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Objective. Acute coronary syndrome (ACS) is the most dangerous and deadly form of coronary heart disease. Herein, we aimed to
explore ACS-specific circulating lncRNAs and their regulatory mechanisms. Methods. This study collected serum samples from
ACS patients and healthy controls for microarray analysis. Dysregulated circulating lncRNAs and mRNAs were determined
with jlog 2fold − changej > 1 and p < 0:05. lncRNA-mRNA coexpression analysis was carried out. ENST00000538705.1 and
ALOX15 expression was further verified in serum specimens. In human coronary artery endothelial cells (HCAECs),
ENST00000538705.1 and ALOX15 were knocked out through transfecting specific siRNAs. Thereafter, proliferation and
migration were investigated with CCK-8 and wound-healing assays. Myocardial infarction rat models were established and
administrated with siRNAs against ENST00000538705.1 or ALOX15. Myocardial damage was investigated with H&E staining,
and serum TC, LDL, and HDL levels were measured. Results. Microarray analysis identified 353 dysregulated circulating
lncRNAs and 441 dysregulated circulating mRNAs in ACS. Coexpression analysis indicated the interaction between ENST0000
0538705.1 and ALOX15. RT-qPCR confirmed the remarkable upregulation of circulating ENST00000538705.1 and ALOX15 in
ACS patients. In HCAECs, ENST00000538705.1 knockdown lowered the expression of ALOX15 but ALOX15 did not alter the
expression of ENST00000538705.1. Silencing ENST00000538705.1 or ALOX15 weakened the proliferation and migration of
HCAECs. Additionally, knockdown of ENST00000538705.1 or ALOX15 relieved myocardial damage, decreased serum TC and
LDL levels, and elevated HDL levels in myocardial infarction rats. Conclusion. Collectively, our findings demonstrate that
circulating ENST00000538705.1 facilitates ACS progression through modulating ALOX15, which provide potential targets for
ACS treatment.

1. Introduction

Acute coronary syndrome (ACS), including acute myocar-
dial infarction (AMI) and unstable angina (UA), is a highly
dangerous and fatal deadly form of coronary heart disease,
which is mainly triggered by ruptured atherosclerotic pla-
ques and thrombosis [1]. In a large proportion of cases, this
syndrome is the cause of acute heart failure [2]. Despite
advances in treatment, ACS patients are at high risk of mor-
bidity and mortality [3]. Approximately 20% of patients who
successfully received percutaneous coronary intervention

had relapsed adverse cardiovascular events within 3 years
[4]. Therefore, more effective, safer, and more affordable
treatments are needed to reduce the risk of cardiovascular
events and death in patients with ACS.

Genomic and transcriptomic analysis suggests that nearly
2% of the human genome is a protein-coding sequence while
most of the genome is noncoding RNA (ncRNA) that is clas-
sified as small ncRNA and long ncRNA (lncRNA) [5, 6].
lncRNAs with a structure of over 200 nucleotides modulate
gene expression and participate in diverse pathophysiological
processes [7, 8]. On the basis of the stability of lncRNAs in
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the blood and other body fluids, they are reliable biomarkers
for disease diagnosis [9–11]. Emerging evidence demonstrates
that several lncRNAs participate in modulating ACS initiation
and progression [12]. For instance, lncRNA ANRIL triggers
myocardial cell apoptosis in AMI through IL-33/ST2 signaling
[13, 14]. Aging-relevant antiapoptotic lncRNA Sarrah acceler-
ates recovery from AMI [15]. lncRNA ZFAS1 facilitates intra-
cellular Ca2+ overload and contractile dysfunction in
myocardial infarction (MI) mouse models [16]. Additionally,
lncRNAs LNC_000226 and MALAT1 have been determined
as diagnostic markers of UA [17]. Despite this, knowledge of
circulating lncRNAs and their functions in ACS progression
is still in its infancy. In this study, we performed microarray
expression profiling to identify differences in circulating
lncRNA and mRNA expression patterns between ACS
patients and healthy subjects. This study was aimed at deter-
mining ACS-specific circulating lncRNAs and analyzing the
potential biological functions of lncRNAs during ACS
progression.

2. Materials and Methods

2.1. Patients and Samples. This study was approved by the
Ethics Committee of the Third Affiliated Hospital of Shang-
hai University (Wenzhou People’s Hospital) (KY-2017029).
All patients signed written informed consent. This research
was conducted in accordance with the guidelines of the Dec-
laration of Helsinki. From June 2017 to October 2017, whole
blood samples from 9 patients with ACS and 9 healthy par-
ticipants were collected in the Third Affiliated Hospital of
Shanghai University (Wenzhou People’s Hospital). The
diagnostic criteria of ACS were as follows: patients had ste-
nosis (at least one main coronary artery ≥ 50%) confirmed
by coronary angiography and/or met the AMI criteria (typ-
ical clinical symptoms, elevated cardiac enzyme levels, and a
representative set of electrocardiography (ECG)). The inclu-
sion criteria were as follows: (1) patients met the diagnostic
criteria, (2) patients were 35-75 years old, and (3) patients
provided informed consent. The exclusion criteria were as
follows: (1) patients had comorbid diseases, such as cardio-
myopathy, valvular heart disease, severe arrhythmia, heart
failure, and other concomitant diseases; (2) patients had data
collection difficulties, such as religious or language barriers;
and (3) patients were pregnant or breastfeeding. Within 3-
5 hours after the onset of symptoms but before angiography,
venous blood samples were collected from each subject by
anterior elbow venipuncture. The whole blood sample
(2ml) was directly collected into a test tube containing eth-
ylenediaminetetraacetic acid (EDTA), and then, a red blood
cell lysis buffer was added and other blood components were
removed through centrifugation at 3000 g at 4°C for 5
minutes within 2 hours. Next, 1ml of TRIzol was added,
and the sample was transferred to a RNase/DNase-free tube
and stored at -80°C.

2.2. Microarray Analysis. Microarray analysis was achieved
by Beijing Boao Jingdian Biotechnology Co., Ltd. (China).
Briefly, extracted RNA from serum samples of 4 ACS and
4 healthy subjects was reverse transcribed into complemen-

tary DNA (cDNA). Additionally, cRNA was synthesized
by reverse transcription. Fluorescent labeling, microarray
hybridization, microarray cleaning, and scanning were pre-
sented. GeneSpring software (version 13.0; Agilent) was
adopted for analyzing lncRNA and mRNA microarray data
for data aggregation, normalization, and quality control. Dif-
ferentially expressed lncRNAs and mRNAs were screened in
accordance with fold change ≥ 2 and Benjamini-Hochberg-
corrected p value < 0.05. Moreover, the Adjust Data function
of CLUSTER 3.0 software was utilized to perform log2 con-
version on the data and determine the median of lncRNAs
or mRNAs. Additionally, the data were further analyzed
through hierarchical clustering with average linkage. The
clustering results were visualized using Java TreeView soft-
ware [18]. Transcription factors of differentially expressed
lncRNAs were predicted with the Match-1.0 Public tran-
scription factor prediction tool. The binding of the 2000 bp
and 500 bp regions upstream of the start site of each lncRNA
with the transcription factor was predicted. On the basis of
the Pearson correlation analysis between differentially
expressed lncRNAs and mRNAs, a lncRNA-mRNA coex-
pression network was constructed in accordance with j
correlation coefficientj ≥ 0:99 and p < 0:05. Downstream tar-
gets of differentially expressed lncRNAs were also deter-
mined through cis-lncRNA prediction and trans-lncRNA
prediction. The prediction of cis-lncRNA was carried out
through close correlation with a set of expressed protein-
coding genes utilizing jcorrelation coefficientj ≥ 0:99 and
p < 0:05. At the genomic locus where the lncRNA was
located, the protein-coding gene and the lncRNA were
within 10 kb along the genome. Therefore, “cis” referred
to the regulation mechanism of the same locus, including
the antisense lncRNA-mediated regulation of protein-coding
genes encoded at the same locus. The complete sequence of
lncRNA was compared with the 3′UTR of the coexpressed
mRNA on the basis of the genome data from the UCSC web-
site (http://hgdownload.cse.ucsc.edu/admin/exe/) [19]. The
networks of transcription factor-lncRNA, lncRNA-mRNA,
and lncRNA-downstream target were established with Cytos-
cape software [20]. In the network, degree centrality was
defined as the number of links between one node and another
node. Degree was the simplest and most important measure of
gene centrality in a network of relative importance.

2.3. Real-Time Quantitative PCR (RT-qPCR). RNA extrac-
tion was conducted with the MiniBEST Universal RNA
Extraction Kit (Takara, China). Total RNA was reverse tran-
scribed into cDNA in the following reverse transcription
system: 1μl enzyme mix, 1μl RT primer mix, 4μl 5x Prime-
Script buffer, 2.7μg RNA, and 20μl RNase-free H2O. The
reaction procedure included 37°C lasting 15 minutes, 85°C
lasting 5 seconds, and 4°C which was held. RT-qPCR was
carried out in accordance with the following reaction system:
1μl forward primer, 1μl reverse primer, 10μl 2x mix, 7μl
H2O, and 1μl cDNA. Primer sequences were as follows:
GAPDH, 5′-GCCGAGGAGGTCAACTACAT-3′ (forward),
5′-GCTCAGGGTGATTGCGTAT-3′ (reverse); ALOX15, 5′
-CCCTGGATAAGGAAATTGAGATCC-3′ (forward), 5′-
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CCCTGGAGGAAATTGAGATCC-3′ (reverse); ENST0000
0538705.1, 5′-TTGCCTTTCTTGCAAAGTTTCC-3′ (for-
ward), 5′-CACTTTCCCTTTTCTACTTGCTCG-3′ (reverse);
ENST00000556936.1, 5′-CTTCCTTGTTCTGCTCTGGTTG-
3′ (forward), 5′-ACCCTAATGAACGATGTCACCC-3′
(reverse); and U6, 5′-CTCGCTTCGGCAGCACA-3′ (for-
ward), 5′-AACGCTTCACGAATTTGCGT-3′ (reverse). Rela-
tive expression was determined with 2-ΔΔCt method.

2.4. Cell Culture and Transfection. Human coronary artery
endothelial cells (HCAECs) were purchased from Jiangsu
Punuosheng Biotechnology Co., Ltd. (China). HCAECs were
maintained in endothelial basal medium 2 (EBM-2) supple-
mented with 15% fetal bovine serum (FBS; HyClone, USA).
All HCAECs were cultured in an incubator with a humid
environment and 5% CO2 at 37°C. siRNA sequences were
as follows: siRNA negative control (si-NC): 5′-UUCUCC-
GAACGUGUCACGUTT-3′ (forward), 5′-ACGUGACAC-
GUUCGGAGAATT-3′ (reverse); si-ALOX15#1: 5′-CGCU
AUCAAAGACUCUCUAAATT-3′ (forward), 5′-UUUA
GAGAGUCUUUGAUAGCGTT-3′ (reverse); si-ALOX15#2:
5′-AUGACUUCAACCGGAUUUUCUTT-3′ (forward), 5′
-AGAAAAUCCGGUUGAAGUCAUTT-3′ (reverse); si-
ALOX15#3: 5′-GUCGAUACAUCCUAUCUUCAATT-3′ (for-
ward), 5′-UUGAAGAUATGGAU (reverse); si-ENST00000538-
705.1#1: 5′-UGCUUGUUUUAUUAUGUUUUCUTT-3′ (for-
ward), 5′-AGAAAACAUAAUAAACAAGCATT-3′ (reverse);
si-ENST00000538705.1#2: 5′-CACUCAAUAAAUAUUUUG-
3′ (forward), 5′-AGCAAAAAUAUUUAUUGAGUGTT-3′
(reverse); and si-ENST00000538705.1#3: 5′-CCCCAUUUUAA
UCUUUCAGUATT-3′ (forward), 5′-UACUGAAAGAUUAA
AAUGGGGTT-3′ (reverse). The above siRNAs were transfected
into HCAECs with the Lipofectamine RNAiMAX reagent
(Thermo Scientific, USA). After 48h, RT-qPCR was presented
for measuring the expression of ALOX15 and ENST0000
0538705.1.

2.5. Western Blotting. Protein extraction was presented, and
protein concentration was measured with the BCA method.
Thereafter, protein was separated with SDS-PAGE electro-
phoresis and transferred onto the PVDF membrane. The
membrane was sealed by 5% milk/TBST at room tempera-
ture for 1 h, followed by incubation with primary antibodies
against ALOX15 (1 : 1000; 10021-1-Ig; Proteintech, China)
and GAPDH (1 : 1500; 60004-1-Ig; Proteintech) at 4°C over-
night. Thereafter, the membrane was incubated by HRP-
labeled goat antirabbit secondary antibody (1 : 2000;
SA00001-2; Proteintech) at room temperature for 1 h. Pro-
tein bands were developed with the ECL reagent and quan-
tified with ImageJ software.

2.6. Cell Counting Kit-8 (CCK-8). HCAECs in the logarith-
mic phase were digested and resuspended in complete
medium to a concentration of 3:5 × 104/ml. Thereafter,
HCAECs were inoculated into a 96-well plate (3500 cells/
well) and incubated for 18h for later use. HCAECs were
transfected with specific siRNAs and cultured for 24h,

36 h, 48 h, and 72 h. 10μl CCK-8 solution was added to each
well as well as incubated at 37°C for 4 h. After adding 10μl of
stop solution to each well, the optical density (OD) value at
450 was measured with a microplate reader.

2.7. Wound-Healing Assay. HCAECs were plated into a 6-
well plate at 3 ∗ 105 cells/well and incubated overnight in
an incubator with 5% CO2 at 37

°C. After siRNA transfection
for 24h, a 10μl pipette tip was utilized to make cell scratches
perpendicular to the well plate. The cell culture fluid was
aspirated, and the well plate was washed three times with
PBS to wash away the cell debris generated by the scratch.
Thereafter, the corresponding serum-free medium was
added. Images were acquired at 0 h, 6 h, 24 h, and 48 h,
respectively.

2.8. Animals. Twenty healthy adult male Sprague-Dawley
rats (age 8-10 weeks; body weight 250-300 g) were purchased
from the Hangzhou Scientific Cloud Biotechnology Co., Ltd.
(China). According to the National Institutes of Health
“Guidelines for the Care and Use of Laboratory Animals”
(Bethesda, Maryland, USA), the rats were kept in the animal
room at 25 ± 1°C. All rats had a standard diet and no dietary
restrictions. Our study gained the approval of the Animal
Ethics Committee of the Third Affiliated Hospital of Shang-
hai University (Wenzhou People’s Hospital) (KY-2017029).

2.9. Construction of Myocardial Infarction (MI) Rat Models.
All rats were randomly divided into the sham operation
group, MI+si-NC group, MI+si-ENST00000538705.1 group,
and MI+si-ALOX15 group (n = 5 each group). The rats were
anesthetized with intraperitoneal injection of pentobarbital
sodium (50mg/kg). Thereafter, their limbs were fixed, the
trachea was intubated, and the electrocardiograph and respi-
rator were connected. A 1.5 cm incision was made on the left
side of the chest between the third and fourth ribs for thora-
cotomy. The left atrial appendage was slightly lifted with
ophthalmic curved forceps. The left anterior descending
artery was ligated with 5/0 surgical sutures about 1mm
below the conus artery and then sutured to close the chest.
The markedly elevated ST segment in ECG lead II indicated
a successful ligation. For the MI+si-NC group, the rats
received a single intramyocardial injection of lentiviral ther-
apy with a blank sequence 30 minutes before surgery. For
the MI+si-ENST00000538705.1 group, the rats were treated
with intramyocardial injection of 50μg of lentivirus with the
si-ENST00000538705.1 sequence 30 minutes before surgery.
For the MI+si-ALOX15 group, the rats were treated with
50μg lentivirus with si-ALOX15 sequence intramyocardial
injection 30 minutes before surgery. For the sham operation
group, the rats received only unligated surgical thread inser-
tion. After two weeks, the rats were euthanized by intraper-
itoneal injection of 200mg/kg pentobarbital sodium, and the
rat hearts were excised and fixed with 4% paraformaldehyde
or stored at 80°C.

2.10. Histological Analysis. Myocardial tissues were fixed
in 4% paraformaldehyde for more than 24 hours, then
dehydrated and embedded in paraffin. Subsequently, the
paraffin-embedded tissues were cut into 4μm. After
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dewaxing into water, the sections were stained with Harris
hematoxylin (Proteintech, China) for 10 minutes. After rins-
ing with tap water, the slices were differentiated with 1%
hydrochloric acid alcohol for a few seconds. After rinsing
with tap water for 10 minutes, the sections were turned blue
with PBS for 5 minutes. The sections were then stained in
eosin (Sigma, USA) staining solution for 3 minutes. After
dehydration and mounting, microscopic examination, image
acquisition, and analysis were presented.

2.11. Biochemical Tests. Biochemical tests were presented
strictly in accordance with the corresponding instructions of
high-density lipoprotein (HDL; K076(2019005); Changchun

Huili Biotechnology Co., Ltd., China), total cholesterol (TC;
C063(2019006); Changchun Huili Biotechnology Co., Ltd.,
China), and low-density lipoprotein (LDL; K076(2019005);
Changchun Huili Biotechnology Co., Ltd., China) kits. The
antigen was diluted to 0.1ml/well with a carbonate buffer
and incubated overnight at 4°C. The serum samples were
washed three times the next day, and then, the diluted super-
natant (0.1ml) was added to the reaction well. The samples
were then incubated at 37°C for 1hour. Blank, negative, and
positive wells were set to compare with reaction wells. A
freshly diluted enzyme-labeled secondary antibody was added
and incubated at 37°C for 50 minutes. Next, the holes were
washed with deionized distilled water. Temporarily prepared
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Figure 1: Identification of ACS-specific circulating lncRNAs and mRNAs through microarrays. (a, b) Volcano and heat map diagrams show
dysregulated circulating lncRNAs in ACS patients compared with healthy subjects. (c, d) Volcano and heat map diagrams visualize
dysregulated circulating mRNAs in ACS patients compared with healthy subjects. (e–g) The first 30 enrichment results of (e) biological
processes, (f) KEGG pathways, and (g) diseases enriched by dysregulated circulating mRNAs. Rich factor indicates the ratio of input
frequency/background frequency, the size of the bubble indicates the number of dysregulated circulating mRNAs, and the color
corresponds to the q-value.
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tetramethylbenzidine was added to each reaction well and
incubated at 37°C for 20 minutes. Stop solution (50μl) was
added to stop the reaction. The OD value was detected at
450nm wavelength within 20 minutes.

2.12. Statistical Analysis. All statistical analyses were con-
ducted by the R software and GraphPad Prism 8.0 software.
Each experiment was repeated at least three times. The data
are expressed as mean ± standard deviation. The differences

between different groups were analyzed by Student’s t-test
or one-way analysis of variance (ANOVA). p < 0:05 was
considered statistically significant.

3. Results

3.1. Identification ACS-Specific Circulating lncRNAs and
mRNAs. This study presented a microarray analysis between
three pairs of serum samples from ACS patients and healthy
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Figure 2: Analysis of up- and downstream factors of dysregulated lncRNAs in ACS. (a) The network of transcription factors and
dysregulated lncRNAs. The yellow circle represents lncRNA, the purple circle represents transcription factor, and the size of the circle
represents the degree of transcription factor or lncRNA in the network. (b) The lncRNA-mRNA coexpression network. The yellow circle
represents lncRNA, the green circle represents mRNA, and the size of the circle represents the degree of lncRNA or mRNA in the
network. The red line represents a positive correlation, and the blue line represents a negative correlation. (c) The network of lncRNAs
and their downstream targets. The yellow circle indicates lncRNA, the green circle indicates downstream mRNA, and the size of the
circle represents the degree of lncRNA or downstream target in the network. (d–f) The first 30 enrichment results of (d) biological
processes, (e) KEGG pathways, and (f) diseases of downstream targets enriched by dysregulated lncRNAs. The rich factor indicates the
ratio of input frequency/background frequency, the size of the bubble indicates the number of genes annotated to this function entry for
downstream genes, and the color corresponds to the q-value.
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subjects. With jlog 2fold − changej > 1 and p < 0:05, we
determined 111 upregulated lncRNAs and 242 downregu-
lated lncRNAs in ACS patients compared with healthy con-
trols (Figures 1(a) and 1(b)). Meanwhile, 266 mRNAs were
upregulated, and 175 mRNAs were downregulated in ACS
(Figures 1(c) and 1(d)). In Figure 1(e), we found that
immune-related biological processes (immune system pro-
cess, response to cytokine, cellular response to cytokine
stimulus, and cytokine-mediated signaling pathway, etc.)
were prominently enriched by dysregulated mRNAs. KEGG
enrichment analysis demonstrated that these dysregulated
mRNAs were linked to immune activation pathways such
as cytokine signaling in the immune system, cytokine-
cytokine receptor interaction, and interleukin signaling
pathway (Figure 1(f)). Also, the above mRNAs were related
to diverse diseases (Figure 1(g)).

3.2. Analysis of Up- and Downstream Factors of Dysregulated
lncRNAs in ACS. Transcription factor prediction was pre-
sented utilizing the Match-1.0 Public transcription factor
prediction tool. The binding of the 2000 bp upstream and
500 bp downstream region of the start site of each lncRNA
to the transcription factor was predicted, and the results
are shown in Figure 2(a). Coexpression analysis adopted
the standardized signal value of each probe in each sample
as the data source to perform pairwise correlation calcula-
tion and hypothesis verification, thereby obtaining the corre-
lation coefficient and p value. In this study, lncRNA-mRNA
coexpression pairs were determined in accordance with j

correlation coefficientj > 0:99 and p value < 0.05, as shown
in Figure 2(b). Additionally, we carried out the coexpression
analysis of lncRNA and mRNA. Briefly, cis-prediction was
used for exploring lncRNA-mRNA pairs within 10 kb of
the genome while trans-prediction adopted the blat tool to
compare the lncRNA and mRNA (3′UTR) sequences to
screen lncRNA-mRNA pairs with similar sequences.
Figure 2(c) depicted the interaction network of lncRNAs
and their coexpressed mRNAs with jcorrelation coefficientj
> 0:99 and p value < 0.05. Biological significance of coex-
pressed mRNAs was further probed. In Figure 2(d), the
above mRNAs were remarkably enriched in immune-
relevant biological processes such as regulation of immune
response, cellular response to cytokine stimulus, cytokine
production involved in inflammatory response, innate
immune response, cellular response to interferon-gamma,
regulation of cytokine-mediated signaling pathway, macro-
phage tolerance induction, IL-18 secretion, and regulation
of IL-12 production. Additionally, immune-relevant path-
ways were prominently enriched by coexpressed mRNAs,
including cytokine signaling in the immune system, regula-
tion of IFNα signaling, and IL-6 signaling (Figure 2(e)).
Also, we found that these mRNAs were distinctly linked to
diverse diseases (Figure 2(f)).

3.3. Verification of the Expression of ENST00000538705.1,
ENST00000556936.1, and ALOX15 in ACS Patients. The
expression of lncRNAs ENST00000538705.1 and ENST0000
0556936.1 as well as coexpressed mRNA ALOX15 was further
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Figure 3: Verification of the expression of ENST00000538705.1, ENST00000556936.1, and ALOX15 in ACS patients. (a–c) RT-qPCR for
measuring the expression of (a) ENST00000538705.1, (b) ENST00000556936.1, and (c) ALOX15 in serum samples of ACS patients and
healthy subjects. ∗p < 0:05, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001.
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Figure 4: Continued.
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verified in serum specimens of ACS patients and healthy sub-
jects. Our data confirmed that the lncRNA ENST0000
0538705.1 expression was remarkably upregulated as well as
the ENST00000556936.1 expression was prominently down-
regulated in ACS patients compared with healthy subjects
(Figures 3(a) and 3(b)). Additionally, we found the prominent
upregulation of ALOX15 in ACS patients (Figure 3(c)).

3.4. Silencing ENST00000538705.1 Reduces ALOX15
Expression in HCAECs. To investigate the interaction of
ENST00000538705.1 and ALOX15 as well as their biological
significance, HCAECs were separately transfected with spe-
cific siRNAs against ENST00000538705.1 and ALOX15. In
Figure 4(a), si-ENST00000538705.1#2 remarkably lowered
the expression of ENST00000538705.1 in HCAECs, which
was adopted for further experiments. Meanwhile, we investi-
gated the excellent knockdown effect of si-ALOX15#1 in
HCAECs (Figure 4(b)). Further analysis indicated that
silencing ALOX15 did not alter the ENST00000538705.1
expression in HCAECs (Figure 4(c)). However, ENST0000
0538705.1 knockdown remarkably reduced the expression
of ALOX15 in HCAECs (Figures 4(d)–4(f)). This indicated
that ALOX15 acted as a downstream target of ENST0000
0538705.1.

3.5. Silencing ENST00000538705.1 or ALOX15 Weakens the
Proliferative and Migrated Capacities of HCAECs. CCK-8
results demonstrated that the viable HCAECs transfected
with si-ENST00000538705.1 or si-ALOX15 were markedly
decreased in comparison to the si-NC group (Figure 5(a)).
This indicated that silencing ENST00000538705.1 or
ALOX15 remarkably weakened the proliferation of
HCAECs. A wound-healing assay was presented to evalu-

ate the migration of HCAECs. Compared with the si-NC
group, the migration ability of HCAECs transfected with
si-ENST00000538705.1 or si-ALOX15 was remarkably
weakened (Figures 5(b) and 5(c)).

3.6. Silencing ENST00000538705.1 or ALOX15 Improves
Myocardial Injury in Rats with MI. To further investigate
the effects of ENST00000538705.1 and ALOX15 on ACS,
we constructed MI rat models through ligating the left coro-
nary artery. Two weeks later, the heart tissues were taken for
H&E to observe the pathological condition. The cardiomyo-
cytes of rats in the sham operation group were arranged
more uniformly, without breaks and with normal cardio-
myocytes (Figure 6). However, the cardiomyocytes of the
MI model group were swollen and obviously thickened, with
very irregular shapes and disordered arrangement. For MI
rats with si-ENST00000538705.1 or si-ALOX15 treatment,
cardiomyocyte hypertrophy and arrangement disorder were
remarkably ameliorated.

3.7. Silencing ENST00000538705.1 or ALOX15 Reduces Blood
Lipids in Rats with MI. The serum levels of TC, LDL, and
HDL of rats in each group were detected separately. Com-
pared with rats in the sham operation group, the serum
levels of TC and LDL in MI rats were significantly increased
(Figures 7(a) and 7(b)). Compared with rats with MI, after
intervention with si-ENST00000538705.1 or si-ALOX15,
the serum levels of TC and LDL of MI rats were significantly
decreased. As shown in Figure 7(c), in comparison to rats in
the sham operation group, the serum levels of HDL of MI
rats were significantly reduced. However, the serum HDL
levels of MI rats were significantly increased following treat-
ment with si-ENST00000538705.1 or si-ALOX15.
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Figure 4: Silencing ENST00000538705.1 reduces ALOX15 expression in HCAECs. (a) RT-qPCR for evaluating the transfection effect of
three specific siRNAs against ENST00000538705.1 in HCAECs. (b) The transfected effect of three specific siRNAs against ALOX15 in
HCAECs via RT-qPCR. (c) RT-qPCR for measuring the expression of ENST00000538705.1 in HCAECs transfected with si-
ENST00000538705.1 or si-ALOX15. (d–f) RT-qPCR and western blotting for quantifying the expression of ALOX15 in HCAECs
transfected with si-ENST00000538705.1 or si-ALOX15. ns: not significant; ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001.

17Disease Markers



Control
si-NC

si-ENST00000538705.1
si-ALOX15

24 h 36 h 48 h 72 h
0.0

0.5

1.0

1.5

2.0

Hours
Re

la
tiv

e c
el

l v
ia

bi
lit

y ⁎
⁎
⁎
⁎

⁎
⁎
⁎
⁎

(a)

Control si-ALOX15si-ENST00000538705.1si-NC

0 h

6 h

24 h

48 h

(b)

Figure 5: Continued.

18 Disease Markers



Co
nt

ro
l

si-
N

C
si-

EN
ST

00
00

05
38

70
5.

1
si-

A
LO

X1
5

Co
nt

ro
l

si-
N

C
si-

EN
ST

00
00

05
38

70
5.

1
si-

A
LO

X1
5

Co
nt

ro
l

si-
N

C
si-

EN
ST

00
00

05
38

70
5.

1
si-

A
LO

X1
5

Co
nt

ro
l

si-
N

C
si-

EN
ST

00
00

05
38

70
5.

1
si-

A
LO

X1
5

0 h
6 h

24 h
48 h

0

100

200

300

400

W
ou

nd
 d

ist
an

ce
 (μ

m
)

ns

ns

⁎⁎

⁎⁎⁎⁎

⁎⁎⁎⁎

⁎⁎⁎

⁎

(c)

Figure 5: Silencing ENST00000538705.1 or ALOX15 weakens the proliferative and migrated capacities of HCAECs. (a) CCK-8 for
measuring viable HCAECs transfected with si-ENST00000538705.1 or si-ALOX15 in specified time points. (b, c) Migration capacities of
HCAECs transfected with si-ENST00000538705.1 or si-ALOX15 through a wound-healing assay in specified time points. Bar = 100μm.
Magnification = 200x. ns: not significant; ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001.
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MI+si-ENST00000538705.1 MI+si-ALOX15

Figure 6: Silencing ENST00000538705.1 or ALOX15 improves myocardial injury of MI rats. H&E staining for observing the pathological
condition of myocardial tissues of rats in the sham group, MI group, MI+si-ENST00000538705.1 group, and MI+ALOX15 group. Bar =
20μm. Magnification = 200x.
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3.8. Silencing ENST00000538705.1 or ALOX15 Reduced
their Expression Levels in the Serum of Rats with MI.
The expression level of ENST00000538705.1 was further
measured. The results showed that ENST00000538705.1
presented a higher expression in the serum of rats in the
MI group than in the sham operation group. Nevertheless,
its expression in the serum of MI rats was remarkably
lowered after administration with si-ENST00000538705.1
or si-ALOX15 (Figure 8(a)). Also, ALOX15 expression was
detected in serum samples. As a result, higher ALOX15
expression was investigated in the MI group in comparison
to the sham group (Figures 8(b)–8(d)). But intervention with
si-ENST00000538705.1 or si-ALOX15 decreased the serum
levels of ALOX15 for MI rats.

4. Discussion

In the past few decades, the molecular mechanisms of ACS
have been extensively studied [21–24]. Nevertheless, in-
depth analysis is needed to uncover the pathogenesis of
ACS. Although a few thousands of lncRNAs have been func-
tionally characterized in ACS, their potential mechanisms in
ACS remain greatly indistinct [25–27]. In our study, we
adopted microarray technology to obtain the expression data
of lncRNAs and mRNAs in serum specimens from 4
patients with ACS and 4 healthy controls. As a result, we
determined 111 upregulated lncRNAs and 242 downregu-
lated lncRNAs in ACS. Additionally, 266 upregulated
mRNAs and 175 downregulated mRNAs were determined
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Figure 7: Silencing ENST00000538705.1 or ALOX15 reduces blood lipids of MI rats. (a–c) The levels of (a) TC, (b) LDL, and (c) HDL in the
serum of rats in the sham group, MI group, MI+si-ENST00000538705.1 group, and MI+ALOX15 group. ∗p < 0:05 and ∗∗∗∗p < 0:0001.
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in ACS. Immune and inflammation dysfunctions exert cru-
cial roles in clinical manifestations and complications of
ACS [3]. Our functional enrichment results showed that
dysregulated circulating mRNAs were remarkably linked to
immune-relevant biological processes and pathways, indi-
cating their roles in ACS progression.

The regulatory mechanisms of these dysregulated
lncRNAs were further probed out. We firstly analyzed the
upstream regulatory mechanism of dysregulated lncRNAs.
We identified the transcription factors of these lncRNAs,
such as Nkx2-5, Pax-4, HNF-4, FOXJ2, and CHOP-C/
EBPalpha. These transcription factors might be involved in
modulating the expression of circulating lncRNAs in ACS.
Coexpression analysis is based on correlation, looking for

lncRNA-mRNA relationship pairs with similar expression
profiles from the genetic expression layer [28]. Many func-
tionally related genes have very similar expression profiles
under a set of related conditions, especially genes that are
coregulated by common transcription factors, or their prod-
ucts form the same protein complex or participate in the
same regulatory pathway [29]. In this study, our coexpres-
sion analysis and network construction based on coexpres-
sion results can help us discover the possible relationship
between lncRNA and mRNA, determine the lncRNA that
affects the regulation of the mRNA expression, and find
the lncRNA that plays a central regulatory role in the net-
work and discovers the possible new mechanism of action
of lncRNA. It has been demonstrated that lncRNA can
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Figure 8: Silencing ENST00000538705.1 or ALOX15 reduces their expression levels in the serum of rats with MI. (a) ENST00000538705.1
expression in the serum of rats in the sham group, MI group, MI+si-ENST00000538705.1 group, and MI+ALOX15 group through RT-
qPCR. (b–d) RT-qPCR and western blotting for measuring the expression of ALOX15 in the serum specimens from above groups. ∗∗∗p
< 0:001 and ∗∗∗∗p < 0:0001.
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regulate the expression of nearby genes through interaction
with nearby genes or regulate the expression of distant genes
through the indirect influence of miRNA [30–32]. Shen et al.
identified key molecular markers (PDZK1IP1, PROK2,
LAMP3, etc.) of ACS utilizing peripheral blood transcriptome
sequencing and mRNA-lncRNA coexpression analysis [33].
Herein, we presented target gene prediction analysis on the
basis of the above two mechanisms of action to predict the
mRNA that lncRNA may modulate. Target gene prediction
can be divided into cis-prediction and trans-prediction. For
cis-prediction, we predicted the lncRNA-mRNA relationship
pairs that had a certain relationship through the position
alignment of lncRNA and mRNA. Meanwhile, for trans-pre-
diction, possible lncRNA-mRNA relationship pairs were
determined through sequence alignment. Overall, our analysis
characterized the up- and downstream regulatory mecha-
nisms of dysregulated lncRNAs.

Among lncRNA-mRNA relationship pairs, we focused on
ENST00000538705.1 and ALOX15. After verification, circu-
lating ENST00000538705.1 and ALOX15 were both upregu-
lated in ACS patients. In HCAECs, we found that silencing
ENST00000538705.1 remarkably decreased the expression
ALOX15. Nevertheless, ALOX15 knockdown did not influ-
ence the ENST00000538705.1 expression in HCAECs. This
indicated that ALOX15 might be a downstream target of
ENST00000538705.1. The proliferation and migration of
endothelial cells following MI are crucial for angiogenesis
[34]. Previously, Liu et al. demonstrated that lncRNA ANRIL
suppression enabled to promote cell proliferation and tubule
formation and inhibit inflammatory activation and apoptosis
of endothelial cells [35]. Du et al. reported that lncRNA
HCG11 alleviated high glucose-induced vascular endothelial
damage by increasing cell proliferation and tube formation
[26]. Additionally, lncRNA TCONS_00024652 was identified
to facilitate vascular endothelial cell proliferation and angio-
genesis [36]. Herein, we found that silencing ENST0000
0538705.1 and ALOX15 markedly weakened the proliferation
and migration of HCAECs, indicating that they might partic-
ipate in ACS progression. Evidence has demonstrated that the
effect of ALOX15 induces endothelial cell barrier dysfunction
in high-fat-diet rats [37]. Hence, we speculated that the anti-
sense lncRNA ENST00000538705.1 might enhance the stabil-
ity of ALOX15 mRNA, thereby enhancing the proliferation
and migration ability of HCAECs.

The therapeutic effects of si-ENST00000538705.1 and si-
ALOX15 were also investigated in MI rat models. Our results
demonstrated that silencing ENST00000538705.1 or ALOX15
remarkably relieved myocardial injury following MI. Previ-
ously, lncRNA SLC8A1-AS1 protected the myocardium from
damage via weakening SLC8A1 and activating cGMP-PKG
signaling in MI models [38]. Moreover, ATP2B1-AS1 knock-
down protected against MI mice through blocking NF-κB
signaling [27]. Our study noted that ENST00000538705.1 or
ALOX15 knockdown reduced serum TC and LDL levels as
well as elevated serum HDL levels in MI rats. These results
indicated that ENST00000538705.1 and ALOX15 might
become potential targets for the treatment of MI.

The limitations of our study should be pointed out. First
of all, the sample size used for microarray and RT-qPCR

analysis was relatively small. In our future studies, the sam-
ple size of each group will be increased for further verifying
our findings. Furthermore, the molecular mechanisms
underlying ENST00000538705.1 and ALOX15 in ACS pro-
gression remain to be fully elucidated, and in-depth studies
are required.

5. Conclusion

In conclusion, we determined upregulated ENST0000
0538705.1 and ALOX15 in serum specimens of patients with
ACS. Bioinformatics analysis identified the remarkable
interaction between ENST00000538705.1 and ALOX15,
and ENST00000538705.1 knockdown significantly inhibited
ALOX15 expression in HCAECs. Silencing ENST0000
0538705.1 and ALOX15 both weakened the proliferation
and migration of HCAECs. Additionally, their knockdown
relieved myocardial damage of MI rats. Altogether, lncRNA
ENST00000538705.1 and ALOX15 may become potential
molecular targets for ACS therapy.
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