identi-
fying DE-PRGs with an adjusted P 0.05 or less between
ccRCC and nontumorous samples, the Wilcoxon tests and
the “limma” R package were employed.

2.3. GO and KEGG. A GO and KEGG pathway enrichment
analysis was performed on DE-PRGs using the “clusterPro-
filer” R package to investigate the biological functions and
processes of the DE-PRGs under investigation [16].

2.4. Construction and Validation of a Prognostic Pyroptosis-
Related Gene Signature. All patients were randomized into
four groups at random using a 6 : 2 : 1 : 1 ratio: the training
group, testing set one, testing set two, and testing set three.
Then, we began to construct a risk model. The hub PRGs
were screened using multivariate tests, and a model was con-
structed, and the regression coefficients of hub PGRs were
also obtained. Secondly, each ccRCC patient was assigned a
risk score based on the following formula: exp gene 1 ∗ β
gene 1 + exp gene 2 ∗ β gene 2 + exp gene 3 ∗ β gene 3 +⋯
exp gene n ∗ β gene n (exp gene stands for the relative
expressions of hub PGRs). Thirdly, patients with ccRCC
patients were classified into low- and high-risk subgroups
according to the median risk score. Fourthly, Kaplan-Meier
assays were applied to estimate overall survival rates. Finally,
we used the “Survival ROC” R software package to evaluate
the predictive abilities of our model.
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Figure 2: Identification of DE-PRGs between normal specimens and ccRCC specimens. (a) The heat map of DE-PRGs. (b) The top ten
upregulated and downregulated PRGs.

4 Disease Markers

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/


BP
CC

M
F

0.1 0.2 0.3

regulation of interleukin−1 production
Regulation of interleukin−1 beta production

Interleukin−1 production
Interleukin−1 beta production

Cellular response to biotic stimulus
Cytokine secretion

Response to molecule of bacterial origin
Response to lipopolysaccharide

Positive regulation of establishment of protein localization
Positive regulation of cytokine production

Multivesicular body
Specific granule

Cytoplasmic vesicle lumen
Secretory granule lumen
Inflammasome complex

Vesicle lumen
Cytosolic part

Membrane region
Membrane microdomain

Membrane raft

Scaffold protein binding
Cysteine−type endopeptidase regulator activity involved in apoptotic process

Lipopolysaccharide binding
Cysteine−type endopeptidase activity involved in apoptotic process

Protease binding
Cysteine−type peptidase activity

Cysteine−type endopeptidase activity
Ubiquitin protein ligase binding

Endopeptidase activity
Ubiquitin−like protein ligase binding

GeneRatio

0.003

0.002

0.001

qvalue

Count
10

20

30

(a)

Figure 3: Continued.

5Disease Markers



Positive regulation of cytokine production

Interleukin−1 beta production
Interleukin−1 production Cytokine secretion

Response to lipopolysaccharide
CLEC5A

GBP5
NLRP1

IFI16

CARD8

TLR2

HMGB1

MRE11
CASP8

DHX9

P2RX7

PANX1

NLRP7

GSDMD

NFKB1
IL18

IRF3
BIRC3

ZBP1
CD14
NLRP3IL13

FADDGLMN
CASP1CEBPB

AIM2
AGER

MALT1
PYCARD

CD274

STAT3

LY96

IRF1

TREM2

BIRC2
NLRC4

MEFV

CPTP
SERPINB1

NOS2

CHI3L1

GBP1
CASP3

NR1H2
CASP9

AKT1
VIM

NOS1
GJA1 IRGM

4

8

12

16

Fold change

Category
Cytokine secretion
Interleukin−1 beta production
Interleukin−1 production
Positive regulation of cytokine production
Response to lipopolysaccharide

Size
21

26

31

36

(b)

Figure 3: Continued.

6 Disease Markers



Kaposi sarcoma−associated herpesvirus infection
Neutrophil extracellular trap formation

Human cytomegalovirus infection
Yersinia infection

Toll−like receptor signaling pathway
p53 signaling pathway

Non−small cell lung cancer
Hepatitis C

Cytosolic DNA−sensing pathway
TNF signaling pathway

Influenza A
C−type lectin receptor signaling pathway

NF−kappa B signaling pathway
Pathogenic Escherichia coli infection

Hepatitis B
Small cell lung cancer

Measles
Epstein−Barr virus infection

Tuberculosis
Pertussis

Necroptosis
Apoptosis−multiple species

Platinum drug resistance
Toxoplasmosis

Apoptosis
Lipid and atherosclerosis

Legionellosis
Salmonella infection

Shigellosis
NOD−like receptor signaling pathway

0 10 20 30

0.00015

0.00010

0.00005

qvalue

Gene count

(c)

Figure 3: Continued.

7Disease Markers



2.5. Identification of the Independent Prognostic Factors and
Construction of a Nomogram. In the present study, uni- and
multivariate assays were applied for the determination of
independent prognostic factors. Using the independent
prognostic factors, we construct a nomogram for ccRCC
patients.

2.6. Association of Risk Score and Tumor Microenvironment.
In this study, the immune and stromal scores were examined
using the ESTIMATE algorithm. Then, CIBERSORT algo-
rithm was used to determine the TIICs’ content. We quanti-
tatively compared the distribution of TIIC subtypes between
low and high subgroups. P < 0:05 was statistically significant.
Given that ICIs have been used therapeutically to treat
ccRCC, we also investigated if the risk score may be associ-
ated with regulators associated with the ICI class.

2.7. Cell Culture and Cell Transfection. The ccRCC cell lines
(786-O, ACHN, A498) and human renal tubular epithelial
cell line (HK-2) were purchased from the American Type
Culture Collection (ATCC, USA). DMEM medium (Gibco,
USA) with 10% fetal bovine serum (FBS, Gibco) was applied
to culture the cells with 5% CO2 at 37

°C.
786-O and ACHN cells were seeded at 70-80% con-

fluency before transfection and transfected with siRNAs
using Lipofectamine 2000 (Invitrogen, Pudong, Shanghai,
China) based on Manufacturer’s Guide. The effects of
BST2 were determined by the use of RT-PCR. All the
siRNAs (30nM) were synthesized by Genepharma
(Shanghai, China).

2.8. Cell Counting Kit-8 (CCK-8) Assay. The cellular viabil-
ities were examined using CCK-8 (CP002, SAB, Nanjing,
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Figure 3: GO and KEGG assays of DE-PRGs. (a) GO analysis of DE-PRGs; (b) enriched GO enrichment terms and corresponding DE-
PRGs; (c) KEGG signaling pathway analysis of DE-PRGs; (d) enriched cancer-related pathways and corresponding DE-PRGs.
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Jiangsu, China) based on the manufacturer directory. The
absorbance was used to plot proliferation curves at each time
point (24, 48, 72, and 96h).

2.9. Statistical Analysis. A gene signature was created by the
use of multivariate assays, which confirmed the existence of
survival-related genes. The prognostic values of the model
were described using Kaplan-Meier assays and a log-rank
test. Time-dependent ROC curve was used to examine the
predictive abilities of risk model. The Wilcoxon test was
used for the comparison of immune infiltrating cells and
immunosuppressive molecules between the two groups.
Student’s t-test was performed to analyze the significance
of differences between two groups. P value < 0.05 was
considered statistically significant. All statistical analyses
were performed using R (version 3.6.1) and SPSS 20.0
software (Chicago, IL, USA).

3. Results

3.1. Data Preparation. The flowchart of this study is shown
in Figure 1. 530 ccRCC patients from TCGA datasets were
collected for this study.

3.2. Identification of DE-PRGs. DE-PRGs between ccRCC
specimens and noncancerous specimens were screened by
the use of the “limma” R program. Herein, a total of 108
DE-PRGs (upregulated genes: 84 and downregulated genes:
24 were identified). Figure 2(a) shows the heat map of all

DE-PRGs. Figure 2(b) depicts the top ten PRGs that were
up- and downregulated in ccRCC.

3.3. GO and KEGG Analyses of DE-PRGs. Using the “cluster-
Profiler” R package, a functional enrichment analysis of
these DE-PRGs was carried out in order to gain a better
understanding of the biological systems and potential path-
ways that these DE-PRGs are involved in. As exhibited in
Figure 3(a), in the BP group, DE-PRGs were mainly involved
in cytokine secretion and response to lipopolysaccharide.
For CC, DE-PRGs were related to vesicle lumen, cytosolic
part, membrane region, membrane microdomain, and the
membrane raft; moreover, significantly enriched MF
included cysteine-type peptidase, endopeptidase activity,
and ubiquitin protein ligase binding. Figure 3(b) depicts
the five considerably enriched GO keywords as well as the
pertinent DE-PRGs that were involved in their develop-
ments. KEGG analysis showed that DE-PRGs are mainly
enriched in apoptosis, salmonella infection, Shigellosis, and
NOD-like receptor signaling pathway (Figure 3(c)).
Figure 3(d) displays the five significantly enriched signaling
pathways.

3.4. Construction and Validation of a Prognostic Signature
Based on Survival-Related PRGs. To establish a prognostic
signature, univariate assays were conducted to screen
survival-associated PRGs, and 46 PRGs remarkably associ-
ated with OS of patients with ccRCC in TCGA training set
were identified (P < 0:05) (Table S1). Subsequently, to
create a gene signature, multivariate assays were used in
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conjunction with each other. Eventually, 11 hub PRGs
(CASP9, TUBB6, NFKB1, BNIP3, CAPN1, CD14,
PRDM1, BST2, SDHB, TFAM, and GSDMB) were
screened (Figure 4). The genetic mutations of 11 hub
PRGs are displayed in Figure 5(a). Additionally,
Figures 5(b)–5(l) show the Kaplan-Meier curves of 11
hub PRGs in ccRCC. The regression coefficients of 11
hub PRGs are exhibited in Table S2. We calculated the
risk score by the use of the following formula: risk score
= ð1:174 ∗ CASP9Þ + ð0:359 ∗ TUBB6Þ + ð−0:6 ∗NFKB1Þ
+ ð−0:404 ∗ BNIP3Þ + ð−0:827 ∗ CAPN1Þ + ð0:404 ∗ CD14
Þ + ð−0:643 ∗ PRDM1Þ + ð0:225 ∗ BST2Þ + ð−0:544 ∗ SDHB
Þ + ð0:973 ∗ TFAMÞ + ð0:307 ∗GSDMBÞ. Subsequently, in
the training set, when comparing high-risk patients to
low-risk patients, Kaplan-Meier assays revealed that high-
risk patients had a shorter overall survival time
(P < 0:001) (Figure 6(a)). ROC assays also demonstrated
its diagnostic value (Figure 6(b)). Then, each patient’s
risk score in all groups was likewise calculated. The
Kaplan-Meier assays indicated a distinctly excellent OS in

the low-risk group (testing-1: P < 0:01, testing-2: P < 0:01,
testing-3: P < 0:05, and entire group: P < 0:001)
(Figures 7(a)–7(d)). The AUC of the gene signature in
the testing-1 cohort for 1-year, 3-year, and 5-year OS
were 0.781, 0.746, and 0.770 (Figure 7(e)). The AUC of
the gene signature in the testing-2 cohort and testing-3
cohort is exhibited in Figures 7(f) and 7(g). The AUC of
the gene signature is shown in Figure 7(h). The
distribution of the risk score and survival status and the
expression of 11-PRGs in the all groups are presented in
Figures 7(i)–7(l), respectively.

3.5. Identification of Independent Prognostic Factors,
Construction of a Nomogram, and Correlation of Prognostic
Signature with Clinical Features. Univariate assays revealed
that age, histological grade, clinical stage, and risk score were
distinctly related to OS of ccRCC patients (Figure 8(a)). Fur-
ther multivariate assays indicated that age, N stage, and risk
score were independent prognostic factors for ccRCC
patients (Figure 8(b)). In addition, among other clinical
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Figure 5: Genetic mutation and survival analysis of hub PRGs. (a) Genetic alteration of hub PRGs in ccRCC patients. (b–l) Kaplan-Meier
curves of hub PRGs.

12 Disease Markers



factors, we discovered that risk score had the highest AUC in
predicting 3- and 5-year OS in ccRCC (Figures 8(c) and
8(d)). Moreover, we used age, N stage, and risk score to
develop a prognostic nomogram (Figure 8(e)); calibrate
curves revealed that the nomogram performed well at overall

survivals in ccRCC cases (Figures 8(f)–8(h)), suggesting the
robust prognostic abilities of this new nomogram. Besides,
we assessed the association of risk score with clinical fea-
tures, and the result indicated that there was no statistical
difference between risk score and the above clinical features
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Figure 6: Incorporation of 11 hub PRGs into the development of a predictive signature. (a) In the training cohort, the survival curves for
high- and low-risk subgroups were plotted; (b) time-dependent ROC curve.
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(Figures 9(a)–9(d)). However, elevated risk score was signif-
icantly correlated with advanced clinical stage (P < 0:001,
Figure 9(e)), T stage (P < 0:01, Figure 9(f)), and higher his-
tological grade (P < 0:01, Figure 9(g)).

3.6. Functional Enrichment Analyses. A total of 1,179 DEGs,
which met the criteria with the absolute value of logFC > 1

and FDR < 0:05, were identified. Figures 10(a) and 10(b)
show the pattern of DEGs, respectively. DEGs were signifi-
cantly enriched in cornification, extracellular structure orga-
nization, keratinization, and epidermis development; in
terms of cellular components, DEGs were distinctly involved
in intermediate filament cytoskeleton and extracellular
matrix component. Moreover, DEGs were noticeably
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Figure 7: Testing the predictive signature based on 11 pyroptosis-associated genes in different cohorts to determine its reliability. (a–d) The
Kaplan-Meier survival curves of the 11-PRG prognostic signature in several groups. (e–h) Time-dependent ROC curves. (i–l) Risk score
distribution, survival status, and heat map.

20 Disease Markers



Age

Gender

Grade

Stage

T

M

N

riskScore

pvalue

0.007

0.988

< 0.001

< 0.001

< 0.001

< 0.001

0.022

< 0.001

1.033 (1.009−1.057)

0.996 (0.570−1.741)

2.091 (1.412−3.098)

1.756 (1.361−2.265)

1.737 (1.255−2.404)

3.990 (2.233−7.131)

3.319 (1.190−9.256)

1.154 (1.095−1.217)

0.50 1.0 2.0 4.0 8.0

Hazard ratio

Hazard ratio

(a)

Age

Gender

Grade

Stage

T

M

N

riskScore

pvalue

0.001

0.438

0.307

0.886

0.855

0.140

0.008

0.035

Hazard ratio

1.046 (1.018−1.076)

1.270 (0.694−2.324)

1.276 (0.799−2.038)

1.076 (0.395−2.930)

1.097 (0.408−2.950)

3.006 (0.698−12.957)

5.227 (1.552−17.610)

1.072 (1.005−1.144)

0.50 1.0 2.0 4.0 8.0 16.0

Hazard ratio

(b)

Figure 8: Continued.

21Disease Markers



0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

1.0

0.8

0.6

0.4

0.2

0.0

Risk score (AUC = 0.779)
Age (AUC = 0.615)
Gender (AUC = 0.455)
Grade (AUC = 0.671)
Stage (AUC = 0.713)
T (AUC = 0.660)
M (AUC = 0.636)
N (AUC = 0.545)

(c)

0.0 0.2 0.4 0.6 0.8 1.0

Risk score (AUC = 0.814)
Age (AUC = 0.632)
Gender (AUC = 0.490)
Grade (AUC = 0.628)
Stage (AUC = 0.664)
T (AUC = 0.626)
M (AUC = 0.613)
N (AUC = 0.530)

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

1.0

0.8

0.6

0.4

0.2

0.0

(d)

Points
0 10 20 30 40 50 60 70 80 90 100

Age
30 35 40 45 50 55 60 65 70 75 80 85 90

N
0

1

riskScore
0 2 4 6 8 10 12 14 16 18 20 22 24 26

0 20 40 60 80 100 120 140 160

0.9 0.8 0.7 0.5 0.3 0.1

0.9 0.8 0.7 0.5 0.3 0.1 0.01

0.8 0.7 0.5 0.3 0.1 0.01

Total points

3−year survival

1−year survival

5−year survival

(e)

Figure 8: Continued.

22 Disease Markers



0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94

A
ct

ua
l 3

−y
ea

r O
S 

(P
ro

po
rt

io
n)

1.00

0.95

0.90

0.85

0.80

0.75

0.70

Nomogram−predicted probability of 1−year OS

(f)

0.55 0.60 0.65 0.70 0.75 0.80 0.85

1.0

0.9

0.8

0.7

0.6

0.5

0.4

A
ct

ua
l 3

−y
ea

r O
S 

(P
ro

po
rt

io
n)

Nomogram−predicted probability of 3−year OS

(g)

Figure 8: Continued.

23Disease Markers



involved in metal ion transmembrane transporter activity,
receptor ligand activities, peptidase inhibitor activities, and
peptidase regulator activities (Figure 10(c)). KEGG pathway
analysis showed that DEGs were mainly enriched in Staphy-
lococcus aureus infection, neuroactive ligand-receptor inter-
action, coagulation cascades, hypertrophic cardiomyopathy,
calcium signaling pathway, pancreatic secretion, and IL-17
signaling pathway (Figure 10(d)).

3.7. Tumor Immune Microenvironment Analyses. ESTI-
MATE showed that immune infiltration was distinctly lower
in the low-risk groups compared to the high-risk groups,
which was not unexpected (P < 0:01; Figure 11(a)), and the
stromal score did not alter in any way (Figure 11(b)). Then,
we used the CIBERSORT algorithm to examine the esti-
mated fraction of 22 immune cells. Samples with a calculated
P value of <0.05 were included to assure the analysis’s accu-
racy, and the results are illustrated in Figure 11(c). Pearson
correlation analysis revealed that risk scores were positively
related to immune infiltration levels of memory B cells
(Figure 11(d)), plasma cells (Figure 11(e)), activated mem-
ory CD4+ T cells (Figure 11(f)), follicular helper T cells
(Figure 11(g)), regulatory T cells (Tregs) (Figure 11(h)),
and M0 macrophages (Figure 11(i)), whereas risk score
was negatively associated with immune infiltration levels of
immune infiltrates of M1 macrophages (Figure 11(j)), rest-
ing mast cells (Figure 11(k)), and neutrophils
(Figure 11(l)). As displayed in Figure 12(a), cases with
high-risk scores displayed increased expressions of PDCD1,
CTLA4, LAG-3, and CD276, whereas HAVCR2 and CD274
were highly expressed in patients with low-risk score.
Figure 12(b) shows the circus map of the correlation between
risk score and immunosuppressive molecules. Specifically,

LAG-3 (Figure 12(c)), CTLA4 (Figure 12(d)), CD276
(Figure 12(e)), and PDCD1 (Figure 12(f)) were positively
related to the risk scores, whereas CD274 (Figure 12(g)) and
HAVCR2 (Figure 12(h)) were negatively related to the risk
scores.

3.8. The Effects of BST2 Knockdown on the Proliferation of
ccRCC Cells. Then, our group detected the expressions of
BST2 in ccRCC cells by the use of RT-PCR. As shown
in Figure 13(a), BST2 expression was distinctly increased
in three ccRCC cells compared with HK-2 cells. To study
the potential functions of BST2 in ccRCC, our group con-
structed siRNA targeting BST2, and then, si-BST2-1 and
si-BST2-2 were transfected into 786-O and A498 cells to
downregulate BST2 expression (Figure 13(b)). Next,
CCK-8 assays showed that BST2 knockdown suppressed
the proliferation of 786-O and A498 cells (Figures 13(c)
and 13(d)). Our findings suggested BST2 as an oncogene
in ccRCC cells.

4. Discussion

Cell death is the irreversible cessation of life phenomena
and the end of life; it occurs in normal specimens and is
necessary to maintain organizational functions and mor-
phologies. In tumor cells, accelerating cancer cell death
can inhibit cancer progression and angiogenesis. Pyropto-
sis is an inflammatory form of cell death triggered by spe-
cific inflammatory vesicles, which can lead to the cleavage
of GSDMD/GSDME and activation of certain inactive
cytokines [11]. Pyroptosis was closely associated with cer-
tain diseases such as cardiovascular and neurological dis-
orders [17, 18]. Recently, growing researches have found
that pyroptosis played a significant role in in the
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occurrence, developments, and treatment of tumors. Sev-
eral pyroptosis-related genes have been proved to be
related to cancer progression. For instance, in pancreatic
cancer, loss of MST1inhibited the progression of tumor
cells at least partially through ROS-induced pyroptosis
[19]. In non-small-cell lung cancer, overexpression of

p53 significantly reduces tumor growth and mortality by
increasing the level of pyroptosis in vivo and vitro, while
loss of p53 is the opposite [20]. Tom20 senses iron and
then transmitted ROS to the mitochondria, thereby induc-
ing pyroptosis in melanoma cells [21]. Besides, certain
compounds, natural substances, and drugs have proved
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their effects on pyroptosis. Qiao et al. [22] have confirmed
that α-NETA induced pyroptosis of ovarian cancer cells
via GSDMD. Zheng et al. [23] have revealed that metfor-
min induced mitochondrial dysfunctions, which drives
caspase-3/GSDME-mediated pyroptosis in cancer cells.
Pizato et al. [24] showed that Omega-3 induced pyroptosis
cell death in breast cancer cells. Hu et al. have demon-
strated that disulfiram could inhibit pyroptosis by blocking
the gasdermin D pore formation. Deng et al. [25] have
suggested that BIX-01294 promoted chemotherapy effects
in gastric cancer via modulating GSDME-mediated pyrop-
tosis. In general, pyroptosis has attracted widespread atten-
tion, and inducing pyroptosis cancer cells offers a new
approach to antitumor therapy. In a previous study,
pyroptosis-related signature was identified as independent
prognostic factors for esophageal adenocarcinoma and
was used to assess patient’s risk stratification [26]; how-
ever, the potential values of pyroptosis-associated signature
for the prediction of clinical outcome in ccRCC are
unclear.

In this study, we investigated the signaling pathways
closely correlated with the risk scores. Herein, 11 hub PRGs
(CASP9, TUBB6, NFKB1, BNIP3, CAPN1, CD14, PRDM1,
BST2, SDHB, TFAM, and GSDMB) were applied to success-
fully construct an 11-PRG risk signature. Subsequently, we
found that the risk sore performed well in all groups. This
is reflected in the higher-risk scores indicating a poorer

prognosis for patients in all four groups. Besides, we found
that the 11-PRG genetic risk model independently predicted
overall survival in ccRCC patients, and that the risk score
was effective in predicting 3-year and 5-year OS of patients
with ccRCC. Next, we built a predictive nomogram utilizing
the risk score and other clinicopathological factors, which
was also confirmed in ROC assays. Taken together, we con-
structed a robust 11-gene signature associated with apopto-
sis and built a validated nomogram for prognostic
prediction in ccRCC.

In the present study, 11 hub PRGs (CASP9, TUBB6,
NFKB1, BNIP3, CAPN1, CD14, PRDM1, BST2, SDHB,
TFAM, and GSDMB) were included in the risk signature.
They were associated with pyroptosis, some of which are
associated with the progression of malignant tumors.
CASP9 (caspase-9), a member of the cysteine-aspartic acid
protease (caspase) family, was confirmed to play a crucial
role in cancer progression [27, 28]. Tsuchiya et al. [29]
found that CASP9 plays a key role in the process of
caspase-1-mediated pyroptosis in GSDMD-deficient cells.
Salinas et al. [30] confirmed that pharmacological reduc-
tion of TUBB6 expression or stabilization of microtubules
with paclitaxel (Taxol) increases pyroptosis. NFKB1
(nuclear factor kappa B subunit 1), also known as NF-
κB, is a transcriptional regulator that can be activated by
multiple intracellular and extracellular factors, and the
activated NFKB translocates further into the nucleus to
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Figure 11: Associations of risk score with tumor immune microenvironment in ccRCC. (a) Differences in immune score between low- and
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based on risk score. (d–i) Correlation analysis confirmed that risk score was positively associated with immune infiltration levels of
immune cells. (j–l) Correlation assays demonstrated that risk score was negatively associated with immune infiltration levels of immune
infiltrates of M1 macrophages, resting mast cells, and neutrophils.

33Disease Markers



⁎⁎ ⁎⁎⁎ ⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎

0

20

40

60

80

LAG3

CTLA4

HAVCR2
CD27

6

PDCD1
CD27

4

ris
kS

co
re

Group

High

Low

(a)

LAG3

CTLA4

H
A

V
CR

2

CD
27

6

PDCD1

CD274

riskScore

0
0.

2
0.4

0.6

0.8

1

1.2

1.4
1.6

1.8 0 0.2
0.4

0.6

0.8

1

1.2

1.4
1.6

0

2.0
0.

4
0

0.2

0.4
0

0.2

0.4

0.6

0.8
11.21.4

1.6

1.8
0

0.2

0.4

0.6
0

0.2
0.4

1

0

−1

(b)

Figure 12: Continued.

34 Disease Markers



R = 0.25, p = 8.2e−06

0

20

40

60

0 10 20 30 40

riskScore

LA
G

3

(c)

R = 0.25, p = 4.4e−06

0

2

4

6

0 10 20 30 40

riskScore

CT
LA

4

(d)

R= 0.28, p = 4.9e−07

0

20

40

60

0 10 20 30 40

riskScore

CD
27

6

(e)

R = 0.21, p = 0.00017

0

20

40

60

0 10 20 30 40

riskScore

PD
CD

1

(f)

Figure 12: Continued.

35Disease Markers



modulate the expression of genes with multiple biological
functions [31]. In lung cancer, the NF-κB signaling path-
way was reported to be closely associated with the regula-
tion of apoptosis in tumor cells [32]. BNIP3 (BCL2
interacting protein 3), also known as NIP3, encodes a
mitochondrial protein that is a proapoptotic factor. Dys-
regulation of BNIP3 expression is associated with mitoph-
agy, autophagy, and pyroptosis [33–35]. CAPN1 (calpain
1) is a member of the calpains that are nonlysosomal,
intracellular cysteine proteases. A recent report indicated
that CAPN1 serves as a promoter of cancer progression,
and abnormal expression of CAPN1 promotes malignant
behavior of various tumors [36–38]. Additionally, loss of
CAPN1 reduces myocardial ischemia-reperfusion injury
through the pyroptosis in mice [39]. Emerging evidence
showed that CD14 is a multitalented receptor, which was
distinctly involved in the pathogenesis of inflammation,
atherosclerosis, tumor, and metabolic diseases [40]. It
was reported that its receptor (TLR4) could mediate
pyroptosis in human hepatoma-derived HuH-7 cells [41].
Chai et al. [42] revealed that abnormal PRDM1 expression
is closely correlated with the proliferation and metastasis
of colon cancer cells. BST2 (bone marrow stromal cell
antigen 2) encodes a protein that may play a role in pre-
B cell growth and in rheumatoid arthritis. SDHB is the
subunit of the succinate dehydrogenase complex, which
was mainly involved in the oxidation of succinate, carries
electrons from FADH to CoQ. Patients with SDHB muta-
tions are susceptible to malignant disease with limited
therapeutic chooses and adverse prognosis [43]. Wu
et al. [44] found that the SDHB/ROS pathway was
involved in the induction of pyroptosis and promotion of

atherosclerosis in mice. TFAM (mitochondrial transcrip-
tion factor A) encodes a hub mitochondrial transcription
factor, which mainly functions in mitochondrial DNA rep-
lication and repair. Integrated genomics analysis confirmed
that TFAM is a critical driver in drug resistance in mela-
noma [45]. Several researches reported that GSDMB
expression was distinctly increased in several types of
tumors [46]. Additionally, Panganiban et al. found that
cleavage of GSDMB protein by caspase-1 induces pyropto-
tic cell death [47]. They demonstrated the roles of 11 hub
PRGs in pyroptosis as well as in carcinogenesis. However,
whether CASP9, TUBB6, NFKB1, BNIP3, CAPN1, CD14,
PRDM1, BST2, SDHB, TFAM, and GSDMB played a role
remained to be further studied, and there are few relevant
studies.

Then, we performed GO and KEGG assays and observed
that the enriched biological function terms were mainly
related to cell proliferation and differentiation. Interestingly,
KEGG pathway results showed that DEGs are mainly
involved in neuroactive ligand-receptor interaction, IL-17
signaling pathway, and calcium signaling pathway, and we
therefore speculated that the pyroptosis-related risk signa-
ture might be related to tumor immunity. Accumulating evi-
dence demonstrated that tumor microenvironment
regulated tumorigenesis and progressions. In this research,
our group observed that the high-risk group exhibited
higher immune scores, suggesting the high-risk group
showed a higher degree of immune cell infiltration com-
pared to the low-risk group. However, they promoted tumor
progression by suppressing effective antitumor immunity
[48]. What is more, elevated levels of M0 macrophages have
been demonstrated to be related to an unfavorable clinical
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prognosis of cancer [49]. A previous study suggested that
LAG-3 knockdown resulted in increased T cell [50]. B7-H3
(CD276) plays a vital role in suppressing T cell function.
Some researchers found that that B7-H3 was significantly
overexpressed in various human solid cancers and often
associated with poor clinical outcomes [51]. PDCD1 (PD-
1) plays critical roles in T cell coinhibition and exhaustion,
and increased levels of PD-1 predicted disease progressions
in many types of tumors [52]. Immune checkpoint inhibi-
tors may be more beneficial for high-risk individuals,
according to the aforementioned studies.

5. Conclusions

Our research constructed and validated a robust 11-PRG risk
signature. However, further in vitro and in vivo experiments
with larger sample sizes must be performed to explore the

exact biological roles behind genes associated with apoptosis
and survival outcomes in ccRCC.
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