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Cutaneous malignant melanoma (CMM) is the most deadly skin cancer worldwide. Despite advances in the treatments of CMM,
its incidence and mortality rates are still increasing. N6-methyladenosine (m6A) is the most common form of RNA modification
and has attracted increasing interest in cancer initiation and progression. However, the role of m6A regulators in CMM and their
correlation with prognosis remain elusive. Here, we demonstrated that by applying consensus clustering, all CMM patient cases
can be divided into two clusters based on overall expression levels of 25 m6A genes. We systematically analyzed the prognostic
value of the 25 m6A RNA methylation regulators in CMM and found that ELAVL1, ABCF1, and IGF2BP1 yield the highest
scores for predicting the prognosis of CMM. Accordingly, we derived a risk signature consisting of three selected m6A genes as
an independent prognostic marker for CMM and validated our findings with data derived from a different CMM cohort. Next,
we determined that CNVs in m6A genes had a significant negative impact on patient survival. The mRNA expression levels of
m6A genes were correlated with CNV mutation. Moreover, in the selected three risk signature m6A regulators, GSEA analysis
showed that they were closely correlated with inflammation and immune pathways. TME analysis proved that m6A gene
expressions were negatively correlated with immune cell infiltration. In conclusion, m6A regulators are vital participants in
CMM pathology; and ELAVL1, ABCF1, and IGF2BP1 mRNA levels are valuable factors for prognosis prediction and
treatment strategy development.

1. Introduction

Malignant melanoma is a highly malignant tumor derived
from melanocytes. It mostly occurs in the skin, digestive
tract, uvea oculi, pia mater, genitalia, and nasal cavity.
Among them, cutaneous malignant melanoma (CMM) is
the most popular subtype [1]. CMM has the characteristics
of high malignancy, high invasion, easy metastasis, and poor
prognosis. Although CMM accounts for only 4% of all skin
tumors, but it is more aggressive and fatal than other forms
of skin cancer and accounting for 75% of skin cancer-related
deaths [2]. In recent years, the incidence rate of CMM has
increased year by year. It is estimated that 100,350 new mel-
anoma cases (60,190 in men and 40,160 in women) are
expected to be diagnosed in 2020 in the United States, and

about 8% of these patients will be die of this disease [3].
To date, a lot of researches have been done in CMM, but
the underlying molecular mechanisms still unclear [4, 5].

Biomarkers facilitate the diagnosis and identification of
individualized characteristics of melanoma, which would
benefit for precision therapy [6, 7]. Therefore, it is vital to
identify potential molecular prognostic biomarkers in mela-
noma. Since epigenetic modification plays an important role
in tumor development, more and more epigenetic biomark-
ers have been found in melanoma in recent years. DNA
methylation is the most studied epigenetic biomarker in
malignant melanoma [8]. In general, methylation in the pro-
moter region inhibits the expression of genes. Methylation of
tumor suppressor genes (PTEN, p16, RASSF1A, etc.) is usu-
ally found in malignant melanoma and is related to tumor
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progression. Wouters et al. found that the methylation
PON3 genes can be used as a supplement to the classical
markers of malignant melanoma [9]. Falzone et al. reported
that the methylation of MMP9 gene leads to overexpression
of MMP9 gene, which promotes the progression and metas-
tasis of melanoma [10]. However, the epigenetic biomarkers
in melanoma are still limited to a few studies and have not
been popularized. Therefore, the prognostic role of epige-
netic biomarkers in malignant melanoma is still worthy of
expanded.

There are about 172 different kinds of RNA modifica-
tions commensurate with the latest version of MODO-
MICS, a database of RNA modifications [11]. In
particular, N6-methyladenosine (m6A) is one of the most
extensive and exuberant internal posttranscriptional mod-
ifications in all kinds of RNA, especially in messenger RNA
(mRNA) [12–14]. M6A modification on RNA is abundant
near the stop codon and 3′-untranslated region (3′-UTR)
and translated near 5′-UTR in a cap-independent manner,
thereby regulating RNA transcription, translation, and
metabolism [15]. The formation and regulation of m6A
are manipulated by a methyltransferase complex compris-
ing three category proteins including “writers,” “erasers,”
and “readers.” “writers” are methyltransferase catalyzing
the formation of m6A, containing methyltransferase-like
3 (METTL3) as the core component and other related sub-
units including METTL14, WTAP, VIRMA, RBM15, and
ZC3H13 [16]. “erasers” function as demethylases, includ-
ing FTO and ALKBH5. “readers” are a group of RNA bind-
ing proteins that recognize the m6A methylation and
perform corresponding functions. These proteins mainly
include YT521-Bhomology (YTH) domain containing
protein families (YTHDCs), YTH N6-methyl-adenosine
RNA binding protein families (YTHDFs), insulin-like
growth factor 2 mRNA-binding protein families
(IGF2BPs), and heterogeneous nuclear ribonucleoprotein
(HNRNP) protein families [17].

Researches demonstrated that m6A methylation in
mRNA is significantly associated with tumor proliferation,
migration, invasion, and metastasis during the process of
cancer progression [14]. It is reported that FTO could mod-
ify the m6A level of MALAT and promotes bladder cancer
progression [18]. METTL3-mediated m6A modification of
ZBTB4 mRNA is involved in the smoking-induced EMT in
lung cancer [19]. METTL14 inhibits the proliferation,
migration, and invasion of gastric cancer by regulating the
PI3K/AKT/mTOR signaling pathway [20]. WTAP facilitates
progression of hepatocellular carcinoma via m6A-HuR-
dependent epigenetic silencing of ETS1 [21]. The value of
m6A methylation pattern on tumor microenvironment or
prognosis was also demonstrated in gastric cancer and ovar-
ian cancer [22, 23]. However, the role of m6A methylation in
the development and progression of CMM remains
questionable.

In this study, we aim to analyze the differentially
expressing profiles of m6A-related genes in CMM subtype
and establish a cox regression model to predict the overall
survival. We systematically analyzed the expression of 25
central m6A regulators in 470 CMM with RNA sequencing

data from The Cancer Genome Atlas (TCGA) datasets. We
aimed to evaluate the values of m6A genes in predicting
the prognosis of CMM patients and explore possible signal-
ing pathways regulated by m6A regulators in CMM through
comprehensive bioinformatics analyses. Based on LASSO
and multivariate Cox regression models, we constructed a
3-gene (ELAVL1, ABCF1, and IGF2BP1) signature of m6A
regulators with prognostic value in CMM that can effectively
predict patient prognosis. Multivariate Cox regression anal-
ysis suggested that risk score might be an independent prog-
nostic indicator for the patients with CMM. We further
analyzed m6A gene mutation and expression profiles in
CMM patients from TCGA database. We determined that
the CNV in m6A regulatory genes had a significant negative
impact on patient survival. The mRNA expression levels of
gross m6A genes were significantly correlated with CNV
mutation. We also conclude that high expression of m6A
genes correlated with reduced immune cell infiltration in
CMM, which may be responsible for poor prognosis.

2. Materials and Methods

2.1. Database. In October 2020, we obtained the RNA-seq
transcriptome data and the corresponding clinicopathologi-
cal information of 470 SKCM patients from the TCGA data-
base (http://cancergenome.nih.gov/). For the RNA-seq data,
TCGA samples were normalized by fragment per kilobase of
exon model per million.

2.2. Clustering of CMM Patients by m6A RNA Methylation
Regulator Expression. We collected a list of 25 m6A RNA
methylation regulators from published literatures
(Table S1). Next, we performed cluster analysis to analyze
the 470 CMM samples from TCGA database (Ward’s
method) according to the m6A regulators’ expression.
Furthermore, clinical data and survival time were extracted
from the CMM patients. Observed survival interval (OBS)
was used in the survival analysis in this study [24]. The
correlation analysis between clinical traits and clustering
results was carry out in R software. Finally, the heatmap
and survival chart were constructed by the ggplots package
in R software. All data were processed using the R software
(version 3.4.0).

2.3. M6A-Related Genes Obtained and Differential Analysis.
Differentially expressed gene analysis was performed
between metastatic and nonmetastatic cases in TCGA data-
base. The p value was calculated by R deseq2 and edge pack-
age, respectively. The difference screening standard was
p < 0:05, and fold change was more than 2 times. Either of
the methods calculate p < 0:05 is considered to be signifi-
cantly. GO analysis and KEGG enrichment based on these
differentially expressed genes were done. Among them,
m6A regulator genes of were screened out. Protein-protein
interaction (PPI) analysis was conducted to reveal the
molecular mechanisms of the 25 m6A RNA methylation
regulators in CMM. We utilized the Search Tool for the
Retrieval of Interacting Genes (STRING) protein database
11.0 (http://string-db.org/) to construct the PPI networks.
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An interaction score > 0:4 was regarded as the cut-off crite-
rion. We further use UALCAN (http://ualcan.path.uab.edu/
index.html) to analyze tumor subgroup gene expression
and survival. Using TCGA transcriptome and clinical
patient data, compare them across different tumor sub-
groups as defined by the patient’s age and tumor grade
through the expression level of the gene.

2.4. Bioinformatics Analysis. To evaluate the prognostic
value of m6A genes, we executed univariate Cox regression
analyses of their expression in the TCGA dataset, from
which we selected six genes virtually associated with survival
(p < 0:05), which we chose for further functional research
and development of a potential risk signature with the
LASSO Cox regression algorithm. The “forestplot” R pack-
ages were used to draw forest plots. Finally, three regulators
and their coefficients were decided by the minimum criteria,
choosing the best penalty parameter λ associated with the
TGGA datasets. The risk formula was applied to count a risk
score for each patient in TGGA datasets. The high-risk
group (samples with the risk score higher than median
score) and the low-risk subtype (samples with risk score
lower than median score) were defined in CMM cases based
on the risk score of its tumor samples. The data were proc-
essed by R packages “survival.” Kaplan-Meier curves were
drawn to demonstrate the relationship between the patient’s
overall survival and gene expression levels of m6A RNA
methylation regulators. The relationship was tested by the
log-rank test. The ROC analysis was used for testing if the
survival prediction is sensitive and specific based on the risk
score.

2.5. Validation of the Risk Signature. To determine the
robustness of this model, we tend to validate the same signa-
ture genes in the validation set. We search for melanoma
cohort with gene expression datasets in GEO database; sur-
vival terms were also needed for survival analysis. The only
eligible dataset (GSE65904) was downloaded and used for
further validation. We used multivariate Cox proportional
analysis to determine a panel of prognostic genes. The dem-
ographics and clinical information, including age and grade,
were used for model correction. The calculation of the
patient’s risk score in the validation set was performed
according to the formula obtained from the multivariate
Cox proportional model.

2.6. Gene Set Enrichment Analysis (GSEA) of the Three
Selected m6A Genes. Gene Set Enrichment Analysis (GSEA)
of prognosis-related MeDEGs was performed using GSEA
3.0 software with gene set c2 (cp.kegg.v.6.2.symbols.gmt).
High throughput RNA expression of 470 CMM genes from
TCGA was utilized as the dataset. Each sample was defined
as either “High expression” or “Low expression,” depending
on whether it was greater than the median mRNA expres-
sion value of prognosis-related defined m6A regulators or
not. The number and type of permutations were set at
“1000” and “phenotype,” respectively. An enrichment score
> 0:4 and p < 0:05 were regarded as statistically significant.

2.7. Mutation Analysis. CMM cases with CNV, mutation,
and clinicopathological information were retrieved from
the TCGA database. CNV was identified using segmentation
analysis and GISTIC algorithm in the cBioportal platform.
The relationship between clinicopathological characteristics
was analyzed according to the status of CNV and/or muta-
tion: “patients with mutation and/or CNV of m6A regula-
tors” and “patients without CNV or mutation.” The
patients were divided into two groups according to whether
there was any mutation in the m6A genes. The single factor
Cox regression analysis was performed to detect whether
SNV, CNV, SNV, or CNV in the m6A gene are correlated
with patient prognosis.

2.8. Estimation of TME Cell Infiltration. We used the
ssGSEA (single-sample gene-set enrichment analysis) algo-
rithm to quantify the relative abundance of each cell infiltra-
tion in the CMM TME. The gene set for marking each TME
infiltration immune cell type was obtained from the study of
Charoentong, which stored various human immune cell
subtypes including activated CD8 T cell, activated dendritic
cell, macrophage, natural killer T cell, and regulatory T cell.
We further analyzed the correlation between m6A regulators
and immune cell infiltration.

2.9. Statistical Analysis. One-way ANOVA was applied to
contrast the expression levels of m6A RNA methylation regu-
lators in primary CMM and metastatic CMM groups (TCGA
datasets), and t-tests were applied to contrast the expression
levels in OC patients for grade, age, and survival status.
Patients were grouped into two clusters by consensus expres-
sion of m6A RNA methylation regulators or were separated
into the low-risk and high-risk groups applying the median
risk score (came from the risk signature) as the cut-off value.
Chi-square tests were applied to contrast the distribution of
patients’ age, survival status, and the grade between the two
risk groups. Univariate and multivariate Cox regression anal-
yses were conducted to evaluate the prognostic value of the
risk score and various clinical and molecular-pathological fea-
tures. The prediction efficiency of the risk signature was tested
with the ROC curve. The Kaplan-Meier method with a two-
sided log-rank test was applied to contrast the OBS of the
patients in the cluster 1/2 groups or in the low- and high-
risk groups. All statistical analyses were executed utilizing R
v3.4.1 (https://www.r-project.org/) and Prism 8 (GraphPad
Software Inc., La Jolla, CA).

3. Results and Discussion

3.1. M6A Gene-Based Clustering Showed 2 Subtypes of CMM.
According to the expression profiles of 25 m6A genes, clus-
ter analysis was performed to analyze the 470 CMM samples
from the TCGA database (Ward’s method). The clustering
results showed that two clusters were determined in the
CMM samples (Figure 1(a)). The gross m6A gene expression
in cluster 2 was lower than that that in cluster 1. We com-
pared OBS curves of the two clusters and found that the sur-
vival of cluster 1 was worse than that of cluster 2 (p = 0:023),
indicating that the expression of m6A genes was negatively
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correlated with patient prognosis (Figure 1(b)). We further
analyzed the correlation between these m6A genes, and there
was a strong correlation between YTHDC2, YTHDC1,
FMR1, METTL14, RBM15, VIRMA, YTHDF3, and G3BP2
(Figure 1(c)). It is known that metastasis is an important fac-
tor affecting the survival of malignant melanoma patients. So
we made statistics on the metastasis cases in the two clusters:
there are 70 nonmetastatic cases and 253 metastatic cases in
cluster 1 and 33 nonmetastatic samples, and 114 metastatic
cases in cluster 2 (Figure 1(a)). The chi-square test showed
that there is no significant difference in metastatic propor-
tions between these two clusters (p = 0:852), indicating that
the differential expression of m6A genes may not be corre-
lated with the metastasis status of CMM.

3.2. Correlation between m6A Genes and Metastasis of CMM.
Metastasis status is closely related to prognosis in CMM. In
the previous part, we found that in the two clusters deter-

mined by m6A gene expression, there is no significant differ-
ence in metastatic rate. Here, we continued to study whether
the m6A genes correlated with the metastasis of CMM.
Firstly, we screened the differentially expressed genes from
the transcriptome sequencing data of primary and metasta-
tic cases in TCGA CMM database. The p-value was calcu-
lated by R deseq2 and edge package, respectively. The
difference screening standard was p < 0:05, and fold change
was more than 2 times. Either of the methods calculated
thatp < 0:05is considered to be significantly. Among them,
we selectively observed the m6A genes (Figure 2(a)). There
were 7 differentially expressed m6A genes (p < 0:05)
between the primary group and the metastasis group, which
were IGF2BP1, RBM15, VIRMA, YTHDF1, IGF2BP3,
YTHDC1, and HNRNPC, respectively (Figure 2(b)). The
expression of YTHDF1 was downregulated, while that of
others was upregulated. The expression change of IGF2BP1
was the most significant, and its fold change was 8.91, while
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Figure 1: Consensus clustering of m6A RNA methylation regulators identified two clusters of cutaneous malignant melanoma. (a) Heatmap
and metastatic status of the two clusters defined by m6A regulators consensus expression. (b) Kaplan-Meier Observed survival interval
(OBS) in patients of the two defined cluster. (c) Spearman’s correlation analysis of the 25 m6A regulators.
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the other fold changes were less than 2. This confirms what
was stated in the previous section that most of the m6A gene
expression has little association with metastasis status in
CMM except IGF2BP1. We further analyzed the interactions
among the 25 m6A regulators. Protein-protein interaction
network analysis showed that the writers METTL3,
METTL14, WTAP, VIRMA, and RMB15; the erasers
ALKBH5 and FTO; and the readers HNRNPC,
HNRNPA2B1, ELAVL1, YTHDC1, YTHDF1, YTHDF2,
and YTHDF3 had more interactions with each other, while
ABCF1, IGF2BP1, IGF2BP2, IGF2BP3, G3BP2, G3BP1,
FMR1, and METTL16 had fewer interactions with other reg-
ulators (Figures 2(c) and 2(d)). In addition, we further ana-
lyzed the interactions between the 25 m6A regulators and
other proteins (Figure S1). It is obvious that ELAVL1
interacts most with other proteins, mainly with RNA
binding proteins. Our conclusion is that most (but not all)
of the 25 m6A regulators are closely related to each other.

Among them, ELAVL1 interacts most with other proteins,
mainly with RNA binding proteins.

3.3. Development of a Risk Signature Consisting of Three
m6A RNA Methylation Regulators. In order to better predict
the clinical outcomes by abnormal expression of m6A genes,
we did univariate Cox proportional hazard region analysis to
the 25 m6A regulators in the TCGA dataset (Table S2), and
six m6A genes closely related to survival were screened out
(p < 0:05). The six genes were ABCF1, ELAVL1, FTO,
G3BP1, IGF2BP1, and ZC3H13 (Figure 3(a)). The
importance of the 6 genes was analyzed by random
survival forest algorithm; the relative importance of these
genes is shown (Figures 3(b) and 3(c)). With the median
relative importance (median relative importance = 0:5) as
the cut-off point, ELAVL1, ABCF1, and IGF2BP1 were
selected as the most important m6A genes. Therefore, the
three regulators were used for multivariate regression
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Figure 2: Expression of the m6A RNA methylation regulators and interaction among them. (a) The expression levels of 25 m6A RNA
methylation regulators in metastatic CMM (n = 367) and nonmetastatic CMM (n = 103). (b) Table of the 7 different expressed m6A
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analysis, and the risk formula was constructed according to
the Cox regression results (Table S3). The risk score
formula was as follows: risk score = 0:4333 ∗ ELAVL1 +
0:309 ∗ABCF1 + 0:0476 ∗ IGF2BP1. The risk score of each
patient in TCGA dataset was calculated according to the
formula, and patients were classified into two groups
according to the median risk score: high-risk group and

low-risk group. Then, the survival analysis was performed
in the high-risk group and the low-risk group; the results
showed that the survival of the high-risk group was
significantly worse than that of the low-risk group
(p < 0:0001) (Figure 3(d)), which were similar to the result
of total m6A genes clustering but with a smaller p value.
Therefore, through importance analysis, this study

ABCF1
ELAVL1

FTO
G3BP1

IGF2BP1
ZC3H13

0.42
Beta HR(95% CI for HR) Wald test p value

0.72
0.33
0.31

0.055
0.14

12
11
5.3
4.2
5.4
4

0.00069
0.00093

0.021
0.041
0.02

0.044

1.5(1.2-1.9)
2.1 (1.3-3.2)
1.4 (1.1-1.8)
1.4 (1-1.8)
1.1 (1-1.1)
1.2 (1-1.3)

(a)

0 500

0.
41

5
0.

42
5

0.
43

5
0.

44
5

Er
ro

r r
at

e

Number of Trees
1500

(b)

Variable Importance

0.000

0.0159
0.0101
0.0081
0.0052
0.0036
0.0005

1.0000
0.6390
0.5076
0.3280
0.2273
0.0303

0.010

ELAVL1
ABCF1
IGF2BP1
FTO
ZC3H13
G3BP1

ELAVL1

Importance Relative Imp

ABCF1
IGF2BP1

FTO
ZC3H13
G3BP1

(c)

risk=high
risk=low

p < 0.0001

1.00

0.75

0.50

0.25

0.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 2.5 7.5 10 12.55
Time (year)

Time (year)
Risk Model=0.4333⁎ELAVL1+0.309⁎ABCF1+0.0476⁎IGF2BP1

Number at risk
risk=high
risk=low

179 39 12 5 2 0
179 60 25 9 4 1

0 2.5 5 7.5 10 12.5

(d)

Risk genes
Meta Meta

risk

N

T

Stage

Gender

Cluster
c1
c2

Stage1+2
Stage3+4

FEMALE
MALE

high
low

N0+1

T0+1+2
T3+4

N2+3

Metastatic
unMeta

2

1

0

–1

–2

risk
N
T
Stage
Gender
Cluster

IGF2BP1

ABCF1

ELAVL1

(e)

Figure 3: The selection of three m6A RNA methylation regulators and their effect on CMM prognosis and clinicopathological
characteristics. (a) Cox univariate regression analyses were used to examine the associations between expression of 25 m6A RNA
methylation regulators and prognosis, and six m6A regulators closely related to survival were screened out (p < 0:05). (b, c) A random
survival forest algorithm was used to analyze the importance of the six regulators, and the relative importance of these regulators is
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successfully constructed a risk formula with three m6A
genes as variables, which can accurately predict the
prognosis of CMM patients. In addition, we compared the
clinicopathological characters (including gender, age, stage,
T, N, and risk score) of the three m6A genes. The results
shown that the expressions of the three selected m6A genes
were all high in most high-risk patients (Figure 3(e)). In
addition, univariate and multivariate analyses were
performed to assess whether clinicopathological features
were independent prognostic factors. Univariate analysis of
all variables using a Cox proportional hazard model
showed that risk status (p = 0:002, 95% CI HR 0.38-0.7)
and primary tumor status (p = 0:016, 95% CI HR 1.1-2.1)
were independent prognostic factors. Multivariate analysis
used the same variables as univariate analysis in the cohort
and supported that risk status (p < 0:001, 95% CI HR
0.357-0.691) and primary tumor status (p = 0:0108, 95% CI
HR 1.11-2.21) were independent prognostic factors. Little
association of survival with tumor stages was discovered,
so we analyzed the expression profiles of ELAVL1, ABCF1,
and IGF2BP1 in CMM patients with different tumor stages
in TCGA database on the UALCAN website (http://ualcan
.path.uab.edu); the results demonstrated that all these 3
genes have no significant correlation with tumor stage in
cutaneous melanoma (Figure S2).

The receiver operating characteristic (ROC) analysis was
used to testing if the survival prediction based on the risk

score is sensitive and specific. The calculation of the area
under the curve (AUC) values was carried out according to
ROC curves. The ROC curves of 1 year, 3 years, and 5 years
are made, respectively, the AUC of 1 year is 0.604, the AUC
of 2 years is 0.623, and the AUC of 3 years is 0.648, which
are all greater than 0.6 (Figure 4(a)). We further explored
the prognostic importance of each individual m6A regula-
tors of the signature composed of ELAVL1, ABCF1, and
IGF2BP1; the survival course of patients with a high expres-
sion level of any gene of the signature was compared to that
of patients with low expression. Through the TCGA CMM
dataset, we found that high ELAVL1 (p = 0:011) and ABCF1
(p = 0:0047) expression are negative correlate with patient
survival. However, IGF2BP1 expression does not associate
with the OBS of CMM patients (Figure 4(b)).

Finally, we validated the risk signature developed in this
study using GEO dataset (GSE65904). Univariate Cox pro-
portional hazard region analysis to the 25 m6A regulators
in the GEO dataset showed that ELAVL1 owned the smallest
p value (Table S4), which proved the important role of
ELAVL1 in survival prediction. Similar with the TCGA
dataset, the survival of the high-risk group determined by
above three m6A genes was significantly worse than that of
the low-risk group (p = 0:011) (Figure S3). This result
further confirmed the efficiency of the risk signature to
predict prognosis in CMM patients. The ROC curves of 1
year, 3 years, and 5 years were also made, respectively, the
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Figure 4: The prognosis analysis and validation in the GEO database of the three selected m6A RNA methylation regulators. (a) The ROC
curve showed the predictive efficiency of the risk signature on CMM. (b) OBS survival curve of CMM patients based on the three selected
m6A RNA methylation regulators levels in the TCGA dataset. (c) The validation of prognosis efficiency of the three selected m6A RNA
methylation regulators using the GEO database (GSE65904).
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Figure 5: Continued.
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AUC of 1 year is 0.57, the AUC of 2 years is 0.64, and the
AUC of 3 years is 0.712 (Figure S4). However, individual
prognostic effect analysis showed that only ELAVL1
expression of the three m6A genes was significantly
correlated (p = 0:018) with survival of GSE65904 data
(Figure 4(c)).

3.4. Gene Set Enrichment Analysis (GSEA). The GSEA of the
three selected genes were analyzed, and the possible biolog-
ical functions of the three genes were speculated. The sam-
ples were divided into the high expression group and the
low expression group according to the median value of the
gene expression. The LFCs of all genes detected in TCGA
data of high expression group and low expression group
were calculated and used for GSEA analysis. The path with
adjusted p < 0:05 and absolute value of NES ≥ 1 in the
screening results is considered to be the enriched pathway.
The top 15 nondisease-related pathways were selected
according to the absolute value of NES. In the high expres-
sion groups of ELAVL1, ABCF1, and IGF2BP1, we noticed
that the several inflammatory and immune related signaling
pathways were negatively correlated (Figures 5(a)–5(c)).
Involved biological processes including intestine immune
network for IgA production, NF-kappaB signaling,
cytokine-cytokine receptor pathway, and antigen processing
and presentation. We further examine the enriched gene sets
in the first 6 enriched pathway in samples with high
ELAVL1, ABCF1, and IGF2BP1 mRNA expression levels,
and the results indicated that the gene sets of intestine
immune network for IgA production were all negative corre-
lated with these three gene expressions (Figures 5(d)–5(f)).
This suggests that these three genes may participate in
tumor immunity and affect tumor prognosis. However, the
related mechanisms need to be further explored.

3.5. Analysis of m6A Gene Mutation and Prognosis. We fur-
ther analyzed the relationship between m6A gene mutation
and patient prognosis of CMM. A total of 174 patients’

mutation information was download in this dataset
(Figure 6(a)). The patients were divided into two groups
according to whether there was any mutation in the m6A
genes. The univariate Cox regression analysis was performed
to detect whether SNV, CNV, SNV, or CNV in the m6A
gene is correlated with prognosis. The results demonstrated
that CNV is significantly correlated to the prognosis
(p = 0:03) (Table S5), and the survival analysis
demonstrates that patients with non-CNV mutation in
m6A genes is better than that of patients with CNV
mutation (Figure 6(b)). We further analyzed whether CNV
mutation affected prognosis by affecting m6A gene
expression. We found that the expression of ALKBH5,
FTO, and WTAP was downregulated in the mutant cases
(Figure 6(c)), and as expected, copy number loss caused by
deletion mutation was associated with lower expression of
these genes. The expressions of other m6A genes were
upregulated (Figure 6(d)), and amplification of copy
number was the main reason. Interestingly, two of the
three mutant downregulated m6A regulators were erasers.
These results suggest that the mutation may upregulate the
methylation of m6A by reducing the expression of eraser
or increasing the expression of other m6A regulators,
which may lead to poor prognosis.

3.6. Correlation Analysis of m6A Regulators and Immune
Cell Infiltration. The tumor microenvironment plays an
important role in carcinogenesis, especially in therapeutic
efficacy of immunotherapy. Large numbers of immune cells
could infiltrate in the microenvironment. These cells exert
various functions, ranging from regulating the immune pro-
cess to drug sensitivity. Previous GSEA analysis showed that
inflammatory and immune-related signaling pathways were
downregulated in ELEVL1, ABCF1, and IGF2BP1 high
expression cases, which indicated that they may participant
in tumor immunity regulation. Therefore, we examined
whether the expression of m6A genes is correlated with
immune cell infiltration in CMM. The proportion of B
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Figure 5: Gene set enrichment analysis of the three selected m6A regulators. (a) The top 15 nondisease-related pathways in the ELAVL1
high expression group. (b) The top 15 nondisease-related pathways in the ABCF1 high expression group. (c) The top 15 nondisease-
related pathways in the IGF2BP1 high expression group. (d) Enriched gene sets in the first 6 enriched pathways in the ELAVL1 high
expression group. (e) Enriched gene sets in the first 6 enriched pathways in the ABCF1 high expression group. (f) Enriched gene sets in
the first 6 enriched pathways in the IGF2BP1 high expression group.
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lymphocytes, CD4 T lymphocytes, CD8 T lymphocytes,
neutrophils, macrophages, and dendritic cells in cluster 1
and cluster 2 was analyzed by TME. It was found that all
the 6 types of cells were decreased in cluster 1 (Figure 7
(a)). The results demonstrated that high gross m6A gene
expression may negative correlated with immune cell infil-
tration. We further analyzed the correlation of immune cell
infiltration and individual m6A gene expression. The result
showed that generally the m6A gene expressions are nega-
tive correlated with all 6 immune cell type infiltration expect
WTAP. And among these m6A genes, ELAVL1, YTHDF1,
and ABCF1 are more interaction with immune cell infiltra-
tion, and neutrophils are the most interaction cell type
(Figure 7(b)). Thus, two of the three risk signature genes
found in this study were closely and negatively related with
immune cell infiltration, which may partly explain the prog-
nosis mechanism of the risk signature.

4. Discussion

Cutaneous melanoma is one of the most common malignant
tumors of the skin, which seriously threatens public health.
The development of CMM is closely associated with epige-
netic modification, such as DNA methylation, histone mod-
ification, and RNA editing [25–28]. m6A is a common

internal trim of RNA molecules. The modification level of
transcript m6A is dynamically regulated by methyltransfer-
ase (writer), binding protein (reader), and demethylase
(erase). The discovery of m6A RNA methylation regulators
has greatly improved our understanding of the functions
and mechanisms of m6A modification in the posttranscrip-
tional gene regulation [14, 29].

m6A methylation regulators may have similar effects on
different types of cancers or play different roles in similar
types of cancers [30–33]. Although the roles of m6A regula-
tors in cancer have been widely studied, there is neither a
comprehensive analysis of the expression of m6A genes in
CMM nor a study on their functions in the prognostic
values. Here, we firstly analyzed the expression of 25 m6A
genes in CMM and the relationship between their expres-
sions. Considering the low proportion of melanocyte
accounting for normal skin tissue, it is meaningless to com-
pare malignant melanoma tissue with normal skin tissue. So
in this study, we applied the consensus clustering to divide
all CMM samples into two clusters and analyzed the expres-
sion of m6A genes and different clinicopathological variables
between these two clusters. We found that high m6A expres-
sion CMM patients had a worse survival.

Next, we explored the prognostic value of each m6A
genes and developed a risk signature applying three m6A
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Figure 6: Analysis of m6A gene mutation and prognosis. (a) The landscape of mutation information in m6A genes in TCGA dataset. The
top panel showed the number of mutations in each sample, and the bottle panel exhibited the mutation types of high-frequency mutated
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genes, ELAVL1, ABCF1, and IGF2BP1, which are selected
by the univariate Cox analysis and LASSO Cox regression
analysis. ELAVL1, also named human antigen R (HuR), is
a member of the ELAVL family encoding RNA-binding pro-
teins that contain several RNA recognition motifs and selec-
tively bind AU-rich elements (AREs) found in the 3′
untranslated regions of mRNAs. ARE signal degradation of
mRNAs is a means to regulate gene expression; thus by
binding AREs, the ELAVL family of proteins plays a role
in stabilizing ARE-containing mRNAs. ELAVL1 has been
implicated in a variety of biological processes, and it is
highly expressed in many cancers and could be potentially
useful in cancer diagnosis, prognosis, and therapy [34–37].
Ahmed et al. reported that anti-HuR could suppress MITF
expression and induces apoptosis in melanoma cells, which
shows potential in melanoma therapy. IGF2BP1 (insulin-like
growth factor 2 mRNA binding protein 1) plays significant
roles in carcinogenesis, including tumor cell proliferation
and growth, invasion, and chemoresistance, and is associ-
ated with poor overall survival and metastasis in various
types of human cancers [38, 39]. It is reported that IGF2BP1
accelerated melanoma cell metastasis and target inhibition
enhances the effects of BRAF-inhibitor and BRAF-MEK
inhibitors in BRAF mutation melanoma [40, 41]. Interest-
ingly, IGF2BP1 is the most upregulated m6A gene in metas-
tatic samples found in this study. However, whether
IGF2BP1 promotes melanoma metastasis partly by regula-
tion m6A methylation needs further study. The protein
encoded by ABCF1 is a member of the superfamily of

ATP-binding cassette (ABC) transporters. This protein is a
member of the GCN20 subfamily. Unlike other members
of the superfamily, this protein lacks the transmembrane
domains which are characteristics of most ABC transporters.
This protein may be a hepatic oncofetal protein that pro-
motes chemoresistance, EMT, and cancer stemness in hepa-
tocellular carcinoma [42]. ABCF1 also plays an important
role in the chemoresistance of colorectal cancer cells with
microsatellite instability to 5-fluorouracil [43]. The role of
ABCF1 in melanoma has not been reported, but in our
PPI analysis, we found that ABCF1 was indirectly correlated
with ELAVL1, which may be the mechanism how it partici-
pates in melanoma progress. However, more mechanisms
need to be further explored. Based on this signature, we
established a nomogram that assimilated the three selected
m6A genes associated with CMM prognosis and used uni-
variate analysis and multivariate analysis to assess the prog-
nostic value of the three m6A genes. At last, the prognostic
value of the three selected m6A genes was validated by a dif-
ferent CMM cohort. The result showed that these risk signa-
tures correlated well with patient prognosis. This work
provided a different biomarker other than the tumor stage
for predicting the prognosis of CMM.

Gene mutation, including copy number variation
(CNVs) and single-nucleotide polymorphism (SNPs), plays
important roles in the development and progression of
human cancers [44, 45]. However, the effect of CNV and
SNP in m6A-related genes remain unknown to us. In this
study, we comprehensively explored the effect of CNVs
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Figure 7: Correlation analysis of m6A regulators and immune cell infiltration. (a) The infiltration of B lymphocytes, CD4 T lymphocytes,
CD8 T lymphocytes, neutrophils, macrophages, and dendritic cells in cluster 1 and cluster 2 was analyzed by TME. (b) The correlation of
immune cell infiltration and individual m6A regulator expression.
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and SNP mutations in m6A genes on the mRNA expression
and patient prognosis. We observed that CNVs affected
patient prognosis; thus, the survival of CNVs patients was
worse than that of non-CNV mutation patients. Further-
more, we observed that whether CNV mutation dysregu-
lated mRNA expression to correlate with patient prognosis.
Our data shows that the expression of ALKBH5, FTO, and
WTAP was downregulated in the mutation group, which
was due to the deletion mutation. And the other m6A genes’
expression was upregulated in the mutation group. Interest-
ingly, the 2 of the 3 downregulated m6A genes were the
“erase,” thus ALKBH5 and FTO. Thus, the mutation in
m6A genes grossly upregulated the expression of m6A
methylation level, so as to harbor a worse prognosis. This
also suggests that normal m6A process plays an important
role in the development of CMM.

In the selected three risk signature m6A regulators,
GSEA analysis indicated that they were closely correlated
with inflammation and immune pathways. Cancer cells
elicited multiple biological behavior changes through
direct and indirect interactions with other TME compo-
nents such as inducing proliferation and angiogenesis,
inhibiting apoptosis, avoiding hypoxia, and inducing
immune tolerance. As the understanding of the diversity
and complexity of tumor microenvironment has deep-
ened, emerging evidence reveals its critical role in the
tumor progression, immune escape, and its effect on
response to immunotherapy. Predicting the response to
ICB based on the characterization of TME cell infiltration
is a key procedure on increasing the success of existing
ICBs and exploiting novel immunotherapeutic strategies
[46, 47]. We further analyze whether m6A regulators
affect patient prognosis by affecting immune cell infiltra-
tion in tumor microenvironment. Increasing evidence
demonstrated that m6A modification took on an indispens-
able role in inflammation, innate immunity, and antitumor
effect through interaction with various m6A regulators. As
most studies focus on single TME cell type or single regulator,
the overall TME infiltration characterizations mediated by
integrated roles of multiple m6A regulators are not compre-
hensively recognized. Identifying the role of distinct m6A
modification patterns in the TME cell infiltration will contrib-
ute to enhancing our understanding of TME antitumor
immune response and guiding more effective immunotherapy
strategies. Based on 25 m6A genes, we divided the TCGA
dataset into 2 clusters, and we further analyze the immune cell
infiltration in these 2 clusters. The results demonstrated that
all the 6 cell types: B cells, CD4+T cells, CD8+T cells, neutro-
phils, macrophages, and DCs, are downregulated in cluster 1,
as the gross m6A genes are highly expressed in cluster 1; we
guess that the m6A regulators may negatively correlate with
immune cell infiltration. Then, we further analyzed the corre-
lation of every single m6A gene and immune cell infiltration.
We found that generally the m6A genes are negatively corre-
lated with all 6 immune cell types expect WTAP. And among
these genes, ELAVL1, YTHDF1, and ABCF1 are more interac-
tion with immune cell infiltration, and neutrophils are the
most involved cell type. Interestingly, ELAVL1 and ABCF1
are the risk signature regulators found in this study. We spec-

ulate that the risk signatures may be correlated to the progno-
sis of CMM patients partly by affecting the local immune
microenvironment.

5. Conclusion

In conclusion, our studies comprehensively manifested the
expression and prognostic value of m6A genes in CMM
and derived a risk signature consisting of three selected
m6A genes as an independent prognostic marker for
CMM. These three m6A gene expressions are also negatively
correlated with immune cell infiltration in tumor microenvi-
ronment, which partly explains the prognostic mechanism
of the m6A signature. In brief, our study provides novel
markers for evaluating CMM prognosis and furnishes signif-
icant proof for future research on the role of RNA m6A
methylation in CMM.
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have no significant correlation with tumor stage in cutaneous
melanoma. Figure S3: the risk formula was constructed; then
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the high-risk group and the low-risk group. Similar with the
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ure S4: the ROC curve showed the predictive efficiency of
the risk signature on GSE65904 dataset. The AUC of 1 year
is 0.57, the AUC of 2 years is 0.64, and the AUC of 3 years is
0.712. (Supplementary Materials)

References

[1] D. C. Whiteman, A. C. Green, and C. M. Olsen, “The growing
burden of invasive melanoma: projections of incidence rates
and numbers of new cases in six susceptible populations
through 2031,” The Journal of Investigative Dermatology,
vol. 136, no. 6, pp. 1161–1171, 2016.

[2] J. D'Orazio, S. Jarrett, A. Amaro-Ortiz, and T. Scott, “UV radi-
ation and the skin,” International Journal of Molecular Sci-
ences, vol. 14, no. 6, pp. 12222–12248, 2013.

[3] E. E. Calle, C. Rodriguez, E. J. Jacobs et al., “Melanoma skin
cancer causes, risk factors, and prevention. American Cancer
Society,” Cancer, vol. 94, 2002.

[4] A. Fröhlich, J. Sirokay, S. Fietz et al., “Molecular, clinicopatholo-
gical, and immune correlates of _LAG3_ promoter DNAmeth-
ylation in melanoma,” eBioMedicine, vol. 59, p. 102962, 2020.

[5] E. H. Tracey and A. Vij, “Updates in melanoma,”Dermatologic
Clinics, vol. 37, no. 1, pp. 73–82, 2019.

[6] L. Ding, A. Gosh, D. J. Lee et al., “Prognostic biomarkers of
cutaneous melanoma,” Photodermatology, Photoimmunology
& Photomedicine, 2022, Epub ahead of print.

[7] P. P. Naik, “Role of biomarkers in the integrated management
of melanoma,” Disease Markers, vol. 2021, Article ID 6238317,
13 pages, 2021.

[8] G. Micevic, N. Theodosakis, and M. Bosenberg, “Aberrant
DNA methylation in melanoma: biomarker and therapeutic
opportunities,” Clinical Epigenetics, vol. 9, no. 1, p. 34, 2017.

[9] J. Wouters, M. Vizoso, A. Martinez-Cardus et al., “Compre-
hensive DNA methylation study identifies novel progression-
related and prognostic markers for cutaneous melanoma,”
BMC Medicine, vol. 15, no. 1, p. 101, 2017.

[10] L. Falzone, R. Salemi, S. Travali et al., “MMP-9 overexpression
is associated with intragenic hypermethylation of MMP9 gene
in melanoma,” Aging (Albany NY), vol. 8, pp. 933–944, 2016.

[11] P. Boccaletto, M. A. Machnicka, E. Purta et al., “MODOMICS:
a database of RNA modification pathways. 2017 update,”
Nucleic Acids Research, vol. 46, no. D1, pp. D303–D307, 2018.

[12] Y. Wang, Y. Li, M. Yue et al., “_N_ 6-methyladenosine RNA
modification regulates embryonic neural stem cell self-
renewal through histone modifications,” Nature Neuroscience,
vol. 21, no. 2, pp. 195–206, 2018.

[13] J. Liu, Y. Zhu, G. Z. Luo et al., “Abundant DNA 6mA methyl-
ation during early embryogenesis of zebrafish and pig,” Nature
Communications, vol. 7, no. 1, p. 13052, 2016.

[14] Z. Zhou, J. Lv, H. Yu et al., “Mechanism of Rna modification
N6-methyladenosine in human cancer,” Molecular Cancer,
vol. 19, no. 1, p. 104, 2020.

[15] X. Wang, B. S. Zhao, I. A. Roundtree et al., “_N_ _6_ -methyla-
denosine modulates messenger RNA translation efficiency,”
Cell, vol. 161, no. 6, pp. 1388–1399, 2015.

[16] D. L. Balacco and M. Soller, “The m6A writer: rise of a
machine for growing tasks,” Biochemistry, vol. 58, no. 5,
pp. 363–378, 2019.

[17] K. D. Meyer and S. R. Jaffrey, “Rethinking m6A readers,
writers, and erasers,” Annual Review of Cell and Developmen-
tal Biology, vol. 33, no. 1, pp. 319–342, 2017.

[18] L. Tao, X. Mu, H. Chen et al., “Fto modifies the M6a level of
Malat and promotes bladder cancer progression,” Clinical
and Translational Medicine, vol. 11, no. 2, article e310, 2021.

[19] C. Cheng, Y. Wu, T. Xiao et al., “METTL3-mediated m6A
modification of ZBTB4 mRNA is involved in the smoking-
induced EMT in cancer of the lung,” Mol Ther Nucleic Acids.,
vol. 23, pp. 487–500, 2021.

[20] X. Liu, M. Xiao, L. Zhang et al., “The M6a methyltransferase
Mettl14 inhibits the proliferation, migration, and invasion of gas-
tric cancer by regulating the Pi3k/Akt/Mtor signaling pathway,”
Journal of clinical laboratory analysis, vol. 35, article e23655, 2020.

[21] Y. Chen, C. Peng, J. Chen et al., “Wtap facilitates progression
of hepatocellular carcinoma via M6a-Hur-dependent epige-
netic silencing of Ets1,” Molecular Cancer, vol. 18, no. 1,
p. 127, 2019.

[22] B. Zhang, Q. Wu, B. Li, D. Wang, L. Wang, and Y. L. Zhou,
“m6A regulator-mediated methylation modification patterns
and tumor microenvironment infiltration characterization in
gastric cancer,” Molecular Cancer, vol. 19, no. 1, p. 53, 2020.

[23] L. Fan, Y. Lin, H. Lei et al., “A newly defined risk signature,
consisting of three m6A RNA methylation regulators, predicts
the prognosis of ovarian cancer,” Aging (Albany NY), vol. 12,
no. 18, pp. 18453–18475, 2020.

[24] J. Xiong, Z. Bing, and S. Guo, “Observed survival interval: a
supplement to Tcga pan-cancer clinical data resource,” Can-
cers (Basel), vol. 11, p. 280, 2019.

[25] B. de Unamuno Bustos, R. Murria Estal, G. Pérez Simó et al.,
“Aberrant DNAmethylation is associated with aggressive clin-
icopathological features and poor survival in cutaneous mela-
noma,” The British Journal of Dermatology, vol. 179, no. 2,
pp. 394–404, 2018.

[26] G. Kyriakou and M. Melachrinou, “Cancer stem cells, epige-
netics, tumor microenvironment and future therapeutics in
cutaneous malignant melanoma: a review,” Future Oncology,
vol. 16, no. 21, pp. 1549–1567, 2020.

[27] C. G. Lian, Y. Xu, C. Ceol et al., “Loss of 5-
hydroxymethylcytosine is an epigenetic hallmark of mela-
noma,” Cell, vol. 150, no. 6, pp. 1135–1146, 2012.

[28] F. Mahmoud, B. Shields, I. Makhoul, L. F. Hutchins, S. C. Sha-
lin, and A. J. Tackett, “Role of Ezh2 histone methyltrasferase in
melanoma progression and metastasis,” Cancer Biology &
Therapy, vol. 17, no. 6, pp. 579–591, 2016.

[29] Y. Fu, D. Dominissini, G. Rechavi, and C. He, “Gene expres-
sion regulation mediated through reversible m6A RNA meth-
ylation,” Nature Reviews. Genetics, vol. 15, no. 5, pp. 293–
306, 2014.

[30] R. Tian, S. Zhang, D. Sun et al., “M6a demethylase Fto plays a
tumor suppressor role in thyroid cancer,” DNA and cell biol-
ogy, vol. 39, 2020.

[31] W. Zhao, X. Qi, L. Liu, S. Ma, J. Liu, and J. Wu, “Epigenetic
regulation of m6A modifications in human cancer,” Mol Ther
Nucleic Acids., vol. 19, pp. 405–412, 2020.

[32] K. Zhu and X. LiY, “The FTO m6A demethylase inhibits the
invasion and migration of prostate cancer cells by regulating
total m6A levels,” Life Sciences, vol. 271, p. 119180, 2021.

13Disease Markers

https://downloads.hindawi.com/journals/dm/2022/8114731.f1.zip


[33] D. Zou, L. Dong, C. Li, Z. Yin, S. Rao, and Q. Zhou, “The m6A
eraser Fto facilitates proliferation and migration of human cer-
vical cancer cells,” Cancer Cell International, vol. 19, no. 1,
p. 321, 2019.

[34] P. H. King, J. J. Fuller, L. B. Nabors, and P. J. Detloff, “Analysis
of the 5′ end of the mouse Elavl1 (mHuA) gene reveals a tran-
scriptional regulatory element and evidence for conserved geno-
mic organization,” Gene, vol. 242, no. 1-2, pp. 125–131, 2000.

[35] S. D. Chou, A. Murshid, T. Eguchi, J. Gong, and S. K. Calder-
wood, “HSF1 regulation of β-catenin in mammary cancer cells
through control of HuR/elavL1 expression,” Oncogene, vol. 34,
no. 17, pp. 2178–2188, 2015.

[36] M. Palomo-Irigoyen, E. Pérez-Andrés, M. Iruarrizaga-Lejar-
reta et al., “Hur/Elavl1 drives malignant peripheral nerve
sheath tumor growth and metastasis,” The Journal of Clinical
Investigation, vol. 130, no. 7, pp. 3848–3864, 2020.

[37] C. Gu, M. Zhang, W. Sun, and C. Dong, “Upregulation of Mir-
324-5p inhibits proliferation and invasion of colorectal cancer
cells by targeting Elavl1,” Oncology Research, vol. 27, no. 5,
pp. 515–524, 2019.

[38] S. Müller, M. Glaß, A. K. Singh et al., “Igf2bp1 promotes Srf-
dependent transcription in cancer in a M6a- and Mirna-
dependent manner,” Nucleic Acids Research, vol. 47, no. 1,
pp. 375–390, 2019.

[39] S. Zhu, J.-Z. Wang, Y.-T. H. De Chen et al., “An oncopeptide
regulates M(6)a recognition by the M(6)a reader Igf2bp1 and
tumorigenesis,” Nature communications, vol. 11, 2020.

[40] A. Ghoshal, L. C. Rodrigues, C. P. Gowda et al., “Extracellular
vesicle-dependent effect of Rna-binding protein Igf2bp1 on
melanoma metastasis,” Oncogene, vol. 38, no. 21, pp. 4182–
4196, 2019.

[41] T. Kim, T. Havighurst, K. Kim, M. Albertini, Y. G. Xu, and
V. S. Spiegelman, “Targeting insulin-like growth factor 2
Mrna-binding protein 1 (Igf2bp1) in metastatic melanoma to
increase efficacy of BRAFV600Einhibitors,” Molecular Carci-
nogenesis, vol. 57, no. 5, pp. 678–683, 2018.

[42] S. W. Fung, P. F. Y. Cheung, C. W. Yip et al., “The Atp-binding
cassette transporter Abcf1 is a hepatic oncofetal protein that
promotes chemoresistance, Emt and cancer stemness in hepa-
tocellular carcinoma,” Cancer Letters, vol. 457, pp. 98–109,
2019.

[43] X. Li, X. Li, D. Liao et al., “Elevated Microrna-23a expression
enhances the chemoresistance of colorectal cancer cells with
microsatellite instability to 5-fluorouracil by directly targeting
Abcf1,” Current Protein & Peptide Science, vol. 16, no. 4,
pp. 301–309, 2015.

[44] T. Zengin and T. Onal-Suzek, “Comprehensive profiling of
genomic and transcriptomic differences between risk groups
of lung adenocarcinoma and lung squamous cell carcinoma,”
Journal of personalized medicine, vol. 11, no. 2, p. 154, 2021.

[45] J. Yan, X. Wu, J. Yu, Y. Zhu, and S. Cang, “Prognostic role of
tumor mutation burden combined with immune infiltrates in
skin cutaneous melanoma based on multi-omics analysis,”
Frontiers in Oncology, vol. 10, p. 570654, 2020.

[46] D. F. Quail and J. A. Joyce, “Microenvironmental regulation of
tumor progression and metastasis,” Nature Medicine, vol. 19,
no. 11, pp. 1423–1437, 2013.

[47] Y. Cheng, C. Liu, Y. Liu et al., “Immune microenvironment
related competitive endogenous Rna network as powerful pre-
dictors for melanoma prognosis based on Wgcna analysis,”
Frontiers in Oncology, vol. 10, article 577072, 2020.

14 Disease Markers


	M6A-Related Bioinformatics Analysis Reveals a New Prognostic Risk Signature in Cutaneous Malignant Melanoma
	1. Introduction
	2. Materials and Methods
	2.1. Database
	2.2. Clustering of CMM Patients by m6A RNA Methylation Regulator Expression
	2.3. M6A-Related Genes Obtained and Differential Analysis
	2.4. Bioinformatics Analysis
	2.5. Validation of the Risk Signature
	2.6. Gene Set Enrichment Analysis (GSEA) of the Three Selected m6A Genes
	2.7. Mutation Analysis
	2.8. Estimation of TME Cell Infiltration
	2.9. Statistical Analysis

	3. Results and Discussion
	3.1. M6A Gene-Based Clustering Showed 2 Subtypes of CMM
	3.2. Correlation between m6A Genes and Metastasis of CMM
	3.3. Development of a Risk Signature Consisting of Three m6A RNA Methylation Regulators
	3.4. Gene Set Enrichment Analysis (GSEA)
	3.5. Analysis of m6A Gene Mutation and Prognosis
	3.6. Correlation Analysis of m6A Regulators and Immune Cell Infiltration

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

