
Research Article
A Pyroptosis-Based Prognostic Model for Immune
Microenvironment Estimation of Hepatocellular Carcinoma

Zhihong Chen ,1,2 Yiping Zou,1,2 Yuanpeng Zhang,1 Zhenrong Chen,1 Fan Wu,1

Haosheng Jin ,1 and Ning Shi 1

1Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences,
Guangzhou 510080, China
2College of Medicine, Shantou University, Shantou 515041, China

Correspondence should be addressed to Haosheng Jin; kinghaos@126.com and Ning Shi; shining_doc@163.com

Received 18 August 2021; Revised 29 November 2021; Accepted 2 December 2021; Published 10 January 2022

Academic Editor: Sachchida Nand Rai

Copyright © 2022 Zhihong Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Hepatocellular carcinoma (HCC), an aggressive malignant tumor, has a high incidence and unfavorable prognosis.
Recently, the synergistic effect of pyroptosis in antitumor therapy and regulation of tumor immune microenvironment has
made it possible to become a novel therapeutic method, but its potential mechanism still needs further exploration.
Methods. Differentially expressed genes with prognostic value in Liver Hepatocellular Carcinoma Project of The Cancer Genome
Atlas (TCGA-LIHC) cohort were screened and incorporated into the risk signature by Cox proportional hazards regression
model and least absolute shrinkage and selection operator. Kaplan-Meier (KM) curves and receiver operating characteristic
(ROC) curves were applied to conduct survival comparisons and estimate prediction ability. The dataset of Liver Cancer-
RIKEN, Japan Project from International Cancer Genome Consortium (ICGC-LIRI-JP) cohort was used to verify the reliability
of the signature. Correlation analysis between clinicopathological characteristics, immune infiltration, drug sensitivities, and risk
scores was conducted. Functional annotation analyses were performed for the genes differentially expressed between high-risk
and low-risk groups. Results. A risk signature consisting of 6 pyroptosis-related genes in HCC was developed and validated. KM
curves and ROC curves revealed its considerable predictive accuracy. Higher risk scores meant more advanced grade, higher
alpha-fetoprotein level, and stronger invasive ability. Overexpressed genes in high-risk population were more enriched in the
immune-associated pathways, and these patients might be more sensitive to immune checkpoint inhibitors instead of Sorafenib.
Intriguingly, 6 identified genes were promising to be prognostic biomarkers and therapeutic targets of HCC. Conclusions. The
signature may have crucial clinical significance in predicting survival prognosis, immune infiltration, and drug efficacy based on
pyroptosis-related genes.

1. Introduction

Primary liver cancer commonly has a high incidence and
poor prognosis, with the increasing morbidity rate ranking
the sixth and cancer-related mortality rate ranking the third
all over the world, of which, hepatocellular carcinoma
(HCC) accounts for 75%-85% [1]. Patients with a back-
ground of chronic liver diseases are more likely to develop
HCC, and the main risk factors of HCC include long-term
hepatitis B virus and hepatitis C virus infection, nonalco-
holic fatty liver, overconsumption of alcohol, and dietary
aflatoxin exposure [2]. With a high prevalence of hepatitis

B, HCC becomes common cancer in China, with an inci-
dence rate of 26.67 cases per 100,000 people, and over
373,000 cases are new cases each year [3]. The early-stage
HCC can achieve considerable clinical cure by the methods
like surgical resection, liver transplantation, interventional
therapy, or ablation. However, diagnosed with advanced
HCC, most of the patients are unable to receive radical treat-
ment, which often leads to worse therapy efficacy, poorer
survival prognosis, and shorter survival time [4].

In recent years, ferroptosis, necroptosis, and pyroptosis
have been found to be associated with the tumor initiation
and progression and the activation of antitumor immunity
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during the investigation of tumor cell death [5]. Pyroptosis, a
programmed cell death featured by cell swelling, cell mem-
brane rupture, the release of intracellular inflammatory fac-
tors, and induction of inflammatory response is considered
to be tightly associated with antitumor immune effect and
promote the tumor cell immunogenic death synergistically
when the tumor responds to chemotherapy or radiotherapy.
The activation of two main biological approaches can form
perforin and induce pyroptosis, like caspase 1/4/5/11-regu-
lated gasdermin D- (GSDMD-) dependent activation and
caspase 3-regulated gasdermin E- (GSDME-) dependent
activation, which can lead to the release of inflammatory
mediators and strengthen the tumor-killing effect of CD8+
T cells and other functional antitumor immune cells. Cleav-
age of GSDMD by inflammatory caspases can form perforin
on the cell membrane and is required for classical pyroptotic
cell death and IL-1β release [6]. Chemotherapeutic drugs
can activate caspase 3/GSDME to induce pyroptosis [7].
The expression level of some pyroptosis-related proteins is
related to tumor aggressive biological behaviors, like the
larger tumor size, the higher histopathological grade, and
the more advanced tumor stage. In breast cancer, cervical
cancer, colorectal cancer, and other multiple cancers, pyrop-
tosis plays an important role in tumor promotion and inhi-
bition [8]. Therefore, pyroptosis is considered to become the
promising direction for tumor treatment. Regulation of
pyroptosis may improve the therapeutic effect in tumor
immunotherapy.

Recently, great progress has been made in immunother-
apy of HCC, especially immune checkpoint inhibitors and
even combined immunotherapy, and it is hopeful to improve
the survival rate of the patients. As an important part of the
comprehensive treatment of HCC, it is worth being explored.
Nevertheless, not all patients can achieve the expected objec-
tive response rate after immunotherapy due to intratumoral
heterogeneity. Therefore, there is an urgent need for effective
strategies to identify the population that can benefit from
immunotherapy [9]. Referring to the existing research find-
ings, a close relationship between pyroptosis and antitumor
immunotherapy has been reported. However, the specific
function and mechanism of pyroptosis in HCC remain
unclear. Hence, in the present study, the differentially
expressed pyroptosis-related genes with prognostic value
were analyzed, identified, and incorporated into the risk sig-
nature to assess survival prognosis, immune microenviron-
ment, and drug sensitivity in HCC.

2. Materials and Methods

2.1. Data Acquisition and Processing. The gene expression
profiles and corresponding clinical information were down-
loaded from Liver Hepatocellular Carcinoma Project of The
Cancer Genome Atlas (TCGA-LIHC, http://cancergenome
.nih.gov/) and Liver Cancer-RIKEN, Japan Project of Inter-
national Cancer Genome Consortium (ICGC-LIRI-JP,
https://dcc.icgc.org/). After excluding the patients without
detailed survival information, 365 patients from the TCGA-
LIHC cohort were enrolled in the present study. Informed
consent was not compulsory because of the patients’

unknown identity in the above cohorts. The pyroptosis-
related gene sets include REACTOME_PYROPTOSIS
obtained from the Molecular Signatures Database (MSigDB
v7.4, http://www.gsea-msigdb.org/gsea/index.jsp/) and GO_
BP_PYRPTOSIS downloaded from the Gene Ontology Con-
sortium (http://geneontology.org/). The other pyroptosis-
related genes were searched from the relevant literature
[10, 11]. A total of 58 pyroptosis-related genes were
included in the bioinformatic analysis.

2.2. Differential Expression Analysis of Pyroptosis-Related
Genes. Differentially expressed gene analysis of pyroptosis-
related genes between 374 HCC samples and 50 adjacent
normal samples in the TCGA-LIHC cohort was conducted
by using the limma R package, and the threshold value of
false discovery rate (FDR) was set to less than 0.05.

2.3. Construction and Validation of a Pyroptosis-Related
Gene Signature. The differentially expressed pyroptosis-
related genes with significant prognostic value were identi-
fied by univariate Cox regression analysis. The correlation
of the prognostic candidates was evaluated with Pearson
correlation analysis. The least absolute shrinkage and selec-
tion operator (LASSO) method was utilized in the selection
of the prognostic candidates and the construction of the
prognostic pyroptosis-related gene signature. The formula
for the individual risk score calculation was as follows:
Risk Score =∑j

iXi ∗ Yi (X: regression coefficient; Y : gene
expression; i: prognostic gene). The distribution of survival
status and risk score for each patient was plotted. In accor-
dance with the median risk scores, the patients were classi-
fied into a high-risk group and a low-risk group. The
survival analysis between subgroups with different risk levels
was performed with the Kaplan-Meier (KM) method, and
the survival outcome was compared. Receiver operating
characteristic (ROC) curve was used in the estimation of
the prediction ability of risk signature for the survival rate
at 1, 2, and 3 years. Principal component analysis (PCA)
and t-distributed stochastic neighbor embedding (t-SNE)
algorithms were used in the dimension reduction analysis
and the assessment of the clustering ability of risk signature.
The ICGC-LIRI-JP cohort was served as the external valida-
tion cohort and repeated the same analysis process as above.
The independent prognostic value of the risk signature was
tested in univariate and multivariate Cox regression analy-
ses, together with the patients’ clinicopathological character-
istics. GEPIA (http://gepia.cancer-pku.cn/) was a convenient
online tool to conduct the survival analysis of different risk
groups according to the median value of each prognostic
gene expression in the TCGA-LIHC cohort [12].

2.4. Comparison of Clinicopathological Features between Risk
Subgroups. The clinicopathological features of the high-risk
group and the low-risk group, including survival status,
age, gender, AJCC TNM stage, histological grade, T stage,
N stage, M stage, alpha-fetoprotein (AFP) level, and vascular
invasion situation, were compared by the Chi-square test.
The results were shown in the form of a heat map. The risk
scores of the patients with different ages, genders, AJCC
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TNM stages, histological grades, and T stages were com-
pared with the methods of the Wilcoxon test and Kolmogo-
rov–Smirnov test. M stage and N stage were not included in
the comparison analysis due to the few positive cases. The
results were exhibited in the form of the boxplots.

2.5. Comparison of Immune Activities and Drug Sensitivities
between Risk Subgroups. The differentially expressed genes
between high-risk and low-risk groups were extracted and
analyzed by Gene Oncology (GO) term and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analysis
using the R package clusterProfiler, and threshold value
was set as FDR < 0:05 and P value < 0.05 [13].

ESTIMATE (Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data) was used to
estimate the infiltration situation of immune cell and stromal
cell in tumor tissue for each sample. The immune score and
the stromal score represented the infiltration extent of
immune cells and stromal cells, respectively [14]. The com-
parison was made between different risk groups. The score
of tumor immune dysfunction and exclusion (TIDE, http://
tide.dfci.harvard.edu/) could predict the patients’ response
to immune checkpoint inhibitors by estimating multiple
published transcriptomic biomarkers according to pretreat-
ment gene expression profiles of the tumor, and the higher
TIDE score meant the lower response rate of immune check-
point inhibitors (ICIs) [15].

Single sample gene set enrichment analysis (ssGSEA)
could be used in the calculation of the enrichment score that
represented the absolute enrichment degree of the specific
gene set in each sample by empirical cumulative distribution
function based on the given gene expression profile. ssGSEA
scores derived from 16 different immune cells and 13
immune signal pathways of the high- and low-risk groups
were obtained using the Gene Set Variation Analysis
(GSVA) package and then compared using the limma pack-
age in R [16, 17].

The immune infiltration in tumor tissues could be
estimated and evaluated by some online tools and bioin-
formatic algorithms and packages according to the tran-
scriptomic profiles of the tumor tissues, like xCell (https://
xcell.ucsf.edu/), TIMER (https://cistrome.shinyapps.io/timer/),
EPIC (https://gfellerlab.shinyapps.io/EPIC_1-1/), CIBERSORT
(https://cibersort.stanford.edu/), quanTIseq algorithm (http://
icbi.at/quantiseq), and MCP-counter package [18–22]. The
correlation between risk score and the extent of immune cell
infiltration was calculated to explore the relationship between
risk score and tumor immune microenvironment.

By using the pRRophetic package, the drug sensitivities
of tumor samples could be evaluated by the 50% inhibiting
concentration (IC50) derived from the given gene expres-
sion profiles [23]. IC50 refers to the drug concentration
required when the number of viable cells is reduced by half
after administration, which can reflect the drug therapeutic
efficacy and measure the tolerance of tumor cells to the
drugs. The lower IC50 indicated the higher response rate
of tumor cells to drug. The IC50 of Sorafenib for high-risk
and low-risk groups were calculated and compared. The
gene expression level of immune checkpoints (PD-1, PD-

L1, CTLA4, HAVCR2, LAG3, and TIGIT) between high-
and low-risk groups was compared with the Wilcoxon test
method, and their immune checkpoint blockade efficiency
was evaluated through the gene expression comparison.

2.6. Statistical Analysis. R version 4.1.0 software (https://cran
.r-project.org/) was the main tool to conduct the statistical
analysis, and a P value of <0.05 was considered as statisti-
cally significant.

3. Results

3.1. Identification of Differentially Expressed Pyroptosis-
Related Genes. A total of 58 pyroptosis-related genes were
obtained from literature review and data retrieval. As was
shown in Figure 1(a), there were 42 differentially expressed
genes between HCC and adjacent normal tissues, compris-
ing 39 upregulated genes and 3 downregulated genes.

3.2. A Prognostic Signature Based on Pyroptosis-Related
Gene. Univariate Cox regression analysis identified 14
differentially expressed pyroptosis-related genes (APIP,
BAK1, BAX, CASP8, CHMP3, CHMP4B, DHX9, GSDMC,
GSDME, NOD1, NOD2, PLCG1, SCAF11, and TREM2)
with survival prognostic value (Figure 1(b)). Their high
expressions were related to the poor prognosis of HCC (all
HR > 1, P < 0:05). Subsequently, the results of Pearson cor-
relation analysis indicated the positive correlation of 14
prognostic candidates (Figure 1(c)). Finally, the LASSO
Cox regression screened 6 genes and incorporated them
into the formula to calculate risk score: 0:052 ∗ BAK1
expression + 0:081 ∗ CHMP4B expression + 0:131 ∗DHX9
expression + 0:023 ∗GSDMC expression + 0:225 ∗GSDME
expression + 0:053 ∗ TREM2 expression (Figures 1(d) and
1(e)). In accordance with the median value of risk scores,
the TCGA-LIHC cohort was divided into the high- and
low-risk group. The distribution of risk scores and survival
status revealed a higher risk score was associated with a
higher probability of death. Survival analysis indicated that
the high-risk group had a worse survival prognosis compared
with the low-risk group (P < 0:001, Figures 2(a), 2(c), and
2(e)). The ROC curves suggested the predictive accuracy of
survival prognosis at the 1, 2, and 3 years were 0.707, 0.640,
and 0.630, respectively (Figure 2(g)). The results of PCA
and t-SNE confirmed the risk signature had a considerable
clustering ability (Figures 2(i) and 2(k)).

Data from the ICGC-LIRI-JP cohort were served as
external verification data to validate the risk signature. In
the same way, the cohort was divided into high-risk and
low-risk groups according to the median risk score. Simi-
larly, the patients with higher risk were more likely to have
poorer survival outcomes (P < 0:001, Figures 2(b), 2(d),
and 2(f)). The ROC curves suggested the predictive accuracy
of survival prognosis at the 1, 2, and 3 years were 0.635,
0.605, and 0.629 (Figure 2(h)). The results of PCA and t-
SNE also demonstrated the discrimination ability of the risk
signature (Figures 2(j) and 2(l)).

The survival analysis results of GEPIA further confirmed
that the gene expression of BAK1, CHMP4B, DHX9,
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Figure 1: Expression, correlation, and prognostic information of pyroptosis-related genes. (a) Heat maps of 42 differentially expressed
pyroptosis-related genes expressed in tumors and adjacent normal tissue. (b) Forest plot of 14 differentially expressed pyroptosis-related
genes with survival prognostic value. (c) Correlation plot of 14 pyroptosis-related genes with survival prognostic value. (d, e) Least
absolute shrinkage and selection operator process of pyroptosis-related genes with survival prognostic value.
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Figure 2: Continued.
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GSDMC, GSDME, and TREM2 had the overall survival pre-
dictive effect for the patients with HCC (allHR > 1, P < 0:05)
and the increased expression might cause the poor survival
outcome (Figures 3(a)–3(f)).

3.3. Clinicopathological Features, Immune Activities, and
Drug Sensitivities between High- and Low-Risk Groups. Uni-
variate Cox regression analysis showed AJCC TNM stage
(P < 0:001), T stage (P < 0:001), and risk score (P < 0:001)
were related to the patients’ survival prognosis (Figure 4(a)).
Furthermore, the results of multivariate Cox analysis con-
firmed the independent prognostic effect of the risk score
(Figure 4(b)).

The results of the Chi-square test indicated that survival
status (P < 0:05), tumor histological grade (G1, G2, G3, and
G4, P < 0:01), vascular invasion situation (none, microvas-
cular, and macrovascular invasion, P < 0:05), and AFP level
(≤400μg/L and >400μg/L, P < 0:01) existed significant differ-
ence between high-risk and low-risk groups (Figure 4(c)).
Nevertheless, other clinicopathological features like age, gen-
der, M stage, and N stage showed no significant difference in
the patients with high risk and low risk. The risk scores in

the subgroups with different clinicopathological features, like
age (≤65 years old and >65 years old), gender (female and
male), histological grade (G1, G2, G3, and G4), AJCC TNM
stage (stage I, stage II, stage III, and stage IV), and T stage
(T1, T2, T3, and T4), were compared. The boxplot illustrated
that the patients with higher histological grade, advanced
TNM stage, and larger tumor size tend to have higher risk
scores (Figures 4(d)–4(g)).

The infiltration of immune cells and stromal cells in
HCC tissues were represented by the immune scores and
the stromal scores, which were estimated by the ESTIMATE
algorithm based on gene expression files of HCC samples in
the TCGA-LIHC cohort. The Wilcoxon test indicated the
stromal scores existed no significant difference between
high-risk and low-risk groups, but the higher risk group tend
to have higher immune scores, which suggested that the
HCC in the high-risk group were more possible to have
more abundant infiltration of immune cells (Figures 5(a)
and 5(b)). The comparison of TIDE scores indicated the
HCC in the high-risk group existed fewer dysfunctional
and immune-excluded T cells (Figure 5(c)). The correlation
analysis between risk score and the immune infiltration
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Figure 2: Development and validation of the risk signature in TCGA-LIHC and ICGC-LIRI-JP. (a, b) Kaplan-Meier survival plots of
high-risk and low-risk groups in TCGA-LIHC and ICGC-LIRI-JP. (c–f) The distribution of risk score and survival outcome of the
high-risk and low-risk groups in TCGA-LIHC and ICGC-LIRI-JP. (g, h) ROC curves of the survival models in TCGA-LIHC and
ICGC-LIRI-JP. (i–l) PCA and t-SNE plot of the survival models in TCGA-LIHC and ICGC-LIRI-JP.
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Figure 3: Survival prognostic analysis of the expression level of 6 determined pyroptosis-related genes in HCC: (a) BAK1, (b) CHMP4B,
(c) DHX9, (d) GSDMC, (e) DFNA5 (GSDME), and (f) TREM2.
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derived by various bioinformatic tools and algorithms was
conducted, and most of the immune cells were positively
correlated with the risk scores (Figure 5(d)). The ssGSEA
scores of 16 different immune cells and 13 immune signal
pathways for HCC samples with high and low risk were
calculated and compared. Most of the immune-associated
protein, cells, and activities were enriched in the high-risk
group, like antigen-presenting cell (APC) coinhibition
(P < 0:05), APC costimulation (P < 0:01), chemokine recep-
tor (CCR, P < 0:001), checkpoint (P < 0:001), human leuko-
cyte antigen (HLA, P < 0:05), major histocompatibility
complex (MHC) class I (P < 0:001), parainflammation
(P < 0:05), T cell coinhibition (P < 0:05), T cell costimula-
tion (P < 0:05), aDCs (activated dendritic cell, P < 0:001),
dendritic cell (DCs, P < 0:01), inhibited dendritic cell (iDCs,
P < 0:001), macrophages (P < 0:001), plasmacytoid dendritic

cells (pDCs, P < 0:05), T helper cells (P < 0:01), follicular
helper T cell (Tfh, P < 0:001), Th1 cells (P < 0:05), Th2
cells (P < 0:001), and regulatory T cells (Treg, P < 0:001),
but type I and type II interferon (IFN) responses
(P < 0:001) were mainly enriched in the low-risk group
(Figures 5(e) and 5(f)).

There were 1249 upregulated genes and 146 downregu-
lated genes after the differential expression analysis. KEGG
pathway gene enrichment analysis suggested the upregulated
genes were mainly enriched in some functional pathways,
including human T cell leukemia virus 1 infection, cell cycle,
and phagosome (Figure 6(a)). GO term gene enrichment
analysis indicated the upregulated genes were mainly
enriched in immune-related biological pathways (immune
response-activating cell surface receptor signaling pathway,
immune response-activating signal transduction, and so
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Figure 4: Independent analysis and subgroup comparison of risk signature and clinical factors. (a) Forest plot of univariate Cox regression
analysis in TCGA. (b) Forest plot of multivariate Cox regression analysis in TCGA. (c) Heat map of 6 determined pyroptosis-related genes
and clinical factors (∗∗∗P < 0:001, ∗∗P < 0:01, and ∗P < 0:05). (d–g) The subgroup comparison of risk scores in different ages, genders, AJCC
TNM stages, and histological grades.
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on), cellular components (external side of the plasma mem-
brane, immunoglobulin complex, and so on), and molecular
functions (antigen binding, immunoglobulin receptor bind-
ing, and so on) (Figure 6(c)). The downregulated genes
between high-risk and low-risk groups in TCGA-LIHC
mainly enriched in the KEGG pathways, including metabo-
lism of xenobiotics by cytochrome P450, retinol metabolism,
and drug metabolism−cytochrome P450 (Figure 6(b)),
metabolism-related biological pathways (carboxylic acid bio-
synthetic process, organic acid biosynthetic process, and so
on), cellular components (basal plasma membrane, basal

part of cell, and so on), and molecular functions (iron ion
binding, monooxygenase activity, and so on) (Figure 6(d)).
Therefore, the high-risk group might be more active in
immune response rather than metabolism process when
compared with the low-risk group.

The drug sensitivity of Sorafenib for HCC was evaluated
via the pRRophetic package and compared by the Wilcoxon
test. The boxplot exhibited that the low-risk group had a
lower IC50 of Sorafenib than the high-risk group
(Figure 7(a)), which suggested the low-risk group would be
more sensitive to Sorafenib. The gene expression of immune
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Figure 5: Immune infiltration analysis, correlation, and comparison of the high-risk and low-risk groups in TCGA. (a–c) The comparison
of immune scores, stromal scores, and TIDE scores. (d) The correlation analysis of the immune infiltration and the risk scores. (e, f) The
comparison of ssGSEA scores derived from 16 different immune cells and 13 immune signal pathways.
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checkpoints was compared and might predict the therapeu-
tic efficacy of ICIs. The gene expression of PD-1, PD-L1,
CTLA4, HAVCR2, LAG3, and TIGIT in the high-risk group
was higher than the one in the low-risk group (all P < 0:05)
(Figures 7(b)–7(g)), which indicated the high-risk group
would have a higher response rate to the inhibitors for these
immune checkpoints.

4. Discussion

As is shown in Figure 8, HCC is the prevalent hepatic malig-
nancy worldwide, mainly distributed in Eastern Asia (17.8
cases per 100,000 persons), and poses a serious threat to
human health [24, 25]. The comprehensive treatment, based
on surgery and supplemented by interventional therapy,
chemotherapy, and local therapy, has been widely used in
the routine treatment and intervention of HCC. Radical sur-
gical resection is the best option for HCC and can effectively
improve the survival prognosis, but most patients are at an
unresectable or advanced stage when diagnosed [26]. Nowa-
days, with the development of immunotherapy, especially
ICIs, the systematic treatment of advanced HCC has made
great progress, such as the first-line treatment combination
of atezolizumab and bevacizumab [27]. However, the
response rate of ICI plus antiangiogenic targeted therapy is
approximately only 30% and limits the wide application in
the clinic [28, 29]. Recently, ferroptosis, necroptosis, and
pyroptosis have been found in tumor cell death and gradu-
ally emerged as a novel tumor treatment strategy in lots of
studies [30]. Moreover, it is believed that the cell death
mechanisms can synergistically enhance the antitumor
immune activity [7].

Most of the pyroptosis-related genes were overexpressed
in HCC and had an unfavorable effect on the overall survival
prognosis, which indicated that the overexpression of
pyroptosis-related genes was a prognostic factor of the poor
outcome for HCC. The positive correlation among the genes
suggested the genes might participate in the positive feed-

back or cascade reaction in HCC. The results of survival
analysis revealed the survival outcome difference between
the high-risk group and the low-risk group classified by the
risk signature based on 6 pyroptosis-related genes. The dis-
tribution of risk scores and survival status further explained
the risk stratification ability of the risk signature. The ROC
curves further confirmed the considerable prediction ability
of the risk signature. The results of PCA and t-NSE showed
that the risk signature had a great clustering ability in the
survival prognosis for HCC.

The higher expression of 6 genes incorporated into the
risk signature predicted the worse overall survival outcome
in HCC. BAK1, the gene encoding the BCL2 protein family,
participates in the tumor apoptotic activity and the p53 sig-
naling pathway. The overexpression of BAK1 is closely asso-
ciated with the unsatisfactory survival outcome of HCC.
BAK1 gene knockout can significantly inhibit proliferation
and promote apoptosis of tumor cells in HCC [31].
CHMP4B is the subunit to consist of the endosomal sorting
complex needed by transport-III complex and works in the
cytokinetic membrane abscission and the mitotic cell divi-
sion. The high expression of CHMP4B is related to poor sur-
vival prognosis and drug resistance to doxorubicin in HCC.
Knockdown of CHMP4B can also restrict the cell prolifera-
tion of HCC [32]. DHX9 is an indispensable regulatory in
transcription and translation, DNA replication, and mainte-
nance of genomic stability, and the experiments in vivo and
in vitro demonstrate that DHX9 suppression can conduce to
tumor inhibition [33]. TREM2 is the triggering receptor
expressed on myeloid cells, functions in immune response,
and involves in chronic inflammation. TREM2 mRNA is
highly expressed in HCC while its protein level is low. It is
also the prognostic gene related to the tumor microenviron-
ment. TREM2 can inhibit chronic inflammation and protect
the liver from injury caused by some pathological changes,
like hepatic fibrosis or cirrhosis, viral hepatitis, nonalcoholic
fatty liver, and HCC [34]. GSDMC and DFNA5 (also known
as GSDME) are the members of the gasdermin family. Our
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Figure 6: KEGG and GO enrichment analyses of the differentially expressed genes between high-risk and low-risk groups in TCGA.
(a, b) The KEGG pathway enrichment analysis for the up/downregulated genes. (c, d) The GO term analysis, including biological
process (BP), cellular component (CC), and molecular function (MF) for up/downregulated genes.
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Figure 7: Drug sensitivity and immune checkpoint gene expression of high-risk and low-risk groups in TCGA. (a) Sorafenib IC50
comparison. (b–g) The immune checkpoint expression comparison, including PDCD1, CD274, CTLA4, HAVCR2, LAG3, and TIGIT
(∗∗∗P < 0:001, ∗∗P < 0:01, and ∗P < 0:05).
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results suggest that high expression of GSDMC correlates
with unfavorable prognosis, but GSDMC protein level is
low in HCC according to the search results of the Human
Protein Atlas, which might be related to the low value of
transcript per million and the insufficient ability of immuno-
histochemical detection. Intriguingly, it is reported that
nuclear PD-L1 translocation could promote the transcrip-
tion of GSDMC and switches the apoptosis induced by
TNF-α to pyroptosis in cancer, which further indicated the
relationship between pyroptosis and immune checkpoint
[35]. Active caspase-3 can process GSDME and produce
N-terminal fragments to form pores in the cell membrane
to induce pyroptotic cell death and activate the antitumor
immune response, which means GSDME tends to be a can-
cer suppressor. Although the results indicate that the expres-
sion of GSDME in HCC is higher than that in normal
tissues, the protein level is lower in HCC [36, 37]. Our
results indicated the higher mRNA expression of GSDMC
and GSDME is the indicator for the poor prognosis of
HCC. The recent study also showed that the dysregulation
of the gasdermin family might be related to the survival
prognosis and immune infiltration of HCC [38].

The signature consisted of 6 pyroptosis-related genes
that can successfully evaluate survival prognosis and con-

duct risk discrimination. The individual risk score is related
to AFP level, tumor vascular invasion, and histological
grade, and this also reflects the risk score is related to the
tumor recurrence possibility. There was a significant positive
correlation between the risk scores and the abundance of
many types of immune cells. The high-risk group is more
likely to have relatively higher immune cell infiltration and
more active immune functions than the low-risk group,
which further confirms the immune modulation ability of
pyroptosis. The difference between the gene enrichment
results of upregulated and downregulated genes may be
related to immune response and metabolism process in
HCC with different risk levels. The high-risk group is less
sensitive to Sorafenib than the low-risk group but may be
more sensitive to some immune checkpoints. It is reported
that Sorafenib can regulate the crosstalk between natural
killer (NK) cells and macrophages to execute the anticancer
effect, especially inducing pyroptosis in macrophages and
triggering NK cell-mediated cytotoxicity against HCC [39],
which may be the reason why the low-risk group with less
active pyroptosis state that could be activated is more sensi-
tive to Sorafenib. Pyroptosis is the research direction that
holds promise for the future, and some drugs that induce
pyrolytic reaction have been reported [40].
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Figure 8: Geographic distribution of age-standardized incidence rates of liver cancer (reported as number of cases per 100,000 persons) was
created with http://Mapchart.net using 2020 data from the World Health Organization (https://gco.iarc.fr/today/data/factsheets/cancers/11-
Liver-fact-sheet.pdf).
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This study still exists some limitations. Firstly, the func-
tional profiles and molecular mechanism of 6 genes in HCC
development and tumor immune microenvironment remain
unknown and require further exploration in the future
experimental studies. Secondly, due to the data limitation,
the prediction and assessment performance of tumor sur-
vival outcome, recurrence risk, and drug therapy efficacy
by the signature should be further verified by the relevant
clinical trial data. Finally, the signature should be validated
by the multicenter data and combined with more clini-
copathological data to facilitate its implementation in
the clinic.

5. Conclusions

In the present study, the pyroptosis-related genes were
systematically analyzed and established and validated the
risk signature on the basis of 6 differentially expressed genes
with prognostic values (BAK1, CHMP4B, DHX9, GSDMC,
GSDME, and TREM2). The risk signature can greatly pre-
dict survival prognosis and conduct risk discrimination.
Clinicopathological feature comparison in different risk
levels indicates that it may be related to tumor recurrence.
The risk signature can somewhat predict the immune infil-
tration and the therapeutic efficiency for HCC. Six identified
genes can be promising to become the pyroptosis biomarker
and therapeutic targets of HCC.
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